JPH021979A - Manufacture of photoelectric integrated circuit - Google Patents

Manufacture of photoelectric integrated circuit

Info

Publication number
JPH021979A
JPH021979A JP63142998A JP14299888A JPH021979A JP H021979 A JPH021979 A JP H021979A JP 63142998 A JP63142998 A JP 63142998A JP 14299888 A JP14299888 A JP 14299888A JP H021979 A JPH021979 A JP H021979A
Authority
JP
Japan
Prior art keywords
electrode
contact layer
layer
semiconductor layer
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63142998A
Other languages
Japanese (ja)
Inventor
Tomoji Terakado
知二 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63142998A priority Critical patent/JPH021979A/en
Publication of JPH021979A publication Critical patent/JPH021979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a photoelectric integrated circuit of high performance with good reproducibility by a method wherein a semiconductor layer of an optical element and a semiconductor layer of an electronic element are selectively made to grow in crystal to make a wafer flat, an etching is performed to expose a contact layer of the optical element on a substrate side after an electrode of an electronic element has been formed, and an electrode is formed on the above contact layer. CONSTITUTION:A semiconductor layer of an optical element and semiconductor layers 20, 21 and 22 of an electronic element are selectively grown on a semiconductor substrate 10 respectively to make a wafer flat. Next, an electrode of the electronic element is formed. A part of the semiconductor layer of the optical element is removed through etching after the above electrode manufacturing process to expose a contact layer 11. An electrode 30 is formed on the contact layer exposed through an etching process. Thereby, in the electronic component, a fine gate electrode 1mum or less in size can be reproducibly manufactured. Therefore, a gate length can be made 1mum or less being kept excellent in uniformity inside the wafer, and a transistor can be made excellent in performance and yield, consequently an optical electric integrated circuit of high performance can be reproducibly obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光電子集積回路の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an optoelectronic integrated circuit.

〔従来の技術〕[Conventional technology]

光通信技術の進歩に伴い、その適用分野は基幹伝送系か
ら加入者系・LAN・データリンク等のシステムへ急速
にひろがりつつある。このような光システムの高度化に
対応する為には、光デバイスのより高性能化・高機能化
が不可欠である。
With the progress of optical communication technology, its application fields are rapidly expanding from core transmission systems to systems such as subscriber systems, LANs, and data links. In order to respond to such advances in optical systems, it is essential to improve the performance and functionality of optical devices.

光電子集積回路は、これらの光システムの核となるキー
デバイスのひとつである。そこで、低価格・小型・高信
頼・無調整化といった集積による基本的利点の他、高速
化・高感度化といった光デバイスの性能改善、さらには
光配線・光交換といった将来の光システムを支える高機
能・新機能デバイスの実現を狙いとして光電子集積回路
の開発が精力的に行われている。
Optoelectronic integrated circuits are one of the key devices at the core of these optical systems. In addition to the basic advantages of integration, such as low cost, small size, high reliability, and no adjustment, we also aim to improve the performance of optical devices, such as faster speeds and higher sensitivity, and to improve the performance of optical devices, such as optical wiring and switching, which will support future optical systems. Optoelectronic integrated circuits are being actively developed with the aim of realizing functional and new functional devices.

光電子集積回路を高性能化するには、用いられる電子素
子に於て1μm以下のゲート電極を再現性よく形成でき
る微細電極形成プロセス技術が必要である。光電子集積
回路を製作する場、合、光素子と電子素子の層構造の違
いから、ウェハ内で数μmの段差が生じる。この為、通
常のホトリソグラフイー技術を用いて光電子集積回路を
製作すると、マスクパターンの拡がりによって1μm以
下の微細パターンの形成が難しい。このパターンの拡が
りを解決するために段差基板を用い1、段差下部に光素
子を段差上部に電子素子を形成して光素子と電子素子の
高さを一致させる方法が知られている。このような段差
構造の光電子集積回路としては、例えば寺門他3名の発
明による特願昭62072053号の発明がある。
In order to improve the performance of optoelectronic integrated circuits, a fine electrode formation process technology that can form gate electrodes of 1 μm or less with good reproducibility is required in the electronic devices used. When manufacturing optoelectronic integrated circuits, a step difference of several micrometers occurs within the wafer due to the difference in layer structure between optical elements and electronic elements. For this reason, when optoelectronic integrated circuits are manufactured using ordinary photolithography techniques, it is difficult to form fine patterns of 1 μm or less due to the spread of the mask pattern. In order to solve this problem of pattern spreading, a method is known in which a stepped substrate is used (1), an optical element is formed below the step, and an electronic element is formed above the step, so that the heights of the optical element and the electronic element are matched. An example of such an optoelectronic integrated circuit having a stepped structure is the invention disclosed in Japanese Patent Application No. 1982-62072053 by Terakado et al.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この従来例に於いては光素子と電子素子
の高さは一致しているものの光素子かメサ構造でありウ
ェハ内に数μm程度の段差があるから、段差部に於いて
レジストの切れによるパターン不良か生しやすい。この
パターン不良を防ぐために電極形成プロセスにおいて2
μm程度のJWみを有する厚膜レジストを用いていた。
However, in this conventional example, although the heights of the optical element and the electronic element are the same, the optical element has a mesa structure and there is a step difference of several μm within the wafer, so resist cuts may occur at the step part. It is easy to cause pattern defects due to this. In order to prevent this pattern failure, two steps are taken in the electrode formation process.
A thick film resist having a JW depth of about μm was used.

しかしながら厚膜レジストを用いるとゲート長が1μm
以下のゲート電極を再現性よく形成することが困惟であ
り、そのためFETの高性能化が難しくさらに特性のほ
らつきも大きい。結果として、光電子<、p 1回路と
して十分な素子特性が得られないばかりでなく、特性の
均一性に欠くという欠点を有していた。
However, if a thick film resist is used, the gate length will be 1 μm.
It is difficult to form the following gate electrodes with good reproducibility, which makes it difficult to improve the performance of FETs, and furthermore, the characteristics vary widely. As a result, not only was it not possible to obtain sufficient device characteristics as a photoelectron <, p 1 circuit, but there was also a drawback that the characteristics lacked uniformity.

本発明の目的は、これらの欠点を除去し高性能な光電子
集積回路が再現性よく得られる製造方法と提供すること
にある。
An object of the present invention is to provide a manufacturing method that eliminates these drawbacks and allows high-performance optoelectronic integrated circuits to be obtained with good reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題点を解決し上記目的を達成するために、本発
明か提供する光電子集積回路の製造方法は、光素子と電
子素子とが同一基板上にモノリシックに集積されている
光電子集積回路の製造方法において、半絶縁性基板上に
前記光素子の半導体層と前記電子素子の半導体層とを各
々選択的に結晶成長しウェハの平坦化を行う工程、前記
電子素子の電極を形成する工程、この電極形成工程の後
に前記光素子の半導体層の一部を除去してコンタクト層
を露出するエツチング工程、前記エツチング工程で露出
したコンタクト層上に電極を形成する工程とを含むこと
を特徴とする。
In order to solve the above problems and achieve the above objects, the present invention provides a method for manufacturing an optoelectronic integrated circuit, which is a method for manufacturing an optoelectronic integrated circuit in which an optical element and an electronic element are monolithically integrated on the same substrate. The method includes a step of selectively growing crystals of the semiconductor layer of the optical device and a semiconductor layer of the electronic device on a semi-insulating substrate and flattening the wafer, a step of forming electrodes of the electronic device; The method is characterized in that it includes an etching step of removing a part of the semiconductor layer of the optical element to expose a contact layer after the electrode forming step, and a step of forming an electrode on the contact layer exposed in the etching step.

〔作用〕[Effect]

本発明では、光素子の半導体層と電子素子の半導体層と
を選択的に結晶成長しウェハの平坦化を行い、電子素子
のゲート電極を形成した後に光素子の基板側のコンタク
ト層を露出するためのエツチングとそのコンタクト層上
に電極を形成することにより、電子素子に於いて1μm
以下の微細ケート電極を再現性よく製作することが可能
となる。従って、本発明の方法の採用により、ウェハ内
で均一性を保ちながらゲート長を1μm以下にすること
か可能となり、トランジスタの高性能化高歩留り化か図
れ、結果として高性能な光電子集積回路を再現性よく製
作できる。
In the present invention, the semiconductor layer of the optical device and the semiconductor layer of the electronic device are selectively crystal-grown, the wafer is flattened, and the contact layer on the substrate side of the optical device is exposed after forming the gate electrode of the electronic device. By etching and forming electrodes on the contact layer, the thickness of 1 μm can be achieved in electronic devices.
It becomes possible to manufacture the following fine gate electrodes with good reproducibility. Therefore, by adopting the method of the present invention, it is possible to reduce the gate length to 1 μm or less while maintaining uniformity within the wafer, thereby achieving high performance and high yield of transistors, and as a result, high performance optoelectronic integrated circuits. Can be manufactured with good reproducibility.

〔実施例〕〔Example〕

次に図面を参照して本発明の実施例の製造方法を詳細に
説明する。
Next, a manufacturing method according to an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は実施例の方法で製作された光電子4LVi。FIG. 1 shows a photoelectronic 4LVi manufactured by the method of the example.

回路の断面図であり、半導体レーザ1と電界効果トラン
ジスタ2を集積した例である。第2図(a)〜(d)は
、本実施例の光電子集積回路の製作工程図である。先ず
、InPからなる半絶縁性半導体基板10上に液相成長
法又は気相成長法又は分子線成長法等により、n −I
nGaAsPよりなる第一のコンタクト層11(厚さ0
.5μm、キャリア濃度5 X 1018cm−’) 
、n −[nPよりなる第一のクラッド層12(厚さ1
.0μm、キャリア濃度5 X 10 ”cm−’) 
、InGaAsPよりなる活性層13(厚さ0.1JJ
、m、ノンドープ)、P−1nPよりなる第二のクラッ
ド層14(厚さ1.5μm、キャリア濃度5 X 10
18cm−’)を成長し、第二のクラッド層14と活性
層13をメサエッチングした後、p −InPよりなる
第一の電流ブロック層15(厚さ0.5μm、キャリア
濃度5 X 10 ”cm−’) 、nInPよりなる
第二の電流ブロック層16(厚さ0.5μm、キャリア
濃度I X 10 ”am−3> 、p=InPよりな
る埋め込み層17(厚さ1.0μm、キャリア濃度1 
x l O18cm−3) 、p −1nGaAsPよ
りなる第二のコンタクト層18(厚さ0.5μm、キャ
リア濃度5 X 10 ′8cm−’)を成長し、埋め
込み型の半導体レーザ1を形成する(第1図(a))。
It is a sectional view of a circuit, and is an example in which a semiconductor laser 1 and a field effect transistor 2 are integrated. FIGS. 2(a) to 2(d) are manufacturing process diagrams of the optoelectronic integrated circuit of this example. First, n-I is deposited on a semi-insulating semiconductor substrate 10 made of InP by a liquid phase growth method, a vapor phase growth method, a molecular beam growth method, etc.
First contact layer 11 made of nGaAsP (thickness 0
.. 5μm, carrier concentration 5 x 1018cm-')
, n - [nP first cladding layer 12 (thickness 1
.. 0 μm, carrier concentration 5 × 10 “cm-’)
, an active layer 13 made of InGaAsP (thickness 0.1JJ
, m, non-doped), second cladding layer 14 made of P-1nP (thickness 1.5 μm, carrier concentration 5×10
18 cm-') and mesa-etched the second cladding layer 14 and active layer 13, a first current blocking layer 15 made of p-InP (thickness 0.5 μm, carrier concentration 5×10” cm) was grown. -'), a second current blocking layer 16 made of nInP (thickness 0.5 μm, carrier concentration I x 10 "am-3>", p=buried layer 17 made of InP (thickness 1.0 μm, carrier concentration 1
A second contact layer 18 (thickness 0.5 μm, carrier concentration 5 x 10'8 cm-') made of p-1nGaAsP is grown to form the buried semiconductor laser 1 ( Figure 1(a)).

次に、5i02よりなるマスク1つを施し半導体レーザ
1をメサストライプ化し、半絶縁性半導体基板10を露
出させた後、気相成長法又は分子線成長法によりInP
よりなる第一の高抵抗層20(厚さ1.5 am、 F
eドープ) 、GaAsよりなる第二の高抵抗層21(
厚さ1.5μm、ノンドープ)、n−GaAsよりなる
能動層22(厚さ0.3μm、キャリア濃度I X 1
0 ”cm−’)を成長しウェハの平坦化をおこなう(
第2図(b))。次に、能動層22を選択的にエツチン
グ除去し電界効果トランジスタ(FET)形成領域23
を区画する。誘電体膜24を形成後AuZnからなる半
導体レーザ1の第一の電極28、AuGeNiからなる
FET2のソース電ji25、ドレイン電極26、入1
からなるゲート電÷27を形成する(第2図(C))。
Next, one mask made of 5i02 is applied to form the semiconductor laser 1 into a mesa stripe to expose the semi-insulating semiconductor substrate 10, and then InP is formed by vapor phase epitaxy or molecular beam epitaxy.
The first high-resistance layer 20 (thickness 1.5 am, F
e-doped), the second high-resistance layer 21 made of GaAs (
1.5 μm thick, non-doped), active layer 22 made of n-GaAs (0.3 μm thick, carrier concentration I×1
0 "cm-') and planarize the wafer (
Figure 2(b)). Next, the active layer 22 is selectively etched away, and the field effect transistor (FET) forming region 23 is etched away.
compartmentalize. After forming the dielectric film 24, the first electrode 28 of the semiconductor laser 1 made of AuZn, the source electrode ji 25, the drain electrode 26, and the input 1 of the FET 2 made of AuGeNi are formed.
A gate electrode divided by 27 is formed (FIG. 2(C)).

次に、活性;113近傍の半導体レーザ1の半導体層1
8゜17.16,15.12をエツチング除去して溝2
9を形成し、第一のコンタクト層11を露出させる。誘
電体131形成後溝内に露出した第一のコンタクト層1
1上にAuGeNiからなる第二の電極30を形成する
(第2図(d))。最後に、Ti/Auからなる配線3
2を形成し、本実施例の光電子集積回路が完成する(第
1図)。
Next, active; the semiconductor layer 1 of the semiconductor laser 1 near 113;
8°17.16, 15.12 are etched away and groove 2
9 is formed, and the first contact layer 11 is exposed. First contact layer 1 exposed in the trench after forming the dielectric 131
A second electrode 30 made of AuGeNi is formed on the substrate 1 (FIG. 2(d)). Finally, wiring 3 made of Ti/Au
2, and the optoelectronic integrated circuit of this example is completed (FIG. 1).

この様に、光素子の半導体層と電子素子の半導体層とを
選択的に結晶成長しウェハの平坦化を行い、電子素子の
電極を形成した後に光素子の基板側のコンタクト層を露
出するためのエツチングとそのコンタクト層上に電極を
形成することにより、電極の微細化が容易となり1μm
以下のゲート長を有する高性能なトランジスタの製造が
可能になる。従って、本実施例の方法により高性能な光
電子集積回路を再現性よく製作できる。
In this way, the semiconductor layer of the optical device and the semiconductor layer of the electronic device are selectively crystal-grown, the wafer is flattened, and the contact layer on the substrate side of the optical device is exposed after forming the electrodes of the electronic device. By etching and forming an electrode on the contact layer, it is easy to miniaturize the electrode to 1 μm.
It becomes possible to manufacture high-performance transistors having gate lengths of: Therefore, by the method of this embodiment, a high-performance optoelectronic integrated circuit can be manufactured with good reproducibility.

尚、上記の実施例に於ては寸法例も示したが、結晶成長
の様子は成長法・条件等で大幅に変化するからそれらと
共に適切な寸法を採用すべきことはゆうまでもない。又
、電極金属・配線金属の種類に関して制限はない。電子
素子に関してGaAsMESFETを用いたが、InP
系トランジスタ例えばAlGaAs/InGaAs M
 E S F E T、接合型FET、M I 5FE
T等を使用してもよく、さらに光素子に関して半導体レ
ーザの代わりにPINフォトタイオード、導波路形光ス
イッチ等を使用してもよいことは改めて詳細に説明する
までもなく明らかなことである。
Incidentally, in the above-mentioned embodiment, an example of dimensions was shown, but since the state of crystal growth varies greatly depending on the growth method, conditions, etc., it goes without saying that appropriate dimensions should be adopted along with these. Furthermore, there are no restrictions on the types of electrode metals and wiring metals. GaAs MESFET was used for the electronic device, but InP
system transistors such as AlGaAs/InGaAs M
E S F E T, Junction FET, M I 5FE
It is obvious that a PIN photodiode, a waveguide type optical switch, etc. may be used instead of a semiconductor laser for the optical element, without needing to explain it in detail. .

]発明の効果〕 以上詳述したように、本発明によれば、光素子の半導体
層と電子素子の半導体層とを選択的に結晶成長してウェ
ハの平坦化を行い、電子素子の電極を形成した後に光素
子の基板側のコンタクト層を露出するためのエツチング
とそのコンタクト層上に電極を形成することにより、電
極の微細化が容易となり1μm以下のゲート長を有する
高性能なトランジスタの製造が可能になる。従って、本
実施例の方法により高性能な光電子集積回路を再現性よ
く製作できる。
[Effects of the Invention] As described in detail above, according to the present invention, the semiconductor layer of the optical device and the semiconductor layer of the electronic device are selectively grown by crystal growth to flatten the wafer, and the electrodes of the electronic device can be flattened. By etching to expose the contact layer on the substrate side of the optical device after formation and forming an electrode on the contact layer, it is easy to miniaturize the electrode and manufacture a high-performance transistor with a gate length of 1 μm or less. becomes possible. Therefore, by the method of this embodiment, a high-performance optoelectronic integrated circuit can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で製造された光電子集・積回
路の断面図、第2図(a)〜(d)はその実施例の製作
工程図である。 1・・・半導体レーザ、2・・・電界効果トランジスタ
(FET)、10・・・半絶縁性半導体基板、11・・
・第一のコンタクト層、12・・・第一のクラッド層、
13・・・活性層、14・・・第二のクラッド層、15
・・・第一の電流ブロック層、16・・・第二の電流ブ
ロック層、17・・・埋め込み層、18・・・第二のコ
ンタクト層、1つ・・・マスク、20・・・第一の高抵
抗層、21・・・第二の高抵抗層、22・・・能動層、
23・・・FET形成領域、24・・・誘電体、25・
・・ソース電極、26・・・ドレイン電極、27・・・
ゲート電極、28胃−第一の電極、29・・・溝、30
・・・第二の電極、31・・・誘電体、32・・・配線
。 代理人 弁理士  内 原  音 煮1図 ガZ図
FIG. 1 is a sectional view of an opto-electronic integrated circuit manufactured according to an embodiment of the present invention, and FIGS. 2(a) to 2(d) are manufacturing process diagrams of the embodiment. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Field effect transistor (FET), 10... Semi-insulating semiconductor substrate, 11...
- First contact layer, 12... first cladding layer,
13... Active layer, 14... Second cladding layer, 15
...first current blocking layer, 16...second current blocking layer, 17...buried layer, 18...second contact layer, one...mask, 20...th 1 high resistance layer, 21... second high resistance layer, 22... active layer,
23... FET formation region, 24... dielectric, 25...
...Source electrode, 26...Drain electrode, 27...
Gate electrode, 28 Stomach-first electrode, 29... Groove, 30
...Second electrode, 31...Dielectric material, 32...Wiring. Agent Patent Attorney Uchihara Otoni 1 Diagram Z Diagram

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板上に光素子の半導体層と電子素子の半導体
層とを各々選択的に結晶成長しウェハの平坦化を行う工
程、前記電子素子の電極を形成する工程、この電極形成
工程の後に前記光素子の半導体層の一部を除去して基板
側のコンタクト層を露出するエッチング工程、前記エッ
チング工程で露出したコンタクト層上に電極を形成する
工程とを含むことを特徴とする光電子集積回路の製造方
法。
A step of selectively growing crystals of a semiconductor layer of an optical device and a semiconductor layer of an electronic device on a semi-insulating substrate and flattening the wafer, a step of forming electrodes of the electronic device, and a step after this electrode forming step. An optoelectronic integrated circuit comprising: an etching step of removing a part of the semiconductor layer of the optical element to expose a contact layer on the substrate side; and a step of forming an electrode on the contact layer exposed in the etching step. manufacturing method.
JP63142998A 1988-06-09 1988-06-09 Manufacture of photoelectric integrated circuit Pending JPH021979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142998A JPH021979A (en) 1988-06-09 1988-06-09 Manufacture of photoelectric integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142998A JPH021979A (en) 1988-06-09 1988-06-09 Manufacture of photoelectric integrated circuit

Publications (1)

Publication Number Publication Date
JPH021979A true JPH021979A (en) 1990-01-08

Family

ID=15328563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142998A Pending JPH021979A (en) 1988-06-09 1988-06-09 Manufacture of photoelectric integrated circuit

Country Status (1)

Country Link
JP (1) JPH021979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057653A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Light-emitting component, print head, image formation apparatus and manufacturing method for light-emitting component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057653A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Light-emitting component, print head, image formation apparatus and manufacturing method for light-emitting component

Similar Documents

Publication Publication Date Title
EP0233725B1 (en) Opto-Electronic Device and Method for its Manufacture
US5242839A (en) Method of manufacturing an integrated photoelectric receiving device
JPH0212968A (en) Integrated multilayer quantum well photon and electron device
JPH07135369A (en) Semiconductor laser and its fabrication
JPH01146390A (en) Semiconductor device
US5357127A (en) Pin heterojunction photo diode with undercut gate jifet
US4829346A (en) Field-effect transistor and the same associated with an optical semiconductor device
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
EP0390061B1 (en) Method for the production of monolithically integrated optoelectronic modules
CA2051453C (en) Long wavelength transmitter opto-electronic integrated circuit
JPH021979A (en) Manufacture of photoelectric integrated circuit
US6031857A (en) Semiconductor device having a current-constricting spaces and method of manufacturing the device
US5084410A (en) Method of manufacturing semiconductor devices
JP2626149B2 (en) Optoelectronic integrated circuit manufacturing method
JPH01109764A (en) Optoelectronic integrated circuit
JP3346975B2 (en) Optical semiconductor device and method of manufacturing the same
KR100319774B1 (en) Fabrication method of self aligned planar buried heterostructure semiconductor laser
JP2652647B2 (en) Heterojunction field effect transistor
JPS63211788A (en) Semiconductor laser and manufacture thereof
JP3199414B2 (en) Optoelectronic integrated circuit device
JPH01117069A (en) Manufacture of field-effect transistor
JPH01115156A (en) Manufacture of optoelectronic integrated circuit
JP2940185B2 (en) Embedded semiconductor laser
JPH02185065A (en) Manufacture of optoelectronic integrated circuit
JPH09252160A (en) Optical semiconductor element and manufacturing method thereof