JPH01296663A - Optoelectronic integrated circuit - Google Patents

Optoelectronic integrated circuit

Info

Publication number
JPH01296663A
JPH01296663A JP12733988A JP12733988A JPH01296663A JP H01296663 A JPH01296663 A JP H01296663A JP 12733988 A JP12733988 A JP 12733988A JP 12733988 A JP12733988 A JP 12733988A JP H01296663 A JPH01296663 A JP H01296663A
Authority
JP
Japan
Prior art keywords
layer
semi
integrated circuit
inp
optoelectronic integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12733988A
Other languages
Japanese (ja)
Inventor
Goro Sasaki
吾朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12733988A priority Critical patent/JPH01296663A/en
Publication of JPH01296663A publication Critical patent/JPH01296663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive a flattening of the surface of an optoelectronic integrated circuit device by a method wherein a semi-insulative InP layer is selectively formed on an InP substrate in such a way as to bury an optical element formed on the substrate in the InP layer and an electronic element is formed on this semi-insulative InP layer. CONSTITUTION:A semiconductor layer 2, which uses an epitaxial layer 10 laminated with a dissimilar material as an operating layer, is formed on an InP substrate 1 and a semi-insulative InP layer 3 is selectively formed on the substrate 1 in such a way as to bury the layer 2 in its periphery. Moreover, the thickness of the layer 3 is formed in the same thickness as that of the layer 2 and a field-effect transistor 4 is formed on the surface of the layer 3. Moreover, the transistor 4 is one that uses an epitaxial layer 5 as an operating layer and a gate electrode 6 is formed on the layer 5. Thereby, the surface of the semi-insulative InP layer, on which an electronic element is formed, and the upper end part of the optical element are formed in the almost same height and the surface of an optoelectronic integrated circuit device is flattened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体の光素子と電子素子を一つの基板上に
集積した光電子集積回路(OEIC)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optoelectronic integrated circuit (OEIC) in which semiconductor optical elements and electronic elements are integrated on one substrate.

〔従来の技術〕[Conventional technology]

光電子集積回路は、光電変換を行う光素子に隣接して電
界効果トランジスタのような電子素子を配置し、両者を
電気的に接続したものであり、たとえば「応用電子物性
分科会資料、No、414、昭和61年7月11日」な
どにその構造が開示されている。
An optoelectronic integrated circuit is a circuit in which an electronic element such as a field effect transistor is placed adjacent to an optical element that performs photoelectric conversion, and the two are electrically connected. , July 11, 1986,'' its structure is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、光素子は、光の発生・吸収などの光゛学的な
働きを行うものであり、そのために異種材料を積層した
ヘテロ接合構造をとる必要がある。
Incidentally, an optical element performs optical functions such as generating and absorbing light, and for this purpose, it is necessary to have a heterojunction structure in which different materials are laminated.

このヘテロ接合構造はエピタキシャル成長技術を用いて
形成されるものであり、多層構造であることから数μm
以上の厚さとなる。
This heterojunction structure is formed using epitaxial growth technology, and since it is a multilayer structure, it has a thickness of several μm.
It becomes thicker than that.

一方、電界効果トランジスタなどの電子素子は、表面層
を電子が走るものであるため単一材料でよく、基板表面
にイオン注入等により直接形成されたり、あるいは単層
のエピタキシャル層を用いて形成されたりするものであ
るため、1μm以下と極めて薄い。
On the other hand, electronic devices such as field effect transistors require only a single material because electrons run through the surface layer, and are formed directly on the substrate surface by ion implantation, etc., or by using a single epitaxial layer. It is very thin, less than 1 μm.

そのため、光素子と電子素子の間の表面に段差が生じ、
この段差により微細加工が阻害され、そのうえ段差部で
の配線切れ等が発生するといった問題があった。
As a result, a step is created on the surface between the optical element and the electronic element.
This step hinders microfabrication, and furthermore, there is a problem in that wiring breaks and the like occur at the step.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明の光電子集積回路は、
InP基板上に光素子が形成され、この光素子を埋め込
むように前記InP基板上に半絶縁性InP層が選択的
に形成され、この半絶縁性InP層上に電子素子が形成
されているものである。
In order to solve the above problems, the optoelectronic integrated circuit of the present invention has the following features:
An optical element is formed on an InP substrate, a semi-insulating InP layer is selectively formed on the InP substrate so as to embed the optical element, and an electronic element is formed on the semi-insulating InP layer. It is.

〔作用〕[Effect]

電子素子が形成される半絶縁性InP層の表面と光素子
の上端部とがほぼ同一の高さとなり、表面が平坦化され
る。
The surface of the semi-insulating InP layer on which the electronic element is formed and the upper end of the optical element are approximately at the same height, and the surface is flattened.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す断面図であり、第2図
はその製造工程を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing the manufacturing process thereof.

第1図に示すように、本実施例の光電子集積回路は、I
nP基板1上に、異種材料を積層したエピタキシャル層
10を動作層とする半導体レーザ2が形成されており、
その周囲には半導体レーザ2を埋め込むように半絶縁性
InP層3がInP基板1上に選択的に形成されている
。半絶縁性InP層3の厚さは半導体レーザ2の厚さと
同一となっており、その表面には電界効果トランジスタ
4が形成されている。電界効果トランジスタ4はエピタ
キシャル層5を動作層とするものであり、エピタキシャ
ル層5の上にゲート電極6が形成されている。符号7な
いし9で示すものは配線層であり、配線7は半導体レー
ザ2の下部電極に接続されており、配線8は一端におい
て半導体レーザ2の上部電極に接続され、他端において
電界効果トランジスタ4の一方のオーミック電極に接続
されている。また、配線9は電界効果トランジスタ2の
他方のオーミック電極に接続されている。なお、本実施
例の光電子集積回路は、埋め込み層として半絶縁性In
P層を用いるので、この層上に形成される電界効果トラ
ンジスタ4は良好な特性を持つことができる。
As shown in FIG. 1, the optoelectronic integrated circuit of this embodiment has an I
A semiconductor laser 2 is formed on an nP substrate 1, and has an epitaxial layer 10 laminated with different materials as an operating layer.
A semi-insulating InP layer 3 is selectively formed on the InP substrate 1 around it so as to embed the semiconductor laser 2 therein. The thickness of the semi-insulating InP layer 3 is the same as that of the semiconductor laser 2, and a field effect transistor 4 is formed on its surface. The field effect transistor 4 uses an epitaxial layer 5 as an active layer, and a gate electrode 6 is formed on the epitaxial layer 5. Reference numerals 7 to 9 indicate wiring layers, in which the wiring 7 is connected to the lower electrode of the semiconductor laser 2, the wiring 8 is connected to the upper electrode of the semiconductor laser 2 at one end, and the field effect transistor 4 is connected at the other end. is connected to one ohmic electrode of the Further, the wiring 9 is connected to the other ohmic electrode of the field effect transistor 2. Note that the optoelectronic integrated circuit of this example uses semi-insulating In as a buried layer.
Since the P layer is used, the field effect transistor 4 formed on this layer can have good characteristics.

つぎに、このような構成の光電子集積回路の製造工程を
第2図を用いて説明する。
Next, the manufacturing process of the optoelectronic integrated circuit having such a configuration will be explained with reference to FIG.

InP基板1上に半導体レーザ2の動作層となるヘテロ
接合構造を有するエピタキシャル層10を形成する。そ
して、その上に後にエツチングマスクとして用いるシリ
コン窒化膜11を形成する(第2図(A)参照)。
An epitaxial layer 10 having a heterojunction structure and serving as an operating layer of a semiconductor laser 2 is formed on an InP substrate 1 . Then, a silicon nitride film 11 is formed thereon to be used later as an etching mask (see FIG. 2(A)).

つぎに、シリコン窒化膜11上にレジスト12を塗布し
、このレジスト12を通常のフォトリソグラフィを用い
てパターンニングする。その後、パターンニングしたレ
ジスト12をマスクとしてシリコン窒化膜11をエツチ
ングする(第2図(B)参照)。
Next, a resist 12 is applied onto the silicon nitride film 11, and this resist 12 is patterned using normal photolithography. Thereafter, the silicon nitride film 11 is etched using the patterned resist 12 as a mask (see FIG. 2(B)).

ついで、パターンニングされたレジスト12およびシリ
コン窒化膜11をマスクとしてリアクティブイオンエツ
チングまたはウェットエツチングを施すことにより不要
なエピタキシャル層10を除去する(第2図(C))。
Next, unnecessary epitaxial layer 10 is removed by performing reactive ion etching or wet etching using patterned resist 12 and silicon nitride film 11 as masks (FIG. 2(C)).

つぎに、レジスト12を除去した後、たとえば、トリメ
チルインジウム、フォスフイン(PH3)およびフェロ
センを原料とする有機金属気相成長法により、InP基
板1上のみに半絶縁性InP層3を選択的に形成する(
第2図(D))。なお、この成長法により半絶縁性In
P層3をInP基板1上に選択的に形成できることは既
に知られている。
Next, after removing the resist 12, a semi-insulating InP layer 3 is selectively formed only on the InP substrate 1 by, for example, metal organic vapor phase epitaxy using trimethylindium, phosphine (PH3), and ferrocene as raw materials. do(
Figure 2 (D)). Note that this growth method produces semi-insulating In
It is already known that the P layer 3 can be selectively formed on the InP substrate 1.

ついで、半絶縁性InP層3上に電界効果トランジスタ
4用のエピタキシャル層5を形成する(第2図(E))
Next, an epitaxial layer 5 for a field effect transistor 4 is formed on the semi-insulating InP layer 3 (FIG. 2(E)).
.

以後は、電界効果トランジスタ4にとって不要な部分の
エピタキシャル層5をエツチングし、さらに、通常の電
極形成技術を施すことにより、第1図の光電子集積回路
が形成される。
Thereafter, the portions of the epitaxial layer 5 which are unnecessary for the field effect transistor 4 are etched, and furthermore, ordinary electrode forming techniques are applied to form the optoelectronic integrated circuit shown in FIG.

なお、本実施例の電界効果トランジスタ4としては、接
合型FETや2次元電子トランジスタなどが考えられる
が、これに限定されるものではない。さらに、電子素子
は電界効果トランジスタに限定されるものではなく、た
とえば、ヘテロ接合バイポーラトランジスタ(HB T
)などを用いることもできる。
Note that the field effect transistor 4 of this embodiment may be a junction FET, a two-dimensional electronic transistor, etc., but is not limited thereto. Furthermore, electronic devices are not limited to field effect transistors, but include, for example, heterojunction bipolar transistors (HB T
) etc. can also be used.

また、本実施例では光素子として発光素子である半導体
レーザを例に挙げたが、発光ダイオードなどその他の発
光素子を用いたものでもよいし、PIN型フォトダイオ
ードなどの受光素子を用いて受信用の光電子集積回路と
することもできる。
Furthermore, in this embodiment, a semiconductor laser, which is a light emitting element, is used as an example of an optical element, but other light emitting elements such as a light emitting diode may be used. It can also be an optoelectronic integrated circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の光電子集積回路によれば、
電子素子が形成される半絶縁性InP層の表面と光素子
の上端部とがほぼ同一の高さとなり表面が平坦化される
ので、微細加工が可能となり集積度を高め高性能化を図
ることができる。また、光素子と電子素子との間の段差
部がなくなったので、両者間での配線切れが解消され製
造歩留まり率の大幅な改善を図ることができる。
As explained above, according to the optoelectronic integrated circuit of the present invention,
The surface of the semi-insulating InP layer on which the electronic device is formed and the top end of the optical device are approximately at the same height and the surface is flattened, making microfabrication possible and increasing the degree of integration and performance. I can do it. Furthermore, since there is no step between the optical element and the electronic element, disconnections between the two are eliminated, and the manufacturing yield rate can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図、第2図は、
第1図の実施例の製造工程を示す断面図である。 1・・・InP基板、2・・・半導体レーザ、3・・・
半絶縁性InP層、4・・・電界効果トランジスタ、7
〜9・・・配線。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹間      
   塩   1)  辰   也実施例の断面構造 第】図 第2図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
FIG. 2 is a sectional view showing the manufacturing process of the embodiment shown in FIG. 1; 1... InP substrate, 2... semiconductor laser, 3...
Semi-insulating InP layer, 4... field effect transistor, 7
~9...Wiring. Patent applicant: Sumitomo Electric Industries, Ltd. Representative patent attorney Yoshiki Hase
Salt 1) Cross-sectional structure of Tatsuya Example Fig. 2

Claims (1)

【特許請求の範囲】 1、InP基板上に光素子が形成され、この光素子を埋
め込むように前記InP基板上に半絶縁性InP層が選
択的に形成され、この半絶縁性InP層上に電子素子が
形成されている光電子集積回路。 2、半絶縁性InP層が有機金属気相成長法により選択
的に形成されている請求項1記載の光電子集積回路。
[Claims] 1. An optical element is formed on an InP substrate, a semi-insulating InP layer is selectively formed on the InP substrate so as to embed the optical element, and a semi-insulating InP layer is formed on the semi-insulating InP layer. An optoelectronic integrated circuit in which electronic elements are formed. 2. The optoelectronic integrated circuit according to claim 1, wherein the semi-insulating InP layer is selectively formed by metal organic vapor phase epitaxy.
JP12733988A 1988-05-25 1988-05-25 Optoelectronic integrated circuit Pending JPH01296663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12733988A JPH01296663A (en) 1988-05-25 1988-05-25 Optoelectronic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12733988A JPH01296663A (en) 1988-05-25 1988-05-25 Optoelectronic integrated circuit

Publications (1)

Publication Number Publication Date
JPH01296663A true JPH01296663A (en) 1989-11-30

Family

ID=14957474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12733988A Pending JPH01296663A (en) 1988-05-25 1988-05-25 Optoelectronic integrated circuit

Country Status (1)

Country Link
JP (1) JPH01296663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285693A (en) * 1989-03-30 1990-11-22 Alcatel Nv Manufacture of monolithic integrated optoelectronics module
US6737718B2 (en) 2000-10-30 2004-05-18 Nec Corporation Semiconductor photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285693A (en) * 1989-03-30 1990-11-22 Alcatel Nv Manufacture of monolithic integrated optoelectronics module
US6737718B2 (en) 2000-10-30 2004-05-18 Nec Corporation Semiconductor photodetector

Similar Documents

Publication Publication Date Title
US4625225A (en) Integrated light detection or generation means and amplifying means
JP2580451B2 (en) Photoelectric integrated device for reception and method of manufacturing the same
JP2005507556A (en) Thin film lift-off method and device using laterally extending etching mask
JPH0212968A (en) Integrated multilayer quantum well photon and electron device
JPH07118524B2 (en) Optical receiver integrated circuit and manufacturing method thereof
JPH02285693A (en) Manufacture of monolithic integrated optoelectronics module
JPH01296663A (en) Optoelectronic integrated circuit
US4784967A (en) Method for fabricating a field-effect transistor with a self-aligned gate
KR100568567B1 (en) Heterojunction bipolar transistor and fabrication method thereof
JPH0260222B2 (en)
KR100249785B1 (en) Semiconductor device integrating heterojunction bipolar transistor and lateral pin photo-diode and its fabricating method
JP2652647B2 (en) Heterojunction field effect transistor
JP3401407B2 (en) Method for manufacturing semiconductor device
JP2748887B2 (en) Junction type field effect transistor and manufacturing method thereof
JP3162463B2 (en) Semiconductor device and method of manufacturing the same
JPH01117069A (en) Manufacture of field-effect transistor
JPS59222988A (en) Compound semiconductor element and manufacture thereof
JP4819338B2 (en) Semiconductor-coupled superconducting three-terminal element and manufacturing method thereof
JPH03291968A (en) Manufacture of photoelectronic integrated circuit
JP2714865B2 (en) High-speed semiconductor devices
JP3199414B2 (en) Optoelectronic integrated circuit device
KR100333634B1 (en) Fabrication of three kinds of PN junction diodes which have a different turn-on voltages
JPH0571171B2 (en)
JPH021979A (en) Manufacture of photoelectric integrated circuit
JPH0719757B2 (en) Method for manufacturing semiconductor device