JPS59222988A - Compound semiconductor element and manufacture thereof - Google Patents

Compound semiconductor element and manufacture thereof

Info

Publication number
JPS59222988A
JPS59222988A JP9826883A JP9826883A JPS59222988A JP S59222988 A JPS59222988 A JP S59222988A JP 9826883 A JP9826883 A JP 9826883A JP 9826883 A JP9826883 A JP 9826883A JP S59222988 A JPS59222988 A JP S59222988A
Authority
JP
Japan
Prior art keywords
layer
insulating film
semiconductor
semiconductor layer
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9826883A
Other languages
Japanese (ja)
Inventor
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9826883A priority Critical patent/JPS59222988A/en
Publication of JPS59222988A publication Critical patent/JPS59222988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To isolate a LD, a transistor as a driving element for the LD and a P-I-N APD as a light-receiving element electrically completely by forming a semiconductor substrate and a semiconductor layer and integrating an electrical element to the semiconductor layer. CONSTITUTION:An InGaAsP four-element layer 302 called an active layer, a P type InP layer 303 called a P clad layer and a P type InGaAsP layer 304 called a cap layer are grown on an N type InP substrate 301 in an epitaxial manner in succession. The cap layer 304, the P clad layer 303 and the active layer 302 are etched selectively. An insulating film 306 is formed so as to coat projecting sections (LD sections). The insulating film 306 is deposited by using a CVD method in order to also form the insulating film 306 to the vertical sections of the projecting sections. Sections required as electrical devices on polycrystalline silicon layers 307 are changed selectively into single crystals or the whole surface into single crystal by the irradiation of energy rays, thus obtaining single crystal layers 308.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザー(以下LDと略す)等のダイ
オード及びその駆動素子の一体化構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an integrated structure of a diode such as a semiconductor laser (hereinafter abbreviated as LD) and its driving element.

従来例の構成とその問題点 LDは、光通信等情報の高密度伝送が可能てあ4ことか
ら最近その開発が活発に行われている。
Conventional configurations and their problems LDs have been actively developed recently because they are capable of high-density transmission of information such as optical communications.

光通信においてLDは、電気信号を光信号に変換する素
子である。特に最近は、電気信号処理とLDとを一体化
する集積回路(以下ICと略す)の開発が注目を浴びて
いる。
In optical communications, an LD is an element that converts electrical signals into optical signals. Particularly recently, the development of integrated circuits (hereinafter abbreviated as ICs) that integrate electrical signal processing and LDs has been attracting attention.

従来の一体化ICの構造は、接合型FITとLDとfi
Ic化したものが発表されている。
The structure of conventional integrated IC is junction type FIT, LD and fi
An IC version has been announced.

この構造を第1図に示す。第1図にて、1は半絶縁性の
G?LAs基板、2はn型のGaAs層、3はn型のA
lGaAs層、4はn型のGaAs J@、5はp型の
AlGaAs層、6は絶縁性被膜、7は導電性金属、8
はソース電極、9はゲート電極、10はドレインd丁極
、11はゲート拡散層、12はp型窩濃度層を示す。第
2図に、第1図に示した素子断面構造の等価回路を示す
。第1図と同じ番号の箇所は同じ名称を示す。この構造
は、ブレーナ型に近いが完全なブレーナ型で、はなく、
FET部分はn型GaAs層2まで選択的にエツチング
するかもしくはI、D部分を選択的にエピタキシャル成
長させる。それゆえ、段差を生じ製造上歩留りが悪い。
This structure is shown in FIG. In Figure 1, 1 is semi-insulating G? LAs substrate, 2 is n-type GaAs layer, 3 is n-type A
1GaAs layer, 4 is n-type GaAs J@, 5 is p-type AlGaAs layer, 6 is an insulating film, 7 is a conductive metal, 8
1 is a source electrode, 9 is a gate electrode, 10 is a drain electrode, 11 is a gate diffusion layer, and 12 is a p-type cavity concentration layer. FIG. 2 shows an equivalent circuit of the element cross-sectional structure shown in FIG. 1. Places with the same numbers as in FIG. 1 indicate the same names. This structure is close to the Brehner type, but it is not a complete Brehner type.
The FET portion is selectively etched down to the n-type GaAs layer 2, or the I and D portions are selectively grown epitaxially. Therefore, a difference in level occurs, resulting in a poor manufacturing yield.

更に、従来の第1図の例では駆シ1素子が1個の場合で
あるが、複数個を電気的に分離してIC化するには難し
い構造であった。
Furthermore, in the conventional example shown in FIG. 1, there is only one drive element, but it is a difficult structure to electrically isolate a plurality of elements and convert them into an IC.

発明の目的 本発明は、以上述べたような従来例の問題点に鑑みて、
複数個のトランジスタとLDとをプレーナ構造でIC化
する化合物半導体素子を得るものである。
Purpose of the Invention The present invention has been made in view of the problems of the conventional examples as described above.
A compound semiconductor device is obtained in which a plurality of transistors and an LD are integrated into an IC with a planar structure.

発明の構成 本発明は、ンリコンICで用いられる絶縁分離技術をた
とえばレーザーアニール技術とを用いて化合物半導体基
板上に選択的に形成したLDと、LDと絶縁物を介して
分離されLDを制御して駆動する電気系のIC部分とを
プレーナ構造として提供するものである。
Structure of the Invention The present invention provides an LD that is selectively formed on a compound semiconductor substrate using an insulation separation technique used in a non-contact IC, such as a laser annealing technique, and an LD that is separated through an insulator to control the LD. The IC part of the electrical system that is driven by the IC is provided as a planar structure.

実施例の説明 り 第3図亭に本発明の第1実施例によるプレーナ構造の化
合物半導体素子の断面構造を示す。第3図男において、
301は単結晶n型InP基板を示す。302ばInG
aAsPの4元層で、いわゆる活性層と呼ばれ元のとじ
込めが行なわれる。303はP型InP層で22921
層と呼ばれる。304はP型InGaAs P 湘でキ
ャンプ層と呼ばれる。306は絶縁性被膜を示す。30
了は絶縁性被膜上に堆積した多結晶シリコン層を示す。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows a cross-sectional structure of a planar compound semiconductor device according to a first embodiment of the present invention. In Figure 3 Man,
301 indicates a single crystal n-type InP substrate. 302baInG
The quaternary layer of aAsP is called the active layer, and the original confinement is performed. 303 is P type InP layer 22921
called layers. 304 is a P-type InGaAs P layer and is called a camp layer. 306 indicates an insulating film. 30
The figure shows the polycrystalline silicon layer deposited on the insulating film.

307はエネルギー線の照射によって部分的に単結晶化
されている。
307 has been partially single-crystalized by irradiation with energy rays.

以下に本発明による実施例の製造方法を、第3図に従っ
て順番に説明する。
The manufacturing method of the embodiment according to the present invention will be explained below in order according to FIG.

第3図Aに示すように、n型InP基板301上に活性
層と呼ばれるInGaAsPの4元層302.2292
1層と呼ばれるP型InP層303、キャンプ層と呼ば
れるP型InGaAsP層304を順次エピタキシャル
成長させる。その後、絶縁被膜306たとえばS10□
あるいはSi3N4等を堆積する。感光性レジストを塗
布してフォトリソグラフィーによってパターンを出し、
前記絶縁被膜305を選択的にエツチングする。
As shown in FIG. 3A, an InGaAsP quaternary layer 302.2292 called an active layer is formed on an n-type InP substrate 301.
A P-type InP layer 303 called a first layer and a P-type InGaAsP layer 304 called a camp layer are epitaxially grown in sequence. After that, the insulation coating 306, for example, S10□
Alternatively, deposit Si3N4 or the like. A photosensitive resist is applied and a pattern is created using photolithography.
The insulating film 305 is selectively etched.

第3図Bに示すように、絶縁被膜305をマスクとして
前記キャンプ層304、Pクラッド層303、活性層3
02を選択的にエツチングする。
As shown in FIG. 3B, using the insulating film 305 as a mask, the camp layer 304, the P cladding layer 303, and the active layer 3 are
02 is selectively etched.

エツチングとしてはOF4あるいはCa14ガス系によ
るドライ・エツチングもしくは次に示すウェット。
Etching may be dry etching using OF4 or Ca14 gas, or wet etching as shown below.

エツチングを用いる。ウェット・エツチングの場合、ブ
ロム系、塩酸系、硫酸系、硝酸系等のエツチング液を用
いる。第3図Bに示すようにn型InP基板301上に
選択的に凸”15を用けこれをLD部とする。
Use etching. In the case of wet etching, a bromine-based, hydrochloric acid-based, sulfuric acid-based, nitric acid-based etching solution is used. As shown in FIG. 3B, a protrusion "15" is selectively used on the n-type InP substrate 301, and this is used as an LD section.

次に、第3図Gに示すように前記した凸部(LD部)を
覆うように絶縁膜306を形成する。
Next, as shown in FIG. 3G, an insulating film 306 is formed to cover the above-mentioned convex portion (LD portion).

凸部の垂直部分にも絶縁膜306を形成するため、CV
D法を用いて堆積させる。この場合、常圧のCvD装置
で前記した絶縁膜306を堆積させるよりも減圧のCv
D装置で堆積させる方が好ましい。絶縁膜306はSi
O2もしくはS 13 N4で良い。
Since the insulating film 306 is also formed on the vertical portion of the convex portion, the CV
Deposit using method D. In this case, rather than depositing the above-mentioned insulating film 306 with a normal pressure CvD device, a reduced pressure CvD device is used.
It is preferable to deposit with a D apparatus. The insulating film 306 is made of Si
O2 or S 13 N4 may be used.

絶縁膜306を堆積した後、気相成長法でシリコン層3
07金成長させる。シリコン層301J:e縁膜上の気
相成長だから多結晶シリコン層となっている。あるいは
、InP結晶が熱分解しない程度にInP基板を低温加
熱してCVD法で多結晶シリコン層307を堆積しても
良い。多結晶ンリコン層307を堆積した後、LD部の
上部に堆積した多結晶ンリコン層307iエツチングし
て平面平坦化を行なう。多結晶シリコン層のエツチング
は、CF、系ガスによるドライ・エツチングもしくはυ
ノ酸系によるウェット・エツチングを用いて行なう。寸
だ、ドライ・エツチングで少量°エツチングして、次に
LD部の上部の絶縁膜をエツチングして多結晶シリコン
層の凸部をリフト・オフすることで表面平坦化を行なう
After depositing the insulating film 306, a silicon layer 3 is formed by vapor phase growth.
07 Gold grow. Silicon layer 301J: This is a polycrystalline silicon layer because it is grown in a vapor phase on the e-edge film. Alternatively, the polycrystalline silicon layer 307 may be deposited by CVD by heating the InP substrate at a low temperature to the extent that the InP crystal does not thermally decompose. After depositing the polycrystalline silicon layer 307, the polycrystalline silicon layer 307i deposited on the upper part of the LD portion is etched to flatten the surface. Etching of the polycrystalline silicon layer is carried out by dry etching using CF, system gas, or υ.
This is done using wet etching using a noic acid system. After that, a small amount of dry etching is performed, and then the insulating film above the LD section is etched to lift off the convex portion of the polycrystalline silicon layer, thereby flattening the surface.

しかる後、多結晶シリコン層307上で、電気的デバイ
ス(トランジスタ、抵抗など)として必要なfilj分
を選11<的にあるいは全面をエネルギー線の113射
によって単結晶化させて第3図りに示す単結晶層308
を得る。エネルギー線としてばArレーザーの連続出力
10W程度のものをビーム径20〜30μmのスポット
にしてビーム・スキャン速度10〜20cm/sea、
ビームオーバーラツプ60%j%1度とすることで、良
好な単結晶層を部分的にイ(Iることかできる。
After that, on the polycrystalline silicon layer 307, the filj necessary for electrical devices (transistors, resistors, etc.) is selectively or the entire surface is made into a single crystal by irradiation with energy rays, as shown in Figure 3. Single crystal layer 308
get. As an energy beam, an Ar laser with a continuous output of about 10 W is used as a spot with a beam diameter of 20 to 30 μm at a beam scanning speed of 10 to 20 cm/sea.
By setting the beam overlap to 60% and 1 degree, it is possible to partially produce a good single crystal layer.

このようにして、InP基板301上に選択的に単結晶
シリコン層308が構成できるので、前記した単結晶シ
リコン層308内に、イオン注入法等によってMO3I
−ラノジスタ及び抵抗などを必要に応じて形成できる。
In this way, the single crystal silicon layer 308 can be selectively formed on the InP substrate 301, so MO3I can be formed into the single crystal silicon layer 308 by ion implantation or the like.
- Lano resistors, resistors, etc. can be formed as required.

これらの電気デバイスは、同一基板上に構成したLDを
制御駆動するのに十分に使えるものである。
These electric devices can be fully used to control and drive LDs configured on the same substrate.

第4図は、本発明に基づく第2の実施例を示も301は
n型1nP基板を示す。3o2はInGaAsPの4元
層(活性層)、303はP型InP層(Pクララド層)
、304ばP型InGaAsP層(キヤ、グ層)を示す
。これらはエビタキンヤル成長ニよって連続的に形成さ
れる。LD部分をM紀したエツチング液等によって選択
的に形成する。しかる後、絶縁被膜306 f、(形成
し、選択的にn型の多結晶シリコン層307を堆積する
。構成する心気素子の必要に応じて前記多結晶シリコン
層にエイルギーmを照射して再結晶化させ単結晶N30
8 f、(形成する。イオン注入法等によってPウェル
309を形成する。同じくp型ドーパントによってソー
ス・ドレイン領域310を形成する。n型ドーパントに
よってソース・ドレイン領域311を形成する。各ゲー
ト酸化膜312を介して電極317・318を形成する
。ソース。ドレイン酸41314315+316を形成
すると共に、LD部の電極314を形成する。319は
、裏面の電極を示す。
FIG. 4 shows a second embodiment based on the present invention. Reference numeral 301 indicates an n-type 1nP substrate. 3o2 is an InGaAsP quaternary layer (active layer), 303 is a P-type InP layer (P Clarado layer)
, 304 indicate a P-type InGaAsP layer (crystal layer). These are formed continuously by nitrile growth. The LD portion is selectively formed using an etching liquid or the like which has undergone M-temperature. Thereafter, an insulating film 306 f is formed, and an n-type polycrystalline silicon layer 307 is selectively deposited. The polycrystalline silicon layer is irradiated with energy m and re-irradiated depending on the needs of the constituting aerobic element. Crystallized single crystal N30
8f, (Formation. Form a P well 309 by ion implantation or the like. Similarly, form a source/drain region 310 with a p-type dopant. Form a source/drain region 311 with an n-type dopant. Each gate oxide film Electrodes 317 and 318 are formed via 312. Source and drain acids 41314315+316 are formed, and an electrode 314 of the LD portion is formed. 319 indicates an electrode on the back surface.

313は絶縁被膜を示す。313 indicates an insulating coating.

第5図は第4図に示す断面構造図の等価(ロ)路を示す
。第6図にて、第4図と同一番は同一箇所を示す。本実
施例においてはMOSトランジスタをC−MO3構造と
している。LD部分と電気的に分離され、かつ単結晶化
したシリコン層に電気素子を形成することは任意である
。本実施例では、LDの駆動を低インピーダンスで駆動
できるパイ・ラテラル・スイッチのG−MO5構造を採
用した。
FIG. 5 shows an equivalent (b) path of the cross-sectional structural diagram shown in FIG. In FIG. 6, the same numbers as in FIG. 4 indicate the same parts. In this embodiment, the MOS transistor has a C-MO3 structure. It is optional to form an electric element in a single-crystal silicon layer that is electrically isolated from the LD portion. In this embodiment, a G-MO5 structure of a pi-lateral switch that can drive the LD with low impedance is adopted.

なお、不発明に関する実施例としてInP−InGaA
sPの4元系を例に出して説明したが、GaAs −A
lGaAsの3元系として同様に形成できることはいう
までもない。また、LD部と分離して形成したシリコン
層もInP層あるいはGaAs J−であっても十分に
心気素子を形成できる。また、実施例としてトランジス
タを集積した例を出したが、別のシリコン層にPiNダ
イオードあるいはAPD(アバランシフォトダイオード
)を形成して受光部を作ることも可能である。また、L
Dの代わりにLED (発光ダイオード)等の他の発光
素子を形成してもよい。
In addition, as an example regarding non-invention, InP-InGaA
The explanation was given using the sP quaternary system as an example, but GaAs-A
It goes without saying that it can be similarly formed as a ternary system of lGaAs. In addition, even if the silicon layer formed separately from the LD section is an InP layer or GaAs J-, it is possible to form an air-core element. Further, although an example in which transistors are integrated has been shown as an example, it is also possible to form a light receiving section by forming a PiN diode or an APD (avalanche photodiode) in another silicon layer. Also, L
Other light emitting elements such as LEDs (light emitting diodes) may be formed in place of D.

発明の効果 以上の説明に述べたように、本発明は、(1)LDおよ
びその駆動素子としてのトランジスタ、受光素子として
のPiN 、 APDを電気的に完全に分離できる。分
離できることは、各々が独立に設計できる自由度が増え
たことで、従来実施していた一体化構造にない全く新し
い構造である。
Effects of the Invention As described above, the present invention has the following advantages: (1) LD, a transistor as its driving element, PiN as a light receiving element, and APD can be completely separated electrically. Being able to separate them increases the degree of freedom in designing each part independently, creating a completely new structure that is not available in conventional integrated structures.

(2)シかも、プレーナー構造としている点で、従来実
施していた一体化構造よりも製造工程が容易である。
(2) Also, since it has a planar structure, the manufacturing process is easier than the conventional integrated structure.

(3)  シリコン層を使うことで、従来シリコンIC
で築いた技術がそのまま電気素子に適用できる点で製造
工程上きわめて有利である。
(3) By using a silicon layer, conventional silicon IC
This is extremely advantageous in terms of the manufacturing process, as the technology developed in the above can be directly applied to electrical devices.

(4)化合物半導体の特長としての発光、シリコンのほ
ぼ完成されたデバイス技術との組合せにょって、従来に
ない電気回路の充実を備えた電気−光変換、光−電気変
換のIC化を実現するものである。
(4) By combining the light emitting characteristics of compound semiconductors with silicon's almost completed device technology, we have realized the realization of ICs for electrical-to-optical conversion and optical-to-electrical conversion with unprecedented electrical circuitry. It is something to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のLD一体化IC構造の断面図、第2図は
第1図に示すIC構造の等価回路図、筆記 s 勝A −Dは本発明による第1実施例によるLD一
体化IC構造の製造工程図、第4図は本発明による第2
実施例によるLDとトランジスタの一体化re構造の断
面図、第5図は第4図に示す断面図の等価回路図である
。 301・・・・・・化合物半導体基板、302,303
゜304・・・・・・化合物半導体層、305 s  
306 。 313・・・・・・絶縁被膜、307,308・・・・
・7リコン層、309,310,311・山・・イオン
注入層、314、 315. 316. 317. 3
18. 319・・・・・・抵抗性電極。 代Jj11人の氏名 弁理士 中 尾 敏 男 心が1
名第1図 1 第2図 第3図 第4図
FIG. 1 is a sectional view of a conventional LD-integrated IC structure, FIG. 2 is an equivalent circuit diagram of the IC structure shown in FIG. The manufacturing process diagram of the structure, FIG.
FIG. 5 is a cross-sectional view of an integrated re structure of an LD and a transistor according to an embodiment, and FIG. 5 is an equivalent circuit diagram of the cross-sectional view shown in FIG. 4. 301... Compound semiconductor substrate, 302, 303
゜304... Compound semiconductor layer, 305 s
306. 313... Insulating coating, 307, 308...
・7 Recon layer, 309, 310, 311・Mountain...Ion implantation layer, 314, 315. 316. 317. 3
18. 319...Resistive electrode. Names of the 11 JJ members Patent attorney Satoshi Nakao Male Heart is 1
Figure 1 Figure 1 Figure 2 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)化合物半導体基板上に選択的に形成した半導体発
光素子と、前記基板及び半導体発光素子と絶縁物を介し
て形成した半導体層とを具備し、前記半導体層に電気素
子を集積化して前記半導体発光素子を制御駆動する電気
・光集積回路を構成した化合物半導体素子。
(1) A semiconductor light-emitting device selectively formed on a compound semiconductor substrate, and a semiconductor layer formed with an insulator interposed between the substrate and the semiconductor light-emitting device, and an electric element is integrated on the semiconductor layer, and the A compound semiconductor device that constitutes an electrical/optical integrated circuit that controls and drives semiconductor light emitting devices.
(2)半導体層に受光素子及び電気素子を集積化したこ
とを特徴とする特許請求の範囲第1項に記載した化合物
半導体素子。
(2) A compound semiconductor device according to claim 1, characterized in that a light receiving element and an electric element are integrated in a semiconductor layer.
(3)半導体層はシリコン層または化合物半環体層であ
ることを特徴とする特許請求の範囲第1項に記載の化合
物半導体素子。
(3) The compound semiconductor device according to claim 1, wherein the semiconductor layer is a silicon layer or a compound semicircular layer.
(4)化合物半導体基板上にダブル・ヘテロ構造を形成
する複数のエピタキシャル成長を行なう工程と、前記エ
ピタキシャル層上に選択的に絶縁被膜を残置させ前記複
数のエヒリキシャル層を選択的にエツチングする工程と
、前記エツチングによって形成した凸部の側面をも含む
ように基板上の全面に絶縁膜を堆積する工程と、前記絶
縁膜上に半導体層を成長させる工程と、王に前記凸部の
上部に成長した半導体層をエツチングして平坦化する工
程と、前記半導体層上に選択的にエネルギー線等を照射
して単結晶化する工程と、前記単結晶化層に電気素子を
形成する工程とを備えた化合物半導体素子の製造方法。
(4) a step of performing a plurality of epitaxial growths to form a double heterostructure on a compound semiconductor substrate; a step of selectively leaving an insulating film on the epitaxial layer and selectively etching the plurality of epitaxial layers; A step of depositing an insulating film on the entire surface of the substrate including the side surfaces of the convex portion formed by the etching, a step of growing a semiconductor layer on the insulating film, and a step of growing a semiconductor layer on the top of the convex portion formed by the etching. The method includes a step of etching and planarizing a semiconductor layer, a step of selectively irradiating the semiconductor layer with an energy beam or the like to form a single crystal, and a step of forming an electric element in the single crystal layer. A method for manufacturing a compound semiconductor device.
JP9826883A 1983-06-01 1983-06-01 Compound semiconductor element and manufacture thereof Pending JPS59222988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9826883A JPS59222988A (en) 1983-06-01 1983-06-01 Compound semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9826883A JPS59222988A (en) 1983-06-01 1983-06-01 Compound semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59222988A true JPS59222988A (en) 1984-12-14

Family

ID=14215191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9826883A Pending JPS59222988A (en) 1983-06-01 1983-06-01 Compound semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59222988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290776A (en) * 1985-06-14 1986-12-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device
EP0616373A2 (en) * 1993-03-16 1994-09-21 Seiko Instruments Inc. Photoelectric conversion semiconductor device and method of manufacturing the same
JP2012178464A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290776A (en) * 1985-06-14 1986-12-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device
EP0616373A2 (en) * 1993-03-16 1994-09-21 Seiko Instruments Inc. Photoelectric conversion semiconductor device and method of manufacturing the same
EP0616373A3 (en) * 1993-03-16 1996-01-10 Seiko Instr Inc Photoelectric conversion semiconductor device and method of manufacturing the same.
US5719414A (en) * 1993-03-16 1998-02-17 Sato; Keiji Photoelectric conversion semiconductor device with insulation film
JP2012178464A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2928535B2 (en) Integrated multiple quantum well photons and electronic devices
JPH01231317A (en) Manufacture of optical semiconductor element
CN111987585B (en) Silicon waveguide output laser
JPH04211172A (en) Light-receiving integrated circuit and its manufacture
JPS61108187A (en) Semiconductor photoelectronic device
US5684819A (en) Monolithically integrated circuits having dielectrically isolated, electrically controlled optical devices
JPS59222988A (en) Compound semiconductor element and manufacture thereof
JPH088486A (en) Method of manufacturing patterned mirror vcsel by using selective growth
JPH09127352A (en) Semiconductor device and its production
US5100833A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
JPH03268360A (en) Semiconductor device
JPH01102984A (en) Semiconductor device and manufacture thereof
WO2020237423A1 (en) Laser having output silicon waveguide
JPS59222986A (en) Manufacture of compound semiconductor element
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method
JPS62229892A (en) Semiconductor device and manufacture thereof
KR910005392B1 (en) Manufacturing method of double-hetero junction type led with junction current limited region
JPS60251654A (en) Manufacture of semiconductor device
JPS622719B2 (en)
KR960002646B1 (en) The compound semiconductor device and the manufacturing method thereof
JPS6324692A (en) Manufacture of multifunction semiconductor device
JPH0548194A (en) Semiconductor laser and manufacture thereof
JPS58170077A (en) Semiconductor photodetector