JPS59222986A - Manufacture of compound semiconductor element - Google Patents

Manufacture of compound semiconductor element

Info

Publication number
JPS59222986A
JPS59222986A JP9826083A JP9826083A JPS59222986A JP S59222986 A JPS59222986 A JP S59222986A JP 9826083 A JP9826083 A JP 9826083A JP 9826083 A JP9826083 A JP 9826083A JP S59222986 A JPS59222986 A JP S59222986A
Authority
JP
Japan
Prior art keywords
layer
buried
selectively
epitaxial
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9826083A
Other languages
Japanese (ja)
Inventor
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9826083A priority Critical patent/JPS59222986A/en
Publication of JPS59222986A publication Critical patent/JPS59222986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To isolate a plurality of electrical elements and a LD, and to improve the degree of integration by selectively etching a buried epitaxial layer up to a substrate, burying polycrystalline semiconductor layers into recessed sections, flattening the surfaces and isolating and diffusing the polycrystalline semiconductor layers to the buried epitaxial layer. CONSTITUTION:An InGaAsP four-element layer 302 called an active layer, a P type InP layer 303 called a P clad layer and a P type InGaAsP layer 304 called a cap layer are grown on an N type InP substrate 301 in succession in an epitaxial manner. The cap layer 304, the P clad layer 303 and the active layer 302 are etched selectively. A projecting section is formed selectively on the N type InP substrate 301, and used as a LD section. Layers are buried and grown in the epitaxial manner so as to bury the projecting section (the LD section). The buried epitaxial layers 306 and 307 are etched selectively up to the substrate 301 to form recessed sections. Polycrystalline silicon layers 309 are buried in the recessed sections. An insulating film 320 is shaped apart from an insulating film 310 used for a mask for a P type diffusion, and an opening is bored selectively and a base is diffused 312.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザー(以下LDと略す)等の発光素
子及びその駆動素子の一体化集積構造に関するものであ
ろう 従来例の構成とその問題点 LDは光通信など情報の高密度伝送が可能であることか
ら最近その開発が活発に行なわれている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an integrated structure of a light emitting element such as a semiconductor laser (hereinafter abbreviated as LD) and its driving element, and its problems. Since it is possible to transmit high-density information such as optical communication, its development has been actively carried out recently.

光通信においてLI)は、電気信号を光信号に変換する
素子である。特に最近は、電気信号処理回路とLDとを
一体化する集積回路(以下ICと略す)の開発が注目を
浴びている。
In optical communications, LI) is an element that converts electrical signals into optical signals. Particularly recently, the development of integrated circuits (hereinafter abbreviated as ICs) that integrate electrical signal processing circuits and LDs has been attracting attention.

従来の一体化ICの構造は、接合型FITとI、Dとを
IC化したものが発表されている。この構造を第1図に
示す。第1図にて、1は半絶縁性の髄ム基板、2はn型
の諷胎層、3はn型のApaAs層、4はn型の眞肋層
、5はp型のA設山層、6は絶縁被膜、7は導電性金属
、8はソース電極、9はゲート電極、10はドレイン電
極、11はゲート拡散層、12はp型高濃度層を示す。
As a conventional integrated IC structure, one in which a junction type FIT and I and D are integrated into an IC has been announced. This structure is shown in FIG. In Fig. 1, 1 is a semi-insulating medullary substrate, 2 is an n-type stratum layer, 3 is an n-type ApaAs layer, 4 is an n-type stratiform layer, and 5 is a p-type A-shaped layer. 6 is an insulating film, 7 is a conductive metal, 8 is a source electrode, 9 is a gate electrode, 10 is a drain electrode, 11 is a gate diffusion layer, and 12 is a p-type high concentration layer.

第2図に、第1図に示した素子断面構造の等価回路を示
す。第1図と同じ番号の箇所は、同じ名称を示す。この
構造はプレーナ型ではな(FgT部分はn型GaAs層
2−1で選択的にエツチングするか、もしくはLD部分
を選択的にエピタキシャル成長さぜる。そ7′1.ゆえ
に段差を生じ配線電極等の形成工程が難かしい。更に、
複数個のトランジスタや抵抗等の電気素子を電気的に分
離してIC化するには而tかしい構造である。
FIG. 2 shows an equivalent circuit of the element cross-sectional structure shown in FIG. 1. The same numbers as in FIG. 1 indicate the same names. This structure is not a planar type (the FgT part is selectively etched with the n-type GaAs layer 2-1, or the LD part is selectively grown epitaxially). The formation process is difficult.Furthermore,
This is a difficult structure to electrically separate electrical elements such as a plurality of transistors and resistors into an IC.

発明の目的 本発明は、以上述べたような従来の問題点に鑑みて、複
数の電気素子とLDとをそれぞれ電気的に分離してプレ
ーナ構造でIC化する化合物半導体素子の製造方法を提
供するものである。
Purpose of the Invention In view of the conventional problems as described above, the present invention provides a method for manufacturing a compound semiconductor device in which a plurality of electric devices and an LD are electrically separated from each other and integrated into an IC with a planar structure. It is something.

発明の構成 本発明は、化合物半導体基板上に選択的に形成したLD
、4に埋込み構造のLDに関して埋込みエピタキシャル
層を電気素子のIC化に用い、埋込みエピタキシャル層
を選択的に基板までエツチングして四部に絶縁膜を介し
て多結晶半導体層を埋込み表面平坦化し、埋込みエピタ
キシャル層に分離拡散を行なうことによって複数の電気
素子とLDとを電気的に分離して、更にプレーナ構造を
提供するものである。
Structure of the Invention The present invention provides an LD selectively formed on a compound semiconductor substrate.
, 4. Regarding a buried structure LD, a buried epitaxial layer is used to make an electric element into an IC, and the buried epitaxial layer is selectively etched down to the substrate, and a polycrystalline semiconductor layer is buried in the fourth part through an insulating film, and the surface is flattened. A plurality of electric elements and the LD are electrically isolated by performing isolation diffusion in the epitaxial layer, thereby providing a planar structure.

実施例の説明 まず、第3図(F)に本発明による実施例のプレーナ構
造の化合物半導体素子の断面構造を示す。第3図(F)
においで、3o1はn型InP基板を示ず。
DESCRIPTION OF EMBODIMENTS First, FIG. 3(F) shows a cross-sectional structure of a compound semiconductor device having a planar structure according to an embodiment of the present invention. Figure 3 (F)
By smell, 3o1 does not indicate an n-type InP substrate.

302はInGaAsPの4元層で活性層と呼ばれ光の
とじ込めが行なわれる。なお図面には記入していないが
前記した活性層の上と下に光導波路層を形成すること、
及びそこに回折格子を形成しておくことは十分に可能で
あるっ303はP型InP層でPクラッド層と呼ばれる
。304はP mInGaAsP層でキャップ層と呼ば
れる。306は埋込みエピタキシャル層であってP型の
InP層を示す。307は埋込みエピタキシャル層であ
りn型InP層を示す。
A quaternary layer 302 of InGaAsP is called an active layer and is used to trap light. Although not shown in the drawings, optical waveguide layers are formed above and below the active layer described above;
It is fully possible to form a diffraction grating there. 303 is a P-type InP layer and is called a P cladding layer. 304 is a P mInGaAsP layer called a cap layer. 306 is a buried epitaxial layer, which is a P-type InP layer. 307 is a buried epitaxial layer, which is an n-type InP layer.

308は絶縁分離用の絶縁膜を示す。309は絶縁分離
のために埋込んだ多結晶ンリコ/層を示す。
Reference numeral 308 indicates an insulating film for insulation isolation. 309 indicates a polycrystalline layer/layer embedded for insulation isolation.

310ii電極配線形成のだめの絶縁膜を示す。310ii shows an insulating film for forming electrode wiring.

311は前記した埋込みn型InP J苦307を電気
的に分離するだめのP型拡散層を示す。312は分離し
たn型InP層の島の中に形成したP型拡散層でトラン
ジスタのベース領域を示す。313は前記ベース領域中
にn型拡散しだエミッタ領域を示す。314ばLD部の
アノード電極を示す。
Reference numeral 311 indicates a P-type diffusion layer for electrically isolating the buried n-type InP layer 307 described above. Reference numeral 312 indicates a P-type diffusion layer formed in a separate island of the n-type InP layer, and indicates a base region of the transistor. 313 indicates an n-type diffused emitter region in the base region. 314 indicates the anode electrode of the LD section.

316は前記した島on型InP層307及びLDのカ
ソード301の電気的分離を行なうだめに最低電位を印
加する分離電極を示す。316はコレクタ電極、317
はエミッタ電極、318はベース電極、319はLDの
カソード電極を示す。
Reference numeral 316 denotes a separation electrode that applies the lowest potential to electrically isolate the island-on-type InP layer 307 and the cathode 301 of the LD. 316 is a collector electrode, 317
318 is an emitter electrode, 318 is a base electrode, and 319 is a cathode electrode of the LD.

以下に本発明による実施例の製造方法を、第3図に従っ
て順番に説明する、。
The manufacturing method of the embodiment according to the present invention will be explained below in order according to FIG. 3.

第3図(A)に示すように、n型InP基板301上に
活性層と呼ばれるInGaAaPの4元層302.Pク
ラッド層と呼ばれるP型InP層303.キャップ層と
呼ばれるP型rncyaAsP層304を順次エピタキ
シャル成長させる。なお、前述したが活性層302の下
にnクラッド層としてのn型InP層あるいは活性層の
上もしくは下に光導波路層としての4元層をエピタキシ
ャル成長することが可能ばかりでなく前記4元層に回折
格子を形成して光の反射。
As shown in FIG. 3(A), an InGaAaP quaternary layer 302 called an active layer is formed on an n-type InP substrate 301. P-type InP layer 303 called P cladding layer. A P-type rncyaAsP layer 304 called a cap layer is epitaxially grown in sequence. As mentioned above, it is not only possible to epitaxially grow an n-type InP layer as an n-cladding layer under the active layer 302 or a quaternary layer as an optical waveguide layer above or below the active layer, but also to grow the quaternary layer as an optical waveguide layer. Reflection of light by forming a diffraction grating.

屈折を行なわせることも可能である。It is also possible to cause refraction.

前記エピタキシャル成長終了後、絶縁膜305たとえば
5i02あるいはSi3N4等を堆積して感光性レンス
トを塗布してツメトリノブラフイーによってパターンを
出し、絶縁膜306を選択的にエツチングする。
After the epitaxial growth is completed, an insulating film 305 such as 5i02 or Si3N4 is deposited, a photosensitive lens is applied, a pattern is formed by a tsumetri-no-blowie, and the insulating film 306 is selectively etched.

第3図(B)に示すように、絶縁膜305をマスクとし
て前記キャップ層304.Pクラッド層303゜活性層
302を選択的にエツチングする。エツチングとしては
OF4あるいはCC,111,ガス系によるドライエツ
チングもしくは、次に示すウェットエツチングを用いる
。ウェットエツチングの場合、ブロム系、塩酸系、硫酸
系、硝酸系等のエツチング液を用いる。第3図(B)に
示すようにn型1nP基板301上に選択的に凸部を設
けてこれをLD部分とする。次に、前記した凸部(LD
部)を埋込むように埋込みエピタキシャル成長する。埋
込みエピタキシャル層は、最初[P型InP層、次にn
型InP層としている。液相エピタキシャル法を用いた
場合、絶縁J漢305の上部にはエピタキシャル成長し
ない。
As shown in FIG. 3(B), the cap layer 304. The P cladding layer 303 and the active layer 302 are selectively etched. For etching, OF4 or CC,111, dry etching using a gas system, or the following wet etching is used. In the case of wet etching, a bromine-based, hydrochloric acid-based, sulfuric acid-based, nitric acid-based etching solution is used. As shown in FIG. 3(B), a convex portion is selectively provided on the n-type 1nP substrate 301 and is used as an LD portion. Next, the above-mentioned convex portion (LD
Embedded epitaxial growth is performed to embed part). The buried epitaxial layer is first [P-type InP layer, then n
It is an InP type layer. When the liquid phase epitaxial method is used, epitaxial growth is not performed on the upper part of the insulating J-shaped layer 305.

次に第3図(C)に示すように、前記した埋込みエピタ
キシャル層306及び307を選択的に基板3o1捷で
エツチングして四部を形成する。エツチング方法は、前
記したドライあるいはウェットの両エツチングが使える
。凹部を選択的に形成した後、凹部の側面及び底面を含
む表面全体に絶縁膜30Bを堆積する。前記した絶縁膜
308の段差での被覆性を良くするには、減圧のCVD
法を用いれば良い。絶縁膜308はSiO、、あるいは
、Si3N4 等で良い。なおInPとの熱膨張係数が
ほぼ等しいSi3N4  の方がやや好ましい。
Next, as shown in FIG. 3C, the buried epitaxial layers 306 and 307 described above are selectively etched using the substrate 3o1 to form four parts. As the etching method, both dry and wet etching mentioned above can be used. After selectively forming the recesses, an insulating film 30B is deposited over the entire surface of the recesses, including the side and bottom surfaces. In order to improve the coverage of the above-mentioned insulating film 308 at the steps, low pressure CVD is performed.
Just use the law. The insulating film 308 may be made of SiO, Si3N4, or the like. Note that Si3N4, which has approximately the same coefficient of thermal expansion as InP, is somewhat preferable.

第3図中)に示すように、選択的に形成した凹部に多結
晶シリコン層309を埋込む。多結晶シリコンの堆積に
は、工nPの熱分解温度よりも低い温度で基板を加熱し
てCVD1去で堆積すれば良い。
As shown in FIG. 3), a polycrystalline silicon layer 309 is buried in the selectively formed recesses. Polycrystalline silicon can be deposited by heating the substrate at a temperature lower than the thermal decomposition temperature of nP and depositing it by CVD.

凹部以外に堆積した多結晶シリコン層は、感光性レジス
ト等を介して02及びay2c4等のガス系によってド
ライエッチすることによって除去でき、表面平坦化がで
きる。このとき、表面に形成している絶縁膜30Bのエ
ツチングを前記多結晶シリコン層のエツチングの終点検
出として使える。あるいは、リン酸、硝酸系のエツチン
グ液でウェット・エツチングしても可能である。
The polycrystalline silicon layer deposited in areas other than the recessed portions can be removed by dry etching using a gas system such as 02 and ay2c4 through a photosensitive resist, and the surface can be flattened. At this time, the etching of the insulating film 30B formed on the surface can be used to detect the end point of etching the polycrystalline silicon layer. Alternatively, wet etching may be performed using a phosphoric acid or nitric acid based etching solution.

第3図(E)に示すように、拡散マスクとしての絶縁膜
310を表面に堆積する。しかる後に、選択的に絶縁膜
310を開孔してZn、 Cd等をP型InP層3o6
t−で拡散する。このようにして、前記した埋込みエピ
タキシャル層であるn型1nP層307を選択的に島状
に分離する。島状に分離したn型InP層307は、前
記したP散拡散層を含むP型InP層306を最低電位
に保ち逆バイアス電圧を加えることで電気的にも分離で
きる。しかも、n型InP基板301とも電気的に分離
できるので、島状のn型InP層307はLD部から電
気的に分離できる。電気的に分離できる島状のn型In
P層307はそこにトランジスタや抵抗、容量などを従
来のシリコンIC等の製作技術を応用することで形成で
きる。
As shown in FIG. 3(E), an insulating film 310 as a diffusion mask is deposited on the surface. After that, holes are selectively opened in the insulating film 310 and Zn, Cd, etc. are deposited on the P-type InP layer 3o6.
Diffusion at t-. In this way, the n-type 1nP layer 307, which is the buried epitaxial layer described above, is selectively separated into islands. The n-type InP layer 307 separated into islands can be electrically separated by keeping the P-type InP layer 306 including the P-diffusion layer described above at the lowest potential and applying a reverse bias voltage. Moreover, since it can be electrically isolated from the n-type InP substrate 301, the island-shaped n-type InP layer 307 can be electrically isolated from the LD section. Island-shaped n-type In that can be electrically isolated
In the P layer 307, transistors, resistors, capacitors, etc. can be formed by applying conventional silicon IC manufacturing techniques.

第3図<y>は、バイポーラ・トランジスタを集積化し
た場合の素子断面構造を示す。P型拡散用マスクに用い
た絶縁膜310とは別に絶縁膜320を形成し、選択的
に開孔してベース拡散312を行なう。この場合のベー
ス層はP型であるがらZn。
FIG. 3 <y> shows a cross-sectional structure of an element when bipolar transistors are integrated. An insulating film 320 is formed separately from the insulating film 310 used as the P-type diffusion mask, and base diffusion 312 is performed by selectively opening holes. Although the base layer in this case is of P type, it is Zn.

あるいはCd、Be、Mg等の不純物を用いる。あるい
は、熱拡散を用いずイオン注入をしても良いつ次に、エ
ミッタ拡散313を行なう。この場合のエミツタ層はn
型であるからS、Se、Te等の不純物を用いて熱拡散
あるいはイオン注入によって形成する。この実施例では
、抵抗体を形成していないがベース拡散層を用いて作る
ことができる。電極配線形成用に絶縁膜320を形成し
て選択的に開孔して電極配線314. 315. 31
6,317゜318を形成する。電極としてはAu/G
e、 Au/Zn。
Alternatively, impurities such as Cd, Be, Mg, etc. are used. Alternatively, ion implantation may be performed without using thermal diffusion.Next, emitter diffusion 313 is performed. In this case, the emitter layer is n
Since it is a type, it is formed by thermal diffusion or ion implantation using impurities such as S, Se, Te, etc. Although a resistor is not formed in this embodiment, it can be made using a base diffusion layer. An insulating film 320 is formed for forming electrode wiring, and holes are selectively opened to form electrode wiring 314. 315. 31
6,317°318 is formed. Au/G as electrode
e, Au/Zn.

Ti/Au、 Au/Be、 Au/Sn など用いて
蒸着を行ない、フォトリングラフィ技術によって配線形
状を作る。次にn型InP基板301に同様の電極拐を
用いて電極319を形成する。
Vapor deposition is performed using Ti/Au, Au/Be, Au/Sn, etc., and the wiring shape is created using photolithography technology. Next, an electrode 319 is formed on the n-type InP substrate 301 using a similar electrode cutting process.

以上、本発明による実施例の製造方法について述べた。The manufacturing method of the embodiment of the present invention has been described above.

次に、第3図(F)に示す本発明による実施例の電圧印
加について述べる。前述したように分離拡散311を含
むP型InP層306は他のどの半導体層よシも最低電
位に保つ。第4図は、第3図便)に示す本発明の実施例
による集積化素子の断面構造の等価回路を示す。前述し
たように電極316を最低電位にすれば、PN接合は逆
バイアスされ、トランジスタとLDとは分離されるので
ある。
Next, voltage application in the embodiment according to the present invention shown in FIG. 3(F) will be described. As described above, the P-type InP layer 306 including the isolation diffusion 311 is kept at the lowest potential than any other semiconductor layer. FIG. 4 shows an equivalent circuit of the cross-sectional structure of the integrated device according to the embodiment of the present invention shown in FIG. As described above, by setting the electrode 316 to the lowest potential, the PN junction is reverse biased and the transistor and LD are separated.

なお、実施例としては・くイポーラ・トランジスタを用
い7cがJ−FET、MOS、FET であっても良い
。1だ、分離した島状部分に受yt、素子を形成するこ
ともできる。また、エミッタ・ベース接合はホモ接合で
あるが、これをペテロ接合として注入効率を向上するこ
ともできる。実施例では、InP系ZIrIGaAsP
系であったがこれを連系/A%aAs系としても良いし
他の化合物混晶系であってもよいことはいうまでもない
In this embodiment, a polar transistor may be used, and 7c may be a J-FET, MOS, or FET. 1. It is also possible to form a receiver and an element in a separate island-like portion. Further, although the emitter-base junction is a homojunction, it is also possible to improve the injection efficiency by using a peterojunction. In the example, InP-based ZIrIGaAsP
Although this is a system, it goes without saying that this may be a connected/A%aAs system or may be a mixed crystal system of other compounds.

発明の効果 (1)LDおよびその制御、駆動系としてのトランジス
タ、受光素子としてのPiN、−ムPD素子等を電気的
に完全に分離できる。分離できることは、各々が独立に
設計できる自由度が増えることであり、従来実施してい
た一体化構造にない全く新しい構造で集積度を飛躍的に
向上させるものである。
Effects of the Invention (1) The LD and its control, the transistor as the drive system, the PiN as the light receiving element, the -mu PD element, etc. can be completely separated electrically. The ability to separate them increases the degree of freedom in designing each component independently, and dramatically improves the degree of integration with a completely new structure that is not available in conventional integrated structures.

(2)  光導波路及び回折格子との組合せで分布帰還
型あるいは分布反射型のI、Dを構成すれば、ファブリ
・ベロー型のように共振器長に依存したチップサイズに
ならないので、本発明による製造方法を用いれば、電気
系素子の集積度が飛躍的に向上する。
(2) If a distributed feedback type or distributed reflection type I and D are configured in combination with an optical waveguide and a diffraction grating, the chip size does not depend on the resonator length as in the Fabry-Bérot type. By using this manufacturing method, the degree of integration of electrical elements can be dramatically improved.

(3)プレーナー構造としている点で、従来実施してい
た一体化構造のように段差部における電極配線の切断な
ど生じない。また、LD部分と電気素子部分との分離の
だめの特殊なエツチングが不用など製造工程が容易であ
る。
(3) Since it has a planar structure, there is no disconnection of the electrode wiring at the stepped portion unlike in the conventional integrated structure. Further, the manufacturing process is easy, as special etching for separating the LD portion and the electric element portion is not required.

(4)誘電体によるLDとの分離は、接合容量を低減で
きるのでLDの高速変調を容易にする。
(4) Separation from the LD by a dielectric material facilitates high-speed modulation of the LD because junction capacitance can be reduced.

(5)  島状に分離された化合物半導体層を電気素子
に用いることができるので、高速電気素子の形成が容易
である。
(5) Since a compound semiconductor layer separated into islands can be used for an electric element, it is easy to form a high-speed electric element.

(6)化合物半導体の特長としての発光、高移動度の電
子を利用した高速電気素子の組合せを、プレーナー技術
で高密度に集積てきる従来にない特長から、電気−光、
光−電気系の光集積回路を実現することができる。
(6) Electro-optical
It is possible to realize an opto-electrical optical integrated circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のLD一体化IC構造の断面図、第2図は
第1図に示すIC構造の等価回路図、第3図(A)〜(
力は本発明による実施例のLD一体化IC構造の製造工
程図、第4図は第3図(わに示すIC構造の等価回路図
である。 301・・・・・・化合物半導体基板、302,303
j304.306,307・・・・・・化合物半導体層
、305.308,310,320・・・・・・絶縁膜
、309・・・・・・多結晶半導体層、311・・・・
・・分離拡散層、312・・・・・・ベース拡散層、3
13・・・・・・エミッタ拡散層、314.316. 
316.317)318.319・・・・・・抵抗性電
極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 t 第2図
Figure 1 is a cross-sectional view of a conventional LD-integrated IC structure, Figure 2 is an equivalent circuit diagram of the IC structure shown in Figure 1, and Figures 3 (A) to (
Figure 4 is an equivalent circuit diagram of the IC structure shown in Figure 3 (Fig. 3). 301... Compound semiconductor substrate, 302 ,303
j304.306, 307... Compound semiconductor layer, 305.308, 310, 320... Insulating film, 309... Polycrystalline semiconductor layer, 311...
... Separation diffusion layer, 312 ... Base diffusion layer, 3
13...Emitter diffusion layer, 314.316.
316.317) 318.319...Resistive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure t Figure 2

Claims (1)

【特許請求の範囲】 (1)化合物半導体基板上にダブル・ペテロ構造を形成
する複数のエピタキシャル成長を行なう工程と、前記エ
ピタキシャル層上に選択的に絶縁被膜を残置させ前記複
数のエピタキシャル層を選択的にエツチングして発光素
子部を形成する工程と、前記エツチングによって形成し
た凸部の側面を埋込む複数のエピタキシャル成長を行な
う工程と、前記埋込みエピタキシャル層を選択的に前記
基板までエツチングする工程と、前記エツチングによっ
て形成しだ凹部の側面及び底面を含む全面に絶縁膜を堆
積する工程と、前記凹部に多結晶半導体層を埋込み表面
平坦化する工程と、前記多結晶半導体層によって囲まれ
た前記埋込みエピタキシャル層内に分離拡散を行う工程
と、前記分離拡散によって囲まれた埋込みエピタキシャ
ル層内に電気素子を形成する工程とを備えだ化合物半導
体素子の製造方法。 し)多結晶半導体層を多結晶シリコン層とすることを特
徴とする特許請求の範囲第1項に記載の化合物半導体素
子の製造方法9 (3)分離拡散を行う工程が、埋込みエピタキシャル層
を選択的にエツチングする工程と、前記工程によって形
成した凹部を含む表面に絶縁膜を形成する工程と、前記
凹部に多結晶半導体層を埋込む工程を有することを特徴
とする特許請求の範囲第1項に記載の化合物半導体素子
の製造方法。
[Scope of Claims] (1) A step of performing a plurality of epitaxial growths to form a double Peter structure on a compound semiconductor substrate, and selectively leaving an insulating film on the epitaxial layer to selectively grow the plurality of epitaxial layers. a step of performing a plurality of epitaxial growths to bury the side surfaces of the convex portions formed by the etching; a step of selectively etching the buried epitaxial layer to the substrate; A step of depositing an insulating film on the entire surface including the side and bottom surfaces of the recess formed by etching, a step of burying a polycrystalline semiconductor layer in the recess and flattening the surface, and a step of flattening the surface of the buried epitaxial layer surrounded by the polycrystalline semiconductor layer. A method for manufacturing a compound semiconductor device, comprising the steps of performing isolation diffusion within a layer, and forming an electric element within a buried epitaxial layer surrounded by the isolation diffusion. (b) Method 9 for manufacturing a compound semiconductor device according to claim 1, characterized in that the polycrystalline semiconductor layer is a polycrystalline silicon layer (3) The step of performing separation and diffusion selects a buried epitaxial layer. Claim 1, characterized in that the method further comprises the steps of: etching the recess, forming an insulating film on the surface including the recess formed by the step, and burying a polycrystalline semiconductor layer in the recess. A method for manufacturing a compound semiconductor device according to .
JP9826083A 1983-06-01 1983-06-01 Manufacture of compound semiconductor element Pending JPS59222986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9826083A JPS59222986A (en) 1983-06-01 1983-06-01 Manufacture of compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9826083A JPS59222986A (en) 1983-06-01 1983-06-01 Manufacture of compound semiconductor element

Publications (1)

Publication Number Publication Date
JPS59222986A true JPS59222986A (en) 1984-12-14

Family

ID=14214975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9826083A Pending JPS59222986A (en) 1983-06-01 1983-06-01 Manufacture of compound semiconductor element

Country Status (1)

Country Link
JP (1) JPS59222986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290776A (en) * 1985-06-14 1986-12-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290776A (en) * 1985-06-14 1986-12-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device

Similar Documents

Publication Publication Date Title
JP3242963B2 (en) Laser diode / waveguide monolithic integrated device
US5822349A (en) Semiconductor device and method of manufacturing the same
US4161745A (en) Semiconductor device having non-metallic connection zones
JPH01146390A (en) Semiconductor device
US4608696A (en) Integrated laser and field effect transistor
US4933302A (en) Formation of laser mirror facets and integration of optoelectronics
KR910006699B1 (en) Semiconductor device
US5049522A (en) Semiconductive arrangement having dissimilar, laterally spaced layer structures, and process for fabricating the same
JPH09127352A (en) Semiconductor device and its production
JPS59222986A (en) Manufacture of compound semiconductor element
US5003358A (en) Semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) Method of producing a semiconductor light emitting device disposed in an insulating substrate
JPS59222988A (en) Compound semiconductor element and manufacture thereof
JPS59202676A (en) Planar type light-emitting element
US6081000A (en) AlAs oxide insulating layer between a conductive III-V substrate and an optoelectronic semiconductor device and method of manufacturing thereof
JPH01102984A (en) Semiconductor device and manufacture thereof
JPS61270883A (en) Photo semiconductor device
KR100230732B1 (en) Method of manufacturing compound semiconductor
JPH11121869A (en) Semiconductor laser element and its manufacture
JPH09139545A (en) Manufacture of semiconductor laser
KR960002646B1 (en) The compound semiconductor device and the manufacturing method thereof
JPS6062175A (en) Manufacture of semiconductor device
JPS59222987A (en) Compound semiconductor element and manufacture thereof
JPS61191090A (en) Optical integrated circuit and manufacture thereof
JPH11261156A (en) Semiconductor laser and manufacture thereof