JPS59218786A - Single axial mode semiconductor laser - Google Patents

Single axial mode semiconductor laser

Info

Publication number
JPS59218786A
JPS59218786A JP9284783A JP9284783A JPS59218786A JP S59218786 A JPS59218786 A JP S59218786A JP 9284783 A JP9284783 A JP 9284783A JP 9284783 A JP9284783 A JP 9284783A JP S59218786 A JPS59218786 A JP S59218786A
Authority
JP
Japan
Prior art keywords
layer
mesa stripe
conductivity type
semiconductor laser
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284783A
Other languages
Japanese (ja)
Inventor
Masafumi Seki
雅文 関
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9284783A priority Critical patent/JPS59218786A/en
Publication of JPS59218786A publication Critical patent/JPS59218786A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a single axial mode semiconductor laser capable of oscillating in a single axial mode and single axial mode oscillation to a high output level by forming a an irregular period structure having a specific period in a boundary between a photowaveguide layer and an intermediately layer and a resonator structure which suppresses the Fabry-Perot mode oscillation of a semiconductor laser. CONSTITUTION:Two slots which reach an intermediate layer are opened in a composite semiconductor layer 9 having a photowaveguide layer 1, an intermediate layer 2, an active layer 3 and a clad layer 4 on a (100) azimuth N type InP wafer 10, and a mesa stripe is formed. A periodic structure of the period substantially equal to the value of lambda0/(2Xneff), where neff is equivalent refractive index of a composite photowaveguide layer of a mesa stripe in a boundary between the layer 1 and the layer 2 and lambda is the wavelength of the oscillating light in a free space is formed in 0-11 direction. A P type InP first current block layer 5 and an N type InP second current block layer 6 are grown except on the mesa stripe on the layer 9. The first end 20 is perpendicular cleaved surface, and the second end 21 is an oblique surface. Since these ends 20, 21 do not substantially form Fabry-Perot resonator, the Fabry-Perot mode is suppressed.

Description

【発明の詳細な説明】 本発明は光通信等に用いられる単一軸モード発振をする
単一軸モード半導体レーザ、特に高出力発振に適した単
一軸モード半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-axis mode semiconductor laser that oscillates in a single-axis mode and is used in optical communications, and particularly to a single-axis mode semiconductor laser that is suitable for high-output oscillation.

近年、光ファイバの最低損失領域である波長1.5μm
帯での光源への適用を想定した単一軸モード半導体レー
ザの研究開発の進展が著しい。これは単一軸モード発振
であれば光ファイバの材料分散の影響を受けずにすみ、
長距離光フアイバ通信が現実性をおびたものとなるから
である。しかし、通常の単一軸モード発振レーザは高出
力発振特性に問題があり、その改善が望まれていた。そ
の一つは、光の出射端面を弁開で作っていたため高出力
時にファブリペローモードが発振してしまい完全な単一
軸モード発振でなくなってしまうことであシ、他の一つ
は扁出力時に通常のファブリベロー半辱体レーザと同様
に扁次横モードが発生してしまうことである。
In recent years, the wavelength of 1.5 μm, which is the lowest loss region of optical fiber
There has been remarkable progress in the research and development of single-axis mode semiconductor lasers, which are intended for application as light sources in the band. This is because single-axis mode oscillation is not affected by the material dispersion of the optical fiber.
This is because long-distance optical fiber communication becomes a reality. However, conventional single-axis mode oscillation lasers have problems with high-power oscillation characteristics, and improvements have been desired. One of them is that the light exit end face was made with an open valve, so the Fabry-Perot mode oscillated at high output, resulting in complete single-axis mode oscillation. Similar to normal Fabry-Bello semicircular body lasers, an oblique transverse mode occurs.

本発明の目的は、これらの問題点を解決し、単一軸モー
ドおよび早−・願モード発振が高出力レベルまで可能な
単一軸モード半導体レーザを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a single-axis mode semiconductor laser capable of single-axis mode and early mode oscillation up to high output levels.

本発明の単一軸モード半導体レーザは、第一の導電型の
半導体基板と、該半導体基板の上に順次エピタキシャル
成長された第一の4電型の先導波層と、第一の4電型の
中間層と、活性層と、第二の4電型のクラッド層と葡含
む複合半導体層において、レーザ発振を行なうメサスト
ライプを形成すべく該メサストライプの両側に少なくと
も該中間層に達するまでの深さの2本の6I#を形成し
た後に、該メサストライプの上側を除いてj1次エピタ
キシャル成長された第二の4を型の第一電流ブロック層
および第一の導電型の第二電流ブロック層、および該メ
サストライプと該第二電流ブロック層の上にエピタキシ
ャル成長された埋込み層およびコンタクト層とを言む半
導体レーザにおいて、該光導波層は発振波長よシも短い
禁止帯幅波長をもち、該中間層は該光導波層よシ低い屈
折率を有する結晶層であシ、さらに該光等波層と該中間
層の境界には該半導体レーザの等側屈折率” 、Hと発
振波長λによシ、大路次の式 で与えられる周期Δをもつ凹凸周期構造を形成し、かつ
前記半導体レーザの7アプリペロ一モード発振を抑圧す
る共振器構造としたことを特徴とする。
The uniaxial mode semiconductor laser of the present invention includes a semiconductor substrate of a first conductivity type, a first waveguide layer of a quaternary conductivity type epitaxially grown on the semiconductor substrate, and an intermediate waveguide layer of a first conductivity type. In order to form a mesa stripe for laser oscillation, in the composite semiconductor layer including the active layer, the active layer, the second quaternary cladding layer, and the cladding layer, a depth at least reaches the intermediate layer on both sides of the mesa stripe to form a mesa stripe for laser oscillation. After forming two 6I# layers, a second 4-type first current blocking layer and a first conductivity type second current blocking layer are grown by primary epitaxial growth except for the upper side of the mesa stripe, and In the semiconductor laser comprising the mesa stripe and the buried layer and contact layer epitaxially grown on the second current blocking layer, the optical waveguide layer has a bandgap wavelength shorter than the oscillation wavelength, and the intermediate layer is a crystal layer having a lower refractive index than the optical waveguide layer, and furthermore, at the boundary between the optical homowave layer and the intermediate layer, there is a crystal layer having an isolateral refractive index, H, and an oscillation wavelength λ of the semiconductor laser. , Ohji The resonator structure is characterized by forming a concave-convex periodic structure having a period Δ given by the following equation, and having a resonator structure that suppresses the 7-application-pero one mode oscillation of the semiconductor laser.

本発明において、レーザ発振はメサストライプ中および
その下側に位置する活性層、中間層、導波層からなる複
合光導波層中で行なわれるが、分布帰還を生ぜしめる周
期構造は光強度が最大に近い中間層と光導波層中の境界
に形成されているので分布帰還の効率が高いという特長
があシ、これによシ分布帰還レーザ発振の閾値を低く微
分量子効率を高くすることができる。また本発明におい
ては、周期構造の形成された光導波層の上に直接活性層
を成長させず中間層一層を介在させているので、活性層
の結晶性が良いという長所の他に、光導波層と活性層の
間の屈折率変化よシは周期構造の屈折率変化が大きくと
れるという長所がある。
In the present invention, laser oscillation is performed in a composite optical waveguide layer consisting of an active layer, an intermediate layer, and a waveguide layer located in and below the mesa stripe, but the periodic structure that causes distributed feedback has a maximum light intensity. Since it is formed at the boundary between the intermediate layer and the optical waveguide layer, which is close to . In addition, in the present invention, since the active layer is not grown directly on the optical waveguide layer in which the periodic structure is formed, but a single intermediate layer is interposed, in addition to the advantage that the active layer has good crystallinity, The refractive index change between the layer and the active layer has the advantage that the refractive index change of the periodic structure can be large.

また本発明においては、前記複合光導波路の中に一層該
光導波層よシ低い屈折率を有する結晶層が含まれている
という構造によシ、またとぎれていない光導波層上に中
間層およびメサストライプ幅の活性層がのっているスト
ライプ装荷ガイド形式をとっていることによシ複合光導
波1fiJの等側屈折率が低くなっている。このため、
基本横モード発振を保ちなからメサストライプ幅を大き
くでき、″  作製の容易性を増すとともに光密度に起
因する端面の光学的損傷を防止することができる。また
、共振器構造が7アプリベローモードを抑圧する構成(
例えば斜め端面や反射防止腺蒸層加工等)を用いている
ため、ファブリペローモード発振を行なうことがない。
Further, in the present invention, due to the structure in which the composite optical waveguide includes a crystal layer having a lower refractive index than the optical waveguide layer, an intermediate layer and By adopting the stripe loading guide format on which the active layer has a mesa stripe width, the isolateral refractive index of the composite optical waveguide 1fiJ is low. For this reason,
The width of the mesa stripe can be increased without maintaining the fundamental transverse mode oscillation, which increases the ease of fabrication and prevents optical damage to the end face due to optical density.In addition, the resonator structure has a 7-plane bellows mode. A configuration that suppresses (
For example, since an oblique end face, an anti-reflection vapor layer treatment, etc.) are used, Fabry-Perot mode oscillation does not occur.

以上のべた構造上の特徴の相乗的効果によシ、本発明の
単一軸モード半導体レーザは単一軸モードおよび単−横
モード発振を保ったまま高出力レベルまで簀定に分布帰
還発振が可能である。
Due to the synergistic effect of the above-mentioned structural features, the single-axis mode semiconductor laser of the present invention can consistently perform distributed feedback oscillation up to high output levels while maintaining single-axis mode and single-transverse mode oscillation. be.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明の実施例の単一軸モード半導体レーザの
横断面図、第2図は第1図のメサストライプ部分の縦断
面図である。(1(10)面方位のn−InPウェーハ
10の上に、光導波層1.中間層2.活性層3.クラッ
ド層4が順次エピタキシャル成長されている。光導波層
1は禁止帯幅波長1.30μmのn  InCL72 
GA(L28 Asg、61 PL59の4元混晶1中
間層2はn−InP、活性層3は禁止帯幅波長1.55
/’F7jのInα59Gaa41Asn、es+ P
nuの4元混晶、クラッド層はp−InPである。各層
の厚さはそれぞれ0.3pm、0.1pm、0.1pm
、1pmである。これら各層からなる複合半導体層9に
は中間層に達するまで2本の溝がほられることによシ幅
4μmのメサストライプが形成されている。光導波層1
と中間層2の境界には、メサストライプの複合光導波層
の等側屈折率を”@Ift 自由空間における発振光の
波長をλとしたとき λ。/(2Xn e!f )の値
にほぼ等しい周期(実施例の場合は” art ” 3
.27 、λ、−1,5511Wl 、1: h 23
70X ) O周IJJ構造カ(oi r ) 方向に
形成されている。複合半導体層9の上には、p−InP
の第一電流ブロック層5とn−4nPの第二電流ブロッ
ク層6がメサストライプの上を除いて成長され、次いで
第二電流ブロン24層6とメサストライプの上に埋込み
層7とコンタクト層8が成長されている。埋込み層7は
p−InP、コンタクト層8は禁止帯幅波長1.201
1mのp  In(L78Gan22 Asα48 P
o、52の4元混晶である。第一の電極11はAu −
Ge −Ni の負電極であp1第二の電極12はT 
i /P t の正電極である。メサストライプの一方
にある第一の端面20は垂直な璧開面であシ、第二の端
面21はエツチングによ少形成された斜め面である。
FIG. 1 is a cross-sectional view of a single-axis mode semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of a mesa stripe portion of FIG. 1. (An optical waveguide layer 1, an intermediate layer 2, an active layer 3, and a cladding layer 4 are epitaxially grown in sequence on an n-InP wafer 10 with a 1(10) plane orientation.The optical waveguide layer 1 has a forbidden band wavelength of 1 .30 μm n InCL72
GA (L28 Asg, 61 PL59 quaternary mixed crystal 1 intermediate layer 2 is n-InP, active layer 3 has a bandgap wavelength of 1.55
/'F7j Inα59Gaa41Asn, es+ P
The nu quaternary mixed crystal and cladding layer are p-InP. The thickness of each layer is 0.3pm, 0.1pm, 0.1pm respectively
, 1pm. A mesa stripe with a width of 4 μm is formed by cutting two grooves in the composite semiconductor layer 9 made up of each of these layers until it reaches the intermediate layer. Optical waveguide layer 1
At the boundary of the intermediate layer 2, the isolateral refractive index of the composite optical waveguide layer of the mesa stripe is approximately equal to the value of λ./(2Xn e!f), where the wavelength of the oscillation light in free space is λ. Equal periods (“art” 3 in the example)
.. 27, λ, -1,5511Wl, 1: h 23
70X) The O-circumference IJJ structure is formed in the (oir) direction. On the composite semiconductor layer 9, p-InP
A first current blocking layer 5 of n-4nP and a second current blocking layer 6 of n-4nP are grown except on top of the mesa stripe, and then a buried layer 7 and a contact layer 8 are grown on the second current blocking layer 6 and the mesa stripe. is growing. The buried layer 7 is p-InP, and the contact layer 8 has a bandgap wavelength of 1.201.
1m p In(L78Gan22 Asα48P
It is a quaternary mixed crystal of o, 52. The first electrode 11 is Au −
The p1 second electrode 12 is a negative electrode of Ge-Ni.
It is a positive electrode of i /P t . A first end face 20 on one side of the mesa stripe is a vertical cleavage face, and a second end face 21 is a slightly etched oblique face.

以上の構成の実施例の動作を説明する。The operation of the embodiment having the above configuration will be explained.

第1の電極12から第2の電極に電流を流すと、活性層
3中で発光再結合が生じるが、第一、第二の端面20,
21が7アプリペロー共振器を実質的に構成しないので
ファブリペローモードは抑制される。活性層3から放出
される自然放出光のうち波長λが2×n、ffxAに等
しいものは、周期構造によシ帰還作用をうけるので電流
の請訓と共に著しく増加し分布帰還発振を生じる。
When a current is passed from the first electrode 12 to the second electrode, luminescent recombination occurs in the active layer 3, but the first and second end faces 20,
21 does not substantially constitute a 7-application Perot resonator, the Fabry-Perot mode is suppressed. Of the spontaneously emitted light emitted from the active layer 3, the wavelength λ equal to 2×n, ffxA is subjected to a feedback effect by the periodic structure, and therefore increases significantly as the current increases, causing distributed feedback oscillation.

この実施例は、室温において閾値電流が3omA。In this example, the threshold current is 3 ohmA at room temperature.

注入電流100mAにおける光出力が約20ysWであ
シ、この範囲内で単−軸上〜ド発掘かつ単−横モード(
基本モード)発振であった。本発明によれは、単一軸モ
ード、単−横モードの高出力半導体レーザを比較的容易
に得ることができる。
The optical output at an injection current of 100 mA is approximately 20 ysW, and within this range, single-axis to de-excavation and single-transverse mode (
fundamental mode) oscillation. According to the present invention, a single-axis mode, single-transverse mode high-output semiconductor laser can be obtained relatively easily.

以上、本発明の実施例について説明しだが、実施例の他
に種々変形が可能である。n−InPウェーハ10はp
mの吃のであってもよいが、この場合各層の導電型は実
施例の導電型と全て逆にすることが必要である。また、
実施例の結晶構成はInP  及びInGaAsP 以
外のものであってもよく、その発振波長もl、55μm
に限定されることなく他の波長でもよいことは当然であ
る。さらに、第2の端面が斜め形成しであるのは、ファ
ブリペローモードの発生を抑圧をするのが目的であるか
ら同等な効果を生ずる限シ珈々の手段を用いてよい。
Although the embodiments of the present invention have been described above, various modifications can be made in addition to the embodiments. The n-InP wafer 10 has p
However, in this case, the conductivity type of each layer must be reversed to that of the embodiment. Also,
The crystal structure of the embodiment may be other than InP and InGaAsP, and the oscillation wavelength is also 55 μm.
Of course, the wavelength is not limited to , and other wavelengths may be used. Furthermore, since the purpose of forming the second end face obliquely is to suppress the occurrence of Fabry-Perot modes, any means that produces the same effect may be used.

たとえば第2の端面21をメサストライプ上側から見た
場合に傾いている様にしてもよい。また、第1の端面2
0に反射防止膜を形成して光の取シ出し効率を高めても
よい。また、メサストライプを形成するだめの2本の溝
の深さを、先導波層lに達する程度にしてもよい。
For example, the second end surface 21 may be inclined when viewed from above the mesa stripe. In addition, the first end surface 2
An anti-reflection film may be formed on the surface of the substrate 0 to improve light extraction efficiency. Further, the depth of the two grooves forming the mesa stripe may be set to a depth that reaches the leading wave layer l.

【図面の簡単な説明】 第1図、第2図は本発明の一実施例の横断面図、メサス
トライプ部分における縦断面図である。 図において、1・・・光導波層、2・・・中間層、3・
−活性層、4・・・クラッド層、5,6・・・電流ブロ
ック層、7・・・埋込み層、8・・・コンタクト層、9
・・・複合半導体層、1(1=InPウエーハ、11.
12・・・電極、2.0.21・・・端面、30・・・
周期構造、である。 、?下、−K(ii、・舅74 iri  %”F:I
ニー4(
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are a cross-sectional view and a vertical cross-sectional view of a mesa stripe portion of an embodiment of the present invention. In the figure, 1... optical waveguide layer, 2... intermediate layer, 3...
- active layer, 4... cladding layer, 5, 6... current blocking layer, 7... buried layer, 8... contact layer, 9
...Composite semiconductor layer, 1 (1=InP wafer, 11.
12... Electrode, 2.0.21... End surface, 30...
It is a periodic structure. ,? Bottom, -K(ii,・舅74iri%”F:I
Knee 4 (

Claims (1)

【特許請求の範囲】 第一の導電型の半導体基板と、該半導体基板の上に順次
エピタキシャル成長された第一の導電型の光導波層と、
第一の導電型の中間層と、活性層と、第二の導電型のク
ラッド層とを含む複合半導体層に、少なくとも該中間層
に達するまでの深さ 。 02本の溝で挾まれたメサストライプを備え、該メサス
トライプの上’biijを除いて順次エピタキシャル成
長された第二の導電型の第一電流ブロック層および第一
の導電型の第二電流ブロック層を備え、該メサストライ
プと該第二電流ブロック層の上にエピタキシャル成長さ
れた埋込み層およびコンタクト層とを備え、さらに、該
光導波層は発振波長よシも短い禁止帯幅波長をもち、該
中間層は該光導波層よシ低い屈折率を有する結晶層であ
シ、さらに該光導波層と該中間層の境界には該半導体素
子の等側屈折率” @ffと発振波長λによシ、次の式
%式%) で与えられる周期Aをもつ凹凸周期構造を備え、かつ、
ノアプリベローモード発振を抑圧する共振器構造とした
ことを特徴とする単一軸モード半導体レーザ。
[Claims] A semiconductor substrate of a first conductivity type, an optical waveguide layer of a first conductivity type epitaxially grown on the semiconductor substrate,
A composite semiconductor layer including an intermediate layer of a first conductivity type, an active layer, and a cladding layer of a second conductivity type has a depth that reaches at least the intermediate layer. A first current blocking layer of a second conductivity type and a second current blocking layer of a first conductivity type, comprising a mesa stripe sandwiched by two grooves, and epitaxially grown in sequence on the mesa stripe except for the upper part of the mesa stripe. a buried layer and a contact layer epitaxially grown on the mesa stripe and the second current blocking layer; further, the optical waveguide layer has a bandgap wavelength that is shorter than the oscillation wavelength; The layer is a crystal layer having a refractive index lower than that of the optical waveguide layer, and furthermore, at the boundary between the optical waveguide layer and the intermediate layer, there is a crystal layer having an isolateral refractive index "@ff" and an oscillation wavelength λ of the semiconductor element. , has an uneven periodic structure with a period A given by the following formula %), and
A single-axis mode semiconductor laser characterized by having a resonator structure that suppresses noopibel mode oscillation.
JP9284783A 1983-05-26 1983-05-26 Single axial mode semiconductor laser Pending JPS59218786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284783A JPS59218786A (en) 1983-05-26 1983-05-26 Single axial mode semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284783A JPS59218786A (en) 1983-05-26 1983-05-26 Single axial mode semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59218786A true JPS59218786A (en) 1984-12-10

Family

ID=14065817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284783A Pending JPS59218786A (en) 1983-05-26 1983-05-26 Single axial mode semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59218786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189686A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Laser device
US8451874B2 (en) 2009-12-02 2013-05-28 Massachusetts Institute Of Technology Very large mode slab-coupled optical waveguide laser and amplifier
US8571080B2 (en) 2009-12-02 2013-10-29 Massachusetts Institute Of Technology High efficiency slab-coupled optical waveguide laser and amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189686A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Laser device
US8451874B2 (en) 2009-12-02 2013-05-28 Massachusetts Institute Of Technology Very large mode slab-coupled optical waveguide laser and amplifier
US8571080B2 (en) 2009-12-02 2013-10-29 Massachusetts Institute Of Technology High efficiency slab-coupled optical waveguide laser and amplifier

Similar Documents

Publication Publication Date Title
CN105720479B (en) A kind of high speed semiconductor laser with beam-spreading structure
US4176325A (en) Semiconductor laser device
JPS59205787A (en) Single axial mode semiconductor laser
JPS6343908B2 (en)
US4644552A (en) Semiconductor laser
JPS59218786A (en) Single axial mode semiconductor laser
JPS63166281A (en) Distributed feedback semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS59165481A (en) Distributed feedback type semiconductor laser
JPH0223038B2 (en)
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH1084170A (en) Quantum well semiconductor laser element
JPS621277B2 (en)
JPS61220389A (en) Integrated type semiconductor laser
JP3049916B2 (en) Semiconductor laser
JPH0422033B2 (en)
JPS595689A (en) Distributed feedback type semiconductor laser
JP2723522B2 (en) Semiconductor laser
JPS6054796B2 (en) semiconductor laser
CA1166337A (en) High output power injection lasers
JPS5972787A (en) Semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JPS59184585A (en) Semiconductor laser of single axial mode
JPS625354B2 (en)
JPS59130493A (en) Buried structural distributed feedback type semiconductor laser