JPS625354B2 - - Google Patents

Info

Publication number
JPS625354B2
JPS625354B2 JP11647579A JP11647579A JPS625354B2 JP S625354 B2 JPS625354 B2 JP S625354B2 JP 11647579 A JP11647579 A JP 11647579A JP 11647579 A JP11647579 A JP 11647579A JP S625354 B2 JPS625354 B2 JP S625354B2
Authority
JP
Japan
Prior art keywords
layer
laser
width
active layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11647579A
Other languages
Japanese (ja)
Other versions
JPS5640293A (en
Inventor
Juichi Ide
Yoshinari Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11647579A priority Critical patent/JPS5640293A/en
Publication of JPS5640293A publication Critical patent/JPS5640293A/en
Publication of JPS625354B2 publication Critical patent/JPS625354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Description

【発明の詳細な説明】 本発明は、発振モードの制御に有効な構造を有
する半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser having a structure effective for controlling oscillation modes.

半導体レーザを光通信や光情報処理用の光源と
して使用するにはパルス又は直流電流で駆動した
場合に、その電流の大小によらずに安定な基本横
モード並びに、単一軸モード発振をすることが要
求される。基本横モードを安定化するには、活性
層に平行な方向、即ち横方向につくりつけの屈折
率差を設けることにより達成される。この種の半
導体レーザとして最も基本的なものに活性領域を
レーザ出射端面以外の全ての方向からより低屈折
率の半導体で包囲した構造の埋め込みヘテロレー
ザの試みがある。この構造は横モード安定化を確
実に行なえる一方でその製造方法は、一度結晶成
長を中断し、エツチングにより活性領域を形成
し、再び結晶成長によりこの活性領域を埋め込む
という複雑なものであり、特に2回の結晶成長が
必要なため、基体の熱劣化により結晶欠陥が導入
され、これらがキヤリアの非発光再結合中心とな
り発振値閾電流を増大させ、又、動作寿命を短く
するなどの問題がある。さらに埋め込みヘテロレ
ーザでは基本横モード発振を得るためには活性層
の幅を1μm程度に制御しなければならないう
え、光のスポツトサイズは小さくならざるを得
ず、光の出射端面での光エネルギー密度が大きく
なり、端面の光学損傷が著しく、高出力動作が難
しい。又、スポツトサイズが小さいためレーザ放
射角が大きくなつて、例えば光フアイバーとの結
合効率が低くなる問題がある。一方、以上の問題
点を解決し、1回の結晶成長で形成され、やはり
横方向に屈折率差をつくりつけた構造の半導体レ
ーザが提案されている。レーザ発振の微分量子効
率を下げることなく埋め込みヘテロレーザと同様
の安定な基本横モード発振を行なうこの種の半導
体レーザとして、幅が一定の溝を有する半導体基
体の上に結晶成長することにより、通常の電極ス
トライプ構造のダブルヘテロ接合半導体レーザに
おいて光を導波する領域として層厚が一様な活性
層と、この活性層に隣接して溝幅の中央部で層厚
が溝端部より厚くなるように活性層に平行な方
向、即ち、横方向に厚さが変化し、屈折率が活性
層より低く、禁制帯幅が大きい光ガイド層を設け
た構造の平凸導波路(Plano−Convex
Waveguide、PCW)レーザ(以下、PCWレーザ
と称す)が提案されている(第26回応用物理学関
係連合講演会、講演予稿集1979年((昭和54年))春
季170ページ、講演番号27a−W−6、特願54−
4961「半導体レーザ」参照)。PCWレーザでは、
光ガイド層の断面が平凸状となつているため横方
向にゆるい実効的な屈折率差△nがつくり付けら
れており、幅2〜3μmのスポツトサイズで安定
な基本横モードで発振する。従つて埋め込みヘテ
ロレーザより高出力まで、しかも小さな放射角で
動作する。しかしながら、このPCWレーザは、
以下の欠点を有している。即ち、直流電流動作時
にはほぼ単一な軸モードで発振するがパルス動作
時には少くとも2〜3本の軸モードに増えてしま
い、しかもそれらの各モードの強度が不安定であ
る。このような軸モードの不安定性は、何らかの
工夫をしない限り半導体レーザに共通の問題点で
ある。従来、軸モード安定化のために活性層の幅
を光の導波方向、即ち共振器長方向に沿つて変化
させた埋込みヘテロ構造の半導体レーザが提案さ
れている。(特開昭52−152182参照)。第1図はこ
の軸モード安定化を図つた半導体レーザの斜視図
を示し、第2図a,bは活性層の幅が異なつた2
つの部分の共振器長方向に垂直な断面図である。
GaAs活性層3は、幅が大きい部分と小さい部分
を有し、GaAs活性層3より屈折率の低いn型
Al0.3Ga0.7As層2及びp型Al0.3Ga0.7As層4によ
つて共振器端面以外の面を包囲されている。1は
n型GaAs基体、5はn型GaAs層で、GaAs活性
層3の直上に電流狭窄用のZnプレーナ拡散部6
が設けられている。この従来の半導体レーザで
は、光が活性層3に閉じ込められて導波されるの
で基本横モードで発振する。一方、導波される光
に対する周辺の実効的屈折率差△nは、活性層の
幅が大きい部分では小さく、逆に小さい部分では
大きくなつている。従つてこの構造は、異なるモ
ードを導波する光導波路が直列に結合した、等価
的には、レーザ共振器の中に別のレーザ共振器が
複合されたものとみなせる。このため光はある単
一の軸モードが選択されて発振する。しかしなが
らこの従来の軸モード選択性を有した埋め込みヘ
テロレーザには次のような欠点がある。即ち、軸
モード選択性は、横方向の実効屈折率の変化を大
きくすること、従つてGaAs活性層3の幅の変化
を大きくすることにより、又、このことによつて
のみ強められる。しかし、幅を導波光のモードの
大きさより大幅に大きくすると注入電流が無駄に
なるため発光効率が低くなり、発振閾値電流が高
くなつてしまう。
To use a semiconductor laser as a light source for optical communications and optical information processing, it is necessary to oscillate in a stable fundamental transverse mode and single-axis mode when driven with pulses or direct current, regardless of the magnitude of the current. required. Stabilization of the fundamental transverse mode is achieved by providing a built-in refractive index difference in the direction parallel to the active layer, ie in the transverse direction. The most basic type of semiconductor laser is a buried hetero laser in which the active region is surrounded by a semiconductor having a lower refractive index from all directions other than the laser emitting end face. While this structure can reliably stabilize the transverse mode, its manufacturing method is complicated, as it involves suspending crystal growth, forming an active region by etching, and then burying this active region by growing the crystal again. In particular, since crystal growth is required twice, crystal defects are introduced due to thermal deterioration of the substrate, and these become non-radiative recombination centers for carriers, increasing the oscillation value threshold current and shortening the operating life. There is. Furthermore, in a buried hetero laser, in order to obtain fundamental transverse mode oscillation, the width of the active layer must be controlled to about 1 μm, and the spot size of the light must be small, which reduces the optical energy density at the light output end face. It becomes large and optical damage on the end face is significant, making high output operation difficult. Furthermore, since the spot size is small, the laser radiation angle becomes large, resulting in a problem that the coupling efficiency with, for example, an optical fiber becomes low. On the other hand, a semiconductor laser has been proposed that solves the above problems and is formed by one-time crystal growth, and also has a structure in which a difference in refractive index is created in the lateral direction. This type of semiconductor laser performs stable fundamental transverse mode oscillation similar to that of a buried hetero laser without reducing the differential quantum efficiency of laser oscillation. In a double heterojunction semiconductor laser with an electrode stripe structure, there is an active layer with a uniform layer thickness as a region for guiding light, and a layer adjacent to this active layer that is thicker at the center of the groove width than at the edge of the groove. A plano-convex waveguide has a structure in which an optical guide layer whose thickness changes in the direction parallel to the active layer, that is, in the lateral direction, whose refractive index is lower than that of the active layer, and whose forbidden band width is large.
Waveguide (PCW) laser (hereinafter referred to as PCW laser) has been proposed (26th Applied Physics Association Conference, Lecture Proceedings 1979 ((1979)) Spring Page 170, Lecture number 27a- W-6, patent application 54-
(See 4961 “Semiconductor Laser”). With PCW laser,
Since the cross section of the light guide layer is plano-convex, a gentle effective refractive index difference Δn is created in the lateral direction, and the light guide layer oscillates in a stable fundamental transverse mode with a spot size of 2 to 3 μm in width. Therefore, it can operate up to a higher output than a buried hetero laser and at a smaller radiation angle. However, this PCW laser
It has the following drawbacks. That is, during direct current operation, the oscillation occurs in a substantially single axial mode, but during pulse operation, the oscillation increases to at least two to three axial modes, and the intensity of each of these modes is unstable. Such axial mode instability is a common problem in semiconductor lasers unless some kind of improvement is made. Hitherto, a buried heterostructure semiconductor laser has been proposed in which the width of the active layer is varied along the optical waveguide direction, that is, along the resonator length direction, in order to stabilize the axial mode. (Refer to Japanese Patent Application Laid-Open No. 52-152182). Figure 1 shows a perspective view of a semiconductor laser designed to stabilize this axial mode, and Figures 2a and b show two lasers with different widths of the active layer.
FIG. 3 is a cross-sectional view of two parts perpendicular to the resonator length direction.
The GaAs active layer 3 has a wide part and a small part, and is an n-type with a lower refractive index than the GaAs active layer 3.
The surfaces other than the resonator end surfaces are surrounded by the Al 0.3 Ga 0.7 As layer 2 and the p-type Al 0.3 Ga 0.7 As layer 4. 1 is an n-type GaAs substrate, 5 is an n-type GaAs layer, and a Zn planar diffusion part 6 for current confinement is provided directly above the GaAs active layer 3.
is provided. In this conventional semiconductor laser, light is confined in the active layer 3 and guided, so that it oscillates in the fundamental transverse mode. On the other hand, the effective refractive index difference Δn around the periphery for the guided light is small in the large width portion of the active layer, and on the contrary, large in the small width portion. Therefore, this structure can be regarded as a combination of optical waveguides guiding different modes in series, or equivalently, a laser resonator combined with another laser resonator. Therefore, a certain single axial mode of the light is selected and oscillated. However, this conventional buried hetero laser with axial mode selectivity has the following drawbacks. That is, the axial mode selectivity can be enhanced by, and only by, increasing the variation in the effective refractive index in the lateral direction and thus in the width of the GaAs active layer 3. However, if the width is significantly larger than the mode size of the guided light, the injected current will be wasted, resulting in lower luminous efficiency and higher oscillation threshold current.

本発明の目的は、形状の変化した溝を形成した
基体上にエピタキシヤル成長することで2回の結
晶成長を回避し、基本横モード発振を行ない、か
つ軸モード選択性を有する半導体レーザを提供す
ることである。
An object of the present invention is to provide a semiconductor laser that avoids two crystal growths by epitaxially growing on a substrate with grooves of changed shape, performs fundamental transverse mode oscillation, and has axial mode selectivity. It is to be.

本発明の半導体レーザの構造の骨子は次の通り
である。即ち、幅の変化した溝を有する半導体基
体上に形成したダブル・ヘテロ接合構造の半導体
レーザであつて、活性領域を形成する活性層単層
あるいは、活性層とこの活性層よりも屈折率が低
く禁制帯幅が大きい光ガイド層とから成る活性領
域を有し、この活性領域を形成する半導体層をこ
の半導体層の何れよりも屈折率の低い2つの光閉
じ込め層で挾み込んだ層構造にあつて溝の直上の
ストライプ状の領域において活性領域を形成する
半導体層のうちの少なくとも1層の形状が半導体
基体側に凸状にふくらんだものとなつており、こ
の凸状の部分の幅と厚みが溝の延びている方向、
に変化しており、さらにこの溝の延びている方向
に光を導波するようにした半導体レーザである。
The main structure of the semiconductor laser of the present invention is as follows. In other words, it is a semiconductor laser with a double heterojunction structure formed on a semiconductor substrate having grooves with varying widths, and has a single active layer forming an active region, or an active layer with a refractive index lower than that of the active layer. It has a layered structure in which the semiconductor layer forming the active region is sandwiched between two optical confinement layers having a lower refractive index than either of the semiconductor layers. At least one of the semiconductor layers forming the active region in the striped region directly above the groove is convexly bulged toward the semiconductor substrate, and the width of this convex portion is The thickness is in the direction in which the groove extends,
This is a semiconductor laser in which light is guided in the direction in which the groove extends.

本発明によれば、前述の溝の延びている方向に
垂直にフアブリ・ペロ共振器となる出射端面を形
成することにより、共振器長方向に活性領域の形
状、即ち厚みと幅が共に変化した半導体レーザが
得られる。
According to the present invention, the shape of the active region, that is, the thickness and width are both changed in the length direction of the resonator by forming the output end face that becomes the Fabry-Perot resonator perpendicular to the direction in which the groove extends. A semiconductor laser is obtained.

次に本発明の実施例について図面を参照して説
明する。まず前述のPCWレーザに軸モード選択
性を与えたところの本発明の一実施例に用いられ
る半導体基体を第3図に示し、第4図にその半導
体基体上に形成した半導体レーザの斜視図、第5
図にそのレーザ共振器長方向に平行な断面図を示
した。第6図1〜5は、その溝幅の大きい部分で
のレーザ共振器長方向に垂直な断面図、第6図6
〜10は、同じく溝幅の小さい部分の断面図によ
つて示した本発明の半導体レーザの主要な製造工
程を示す図である。この構造は、前述した従来の
PCWレーザにおいて光ガイド層の形状、即ち層
厚と凸部の幅が共振器長方向に変化したものに対
応している。以下に本発明の半導体レーザの構造
をその製造工程によつて説明する。まず、第6図
1,6に示すn型GaAs層7の{100}面に幅の変
化したストライプ状の窓を有するフオトレジスト
膜を形成し、これをマスクとして化学的エツチン
グにより幅が変化した溝を形成する。残りのフオ
トレジスト膜を除去し、良く洗浄して第3図に示
したような溝を形成した半導体基体を得る(第6
図2,7)。次に、液相エピタキシヤル成長によ
り順次、光及びキヤリア閉じ込め用のn型
Al0.3Ga0.7As光閉じ込め層8C第6図3,8)、
光ガイド及びキヤリア閉じ込め用のn型
Al0.1Ga0.9As光ガイド層9,9′(第6図4,
9)p型GaAs活性層10、p型Al0.3Ga0.7As光
閉じ込め層11、そしてp型GaAs接触容易化層
12を形成する(第6図5,10)。この際、溝
が狭い部分では成長速度が大きいのでこのような
部分でも第6図8のように、光閉じ込め層2の中
央部がくぼんでいる状態で成長を終えるように冷
却速度、成長時間を制御する。次にp型GaAs接
触容易化層12の表面に帯状の窓を有したSiO2
絶縁膜13を、窓がn型GaAs基体7の溝の直上
に位置するように形成し、次にp型電極14を付
着して溝に沿つたストライプ状電極を設ける。更
にn型GaAs基体7の裏面にn型電極15を付着
させ、ストライプ状のp型電極14のストライプ
方向に垂直に共振器反射面を形成し第4図に示し
た半導体レーザが得られる。本実施例によれば、
第5図及び第6図5,10に示されるように活性
領域を形成する活性層10と光ガイド層9,9′
のうち光ガイド層9,9′の形状がレーザ共振器
長方向に変化しており、従つて光の導波方向に実
効的な屈折率が変化した光導波路が半導体レーザ
の活性領域となつている。こうして製造された本
発明の半導体レーザでは活性領域の幅と厚みが光
の導波方向に変化している。活性領域の厚みは、
通常活性領域の横幅の数分の1程度と小さいので
光の導波モードの規定は厚み方向で極めて強い。
即ち、本発明では、厚みを変化させ、このより強
い導波機構を利用して軸モードに対する実効屈折
率変化を容易に得ることができる。このことはま
た光が導波されていく際の散乱損失を考えた場合
極めて有利である。即ち前述の従来の軸モード選
択性のある埋め込みヘテロレーザでは、幅の変化
したGaAs活性層3の側面での散乱損失が無視で
きないが、本発明の場合光の導波が強いのでこの
ような散乱損失は少なくなる。一方、本発明では
前述したPCWレーザと同様に活性層に平行な方
向に実効屈折率差△nがついているので横モード
も高出力まで基本モードで安定している。さら
に、本発明では活性領域の凸部の幅が大きい部分
では横方向の実効屈折率差△nが小さくなるので
こうした凸部の幅が大きい部分、即ち半導体基体
の溝の幅の大きい部分と、同じく小さい部分との
組合せを加減することで横方向の△nが加減さ
れ、軸モードだけでなく基本横モードの安定性を
も考慮した素子設計の自由度が増す利点がある。
さらにまた、本実施例においてレーザ出射端面付
近で溝幅が大となるように共振器端面を形成すれ
ばこの部分では光が活性層から光ガイド層にしみ
出して厚み方向に拡つて導波されるため整流接合
に垂直な方向のレーザ放射角が小さく、光フアイ
バーとの結合効率に優れた半導体レーザを得る。
Next, embodiments of the present invention will be described with reference to the drawings. First, FIG. 3 shows a semiconductor substrate used in an embodiment of the present invention in which axial mode selectivity is imparted to the aforementioned PCW laser, and FIG. 4 shows a perspective view of a semiconductor laser formed on the semiconductor substrate. Fifth
The figure shows a cross-sectional view parallel to the length direction of the laser resonator. Figures 6 1 to 5 are cross-sectional views perpendicular to the laser cavity length direction at a portion where the groove width is large;
10 to 10 are diagrams showing the main manufacturing steps of the semiconductor laser of the present invention, also shown by cross-sectional views of portions with small groove widths. This structure is similar to the conventional
This corresponds to a PCW laser in which the shape of the optical guide layer, that is, the layer thickness and the width of the convex portion, change in the cavity length direction. The structure of the semiconductor laser of the present invention will be explained below with reference to its manufacturing process. First, a photoresist film having striped windows with varying widths was formed on the {100} plane of the n-type GaAs layer 7 shown in FIGS. 1 and 6, and using this as a mask, the width was changed by chemical etching. Form a groove. The remaining photoresist film is removed and thoroughly cleaned to obtain a semiconductor substrate with grooves as shown in FIG.
Figures 2, 7). Next, by liquid phase epitaxial growth, n-type for light and carrier confinement is sequentially grown.
Al 0.3 Ga 0.7 As optical confinement layer 8C Fig. 6 3 , 8),
n-type for light guide and carrier confinement
Al 0 . 1 Ga 0 . 9 As optical guide layers 9, 9' (Fig. 6 4,
9) Form a p-type GaAs active layer 10, a p-type Al 0.3 Ga 0.7 As optical confinement layer 11 , and a p-type GaAs contact facilitation layer 12 (FIGS. 6, 5 and 10). At this time, since the growth rate is high in areas where the groove is narrow, the cooling rate and growth time are adjusted so that the growth ends with the central part of the optical confinement layer 2 concave, as shown in FIG. 6 and 8, even in such areas. Control. Next, SiO 2 with a band-shaped window is formed on the surface of the p-type GaAs contact facilitating layer 12.
An insulating film 13 is formed so that the window is located directly above the groove of the n-type GaAs substrate 7, and then a p-type electrode 14 is deposited to provide a striped electrode along the groove. Further, an n-type electrode 15 is attached to the back surface of the n-type GaAs substrate 7, and a resonator reflecting surface is formed perpendicular to the stripe direction of the striped p-type electrode 14, thereby obtaining the semiconductor laser shown in FIG. According to this embodiment,
As shown in FIGS. 5 and 6, an active layer 10 forming an active region and light guide layers 9, 9'
The shape of the optical guide layers 9 and 9' changes in the laser resonator length direction, and therefore the optical waveguide whose effective refractive index changes in the light waveguide direction becomes the active region of the semiconductor laser. There is. In the semiconductor laser of the present invention manufactured in this way, the width and thickness of the active region change in the light waveguide direction. The thickness of the active region is
Since it is usually small, about a fraction of the width of the active region, the regulation of the optical waveguide mode is extremely strong in the thickness direction.
That is, in the present invention, by changing the thickness and utilizing this stronger waveguide mechanism, it is possible to easily obtain an effective refractive index change for the axial mode. This is also extremely advantageous when considering scattering loss when light is guided. That is, in the conventional buried hetero laser with axial mode selectivity described above, scattering loss at the side surface of the GaAs active layer 3 whose width changes cannot be ignored, but in the case of the present invention, such scattering loss can be avoided due to the strong light waveguide. becomes less. On the other hand, in the present invention, the effective refractive index difference Δn is provided in the direction parallel to the active layer, similar to the above-mentioned PCW laser, so that the transverse mode is also stable in the fundamental mode up to high output. Furthermore, in the present invention, since the effective refractive index difference Δn in the lateral direction is small in the portions of the active region where the width of the convex portion is wide, the portions where the width of the convex portions is large, that is, the portions where the groove width of the semiconductor substrate is wide, Similarly, by adjusting the combination with the small portion, Δn in the lateral direction can be adjusted, which has the advantage of increasing the degree of freedom in element design that takes into account not only the stability of the axial mode but also the fundamental transverse mode.
Furthermore, in this embodiment, if the resonator end face is formed so that the groove width is large near the laser emitting end face, light will seep out from the active layer into the optical guide layer in this part, spread in the thickness direction, and be guided. Therefore, a semiconductor laser with a small laser radiation angle in the direction perpendicular to the rectifying junction and excellent coupling efficiency with an optical fiber is obtained.

以上、述べてきたように、本発明によれば安定
な基本横モードで発振し、軸モード選択性を有
し、基体の熱劣化のない1回の結晶成長工程によ
り容易に製造できる半導体レーザが得られる。
As described above, the present invention provides a semiconductor laser that oscillates in a stable fundamental transverse mode, has axial mode selectivity, and can be easily manufactured in a single crystal growth process without thermal deterioration of the substrate. can get.

前述した実施例は、活性領域として活性層10
と光ガイド層9,9′を有した、いわばPCWレー
ザにおいて溝幅が変化したものであつたが、活性
領域としては、活性層のみで光ガイド層のない構
造であつても同じ効果と機能を有する。この場合
は、GaAs活性層が第4図における光ガイド層
9,9′のような形状となるため横方向の屈折率
差が前述のPCWレーザより大きくなりより小さ
いスポツトサイズとなり、又、より強い軸モード
選択性を得る。また、これら2つの実施例では、
活性領域の凸部が厚い部分では幅も大きかつた
が、幅が小さい部分で厚くても本発明の効果、機
能を有する。
The embodiments described above use the active layer 10 as the active region.
This is a so-called PCW laser with a different groove width, which has optical guide layers 9 and 9', but the same effect and function can be achieved even if the active region has only an active layer and no optical guide layer. has. In this case, the GaAs active layer has a shape similar to that of the optical guide layers 9 and 9' in Figure 4, so the lateral refractive index difference is larger than that of the PCW laser described above, resulting in a smaller spot size and a stronger laser beam. Obtain axis mode selectivity. Also, in these two examples,
Although the width was large in the thick part of the active region, the effect and function of the present invention can be achieved even if the convex part is thick in the small width part.

以上の実施例では、GaAs基体上に形成した場
合について述べたが、IoPを基体として光ガイ
ド層及び活性層にIoxGa1-xAsyP1-y等の4元系結
晶であつても良いことは言うまでもない。この場
合には、IoP基体の方が活性層、あるいは光ガ
イド層を形成するIoGaAsPより屈折率が小さ
く、禁制帯幅も大きいので、溝を形成したIo
基体そのものが光閉じ込め層となる。従つてIo
P基体上に幅と深さを変化させた溝を形成し、活
性領域を形成する半導体層としてInGaAsPを用
いれば本発明の機能、効果を有する。しかし、幅
のみ変化した溝を設けたInP基体を用いた場合で
もInPかInGaAsPの光閉じ込め層を形成してから
光ガイド層としてInGaAsP層を形成すればやは
り本発明の機能、効果を有することは言うまでも
ない。
In the above embodiment, the case was described where it was formed on a GaAs substrate, but the optical guide layer and the active layer were formed using I o P as the substrate, and a quaternary crystal such as I ox Ga 1-x As y P 1-y was used. Needless to say, it's good to have it. In this case, since the I o P substrate has a smaller refractive index and a larger forbidden band width than the I o GaAsP that forms the active layer or optical guide layer, the I o P substrate with the groove formed
The substrate itself becomes an optical confinement layer. Therefore I o
The functions and effects of the present invention can be obtained by forming grooves with varying widths and depths on a P substrate and using InGaAsP as a semiconductor layer for forming an active region. However, even if an InP substrate with grooves of varying width is used, the functions and effects of the present invention can still be achieved by forming an InP or InGaAsP optical confinement layer and then forming an InGaAsP layer as a light guide layer. Needless to say.

尚、実施例では、直線上に伸びた溝を用いてい
るが溝幅が変化していればわん曲した溝であつて
も良いことは言うまでもない。
In the embodiment, straight grooves are used, but it goes without saying that curved grooves may be used as long as the width of the grooves is varied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の半導体レーザの斜視図、第2
図a,bは、従来の半導体レーザの断面図、第3
図は本発明の半導体レーザの半導体基体の斜視
図、第4図は、本発明の半導体レーザの斜視図、
第5図は、本発明の半導体レーザのレーザ共振器
長方向に平行な方向の主要断面図、第6図は、本
発明の半導体レーザの主要な製造工程を示す図で
ある。 各符号はそれぞれ、1……n型GaAs基体、2
……n型Al0.3Ga0.7As層、3……GaAs活性層、
4……p型Al0.3Ga0.7As層、5……n型GaAs
層、6……Znプレーナ拡散部、7……半導体基
体、8,11……光閉じ込め層、9,9′……光
ガイド層、10……活性層、12……接触容易化
層、13……SiO2絶縁膜、14……p型電極、
15……n型電極に対応する。
Figure 1 is a perspective view of a conventional semiconductor laser; Figure 2 is a perspective view of a conventional semiconductor laser;
Figures a and b are cross-sectional views of a conventional semiconductor laser;
The figure is a perspective view of a semiconductor substrate of a semiconductor laser of the present invention, FIG. 4 is a perspective view of a semiconductor laser of the present invention,
FIG. 5 is a main cross-sectional view in a direction parallel to the laser resonator length direction of the semiconductor laser of the present invention, and FIG. 6 is a diagram showing the main manufacturing steps of the semiconductor laser of the present invention. Each code indicates 1... n-type GaAs substrate, 2
...n-type Al0.3Ga0.7As layer, 3... GaAs active layer ,
4...p - type Al0.3Ga0.7As layer, 5... n - type GaAs
Layer, 6... Zn planar diffusion part, 7... Semiconductor substrate, 8, 11... Light confinement layer, 9, 9'... Light guide layer, 10... Active layer, 12... Contact facilitation layer, 13 ...SiO 2 insulating film, 14...p-type electrode,
15...corresponds to an n-type electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 光の導波方向に沿つて幅が変化した溝を設け
た半導体基体上に、活性層単層から成る活性領域
あるいは活性層と当該活性層よりも屈折率が低
く、禁制帯幅の大きい光ガイド層とから成る活性
領域を当該活性領域を構成する半導体層の何れよ
りも屈折率が低い2つの光閉じ込め層で挾み込ん
だ層構造を形成し、前記活性層領域を構成する半
導体層のうち少なくとも1層は前記溝の直上部の
ストライプ状領域部において前記半導体基体側に
凸なる形状を有し、当該凸部は前記溝の中央部に
該当する部分で厚さが最も厚く溝端部程厚さが薄
く、かつ導波方向においては幅及び厚みが変化し
ていることを特徴とする半導体レーザ。
1. An active region consisting of a single active layer or an active layer and a light beam having a lower refractive index and a larger forbidden band width than the active layer are formed on a semiconductor substrate in which a groove whose width changes along the light waveguide direction is provided. A layer structure is formed in which an active region consisting of a guide layer is sandwiched between two optical confinement layers having a lower refractive index than any of the semiconductor layers constituting the active region, and At least one of the layers has a shape that is convex toward the semiconductor substrate side in a striped region directly above the groove, and the convex portion is thickest in the central portion of the groove, and is thickest near the edge of the groove. A semiconductor laser characterized by being thin and having a width and thickness that change in the waveguide direction.
JP11647579A 1979-09-11 1979-09-11 Semiconductor laser Granted JPS5640293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11647579A JPS5640293A (en) 1979-09-11 1979-09-11 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11647579A JPS5640293A (en) 1979-09-11 1979-09-11 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5640293A JPS5640293A (en) 1981-04-16
JPS625354B2 true JPS625354B2 (en) 1987-02-04

Family

ID=14688015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11647579A Granted JPS5640293A (en) 1979-09-11 1979-09-11 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5640293A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987888A (en) * 1982-11-10 1984-05-21 Sharp Corp Semiconductor laser element
JPS61135184A (en) * 1984-12-05 1986-06-23 Sharp Corp Semiconductor laser device

Also Published As

Publication number Publication date
JPS5640293A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US4803691A (en) Lateral superradiance suppressing diode laser bar
JPS6343908B2 (en)
JPH0461514B2 (en)
JPH05129720A (en) Semiconductor laser device
JPH0248151B2 (en)
JPS625354B2 (en)
JPH07283490A (en) Optical semiconductor device
US4631729A (en) Semiconductor laser structure
US4633477A (en) Semiconductor laser with blocking layer
EP0298778B1 (en) Semiconductor laser devices and methods of making same
JPH0671121B2 (en) Semiconductor laser device
JPS58225681A (en) Semiconductor laser element
JPH0268975A (en) Semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPS59218786A (en) Single axial mode semiconductor laser
JPS6234473Y2 (en)
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPS6136719B2 (en)
JPH0233988A (en) Semiconductor laser
JPH0569318B2 (en)
JPH01183184A (en) Semiconductor laser and manufacture thereof
JPS61137386A (en) Double hetero-structure semiconductor laser
JPH04370993A (en) Semiconductor laser device
Hunsperger et al. Distributed-Feedback Lasers
JPH0260184A (en) Semiconductor laser