JPH0260184A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0260184A
JPH0260184A JP21188788A JP21188788A JPH0260184A JP H0260184 A JPH0260184 A JP H0260184A JP 21188788 A JP21188788 A JP 21188788A JP 21188788 A JP21188788 A JP 21188788A JP H0260184 A JPH0260184 A JP H0260184A
Authority
JP
Japan
Prior art keywords
layer
window region
window
region
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21188788A
Other languages
Japanese (ja)
Inventor
Shoji Hirata
照二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21188788A priority Critical patent/JPH0260184A/en
Publication of JPH0260184A publication Critical patent/JPH0260184A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Abstract

PURPOSE:To improve an element in characteristic and reliability by a method wherein a window region of a rib waveguide type is formed of the same crystal structure as a clad layer, and the length of the window region is set to a certain value which makes an effective end face reflectivity larger than a specified percentage. CONSTITUTION:A refractive index optical waveguide mechanism of a rib structure 10 is formed on a central region of the surface of a guide layer 5, and a window region 11, formed of the same crystal structure as a clad layer 12, is formed as being in contact with both the ends of an active layer 4 and guide layers 3 and 5. And, the length l is set to a certain value which makes an effective end face reflectivity equal to 1% or more. As mentioned above, the window region is formed of the same crystal structure as the clad layer 13, so that a semiconductor laser of this design can be manufactured through the crystal growth in twice, and the length of the window region 11 is restricted to a small value which makes the end face reflectivity equal to 1% or more, whereby the end face reflectivity is made not to decrease much and consequently a single mode oscillation can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor lasers.

〔発明の概要〕[Summary of the invention]

本発明は、リブ導波路型の半導体レーザであって、活性
層及びガイド層の両端に接してクラッド層と同じ結晶構
造からなる窓領域を形成し、この窓領域長を、実効的な
端面反射効率が1%以上となる長さに選定することによ
って、高光出力化を可能し、素子特性、信頼性を向上し
、且つ製造を容易にした半導体レーザを提供できるよう
にしたものである。
The present invention is a rib waveguide type semiconductor laser, in which a window region having the same crystal structure as the cladding layer is formed in contact with both ends of an active layer and a guide layer, and the length of this window region is determined by the effective end face reflection. By selecting a length with an efficiency of 1% or more, it is possible to provide a semiconductor laser that can achieve high optical output, improve device characteristics and reliability, and is easy to manufacture.

〔従来の技術〕[Conventional technology]

半導体レーザにおいて、活性層の発光領域の両端に、発
光領域より実効的にバンドギャップの大きい領域即ちレ
ーザ発振光に対して透明な窓領域を形成した半導体レー
ザが知られている。
2. Description of the Related Art Semiconductor lasers are known in which a region having an effective band gap larger than the light emitting region, that is, a window region transparent to laser oscillation light, is formed at both ends of a light emitting region of an active layer.

このような窓構造を有する半導体レーザにおいては、端
面での光学損傷(Catastrophic Opti
calDama、ge (COD) )レベル即ち光学
損傷の発生する臨界光出力を上昇させ、高光出力化が可
能であること、実効的な低反射率が得られること、ファ
ー・フィールド・パターン(遠視野像)におけるθN/
θ□比を1.0へ接近させること、高い信頼性が得られ
ること、等の効果が期待できる。窓構造は、これまで特
に分布帰還型半導体レーザ(以下DFBし−ザという)
にふいて、埋込みへテロ構造を用い実行されてきた例が
多い。その理由としては、(i)DFBレーデは、本質
的に端面反射が不必要であり、端面反射率が下がっても
閾値電流の上昇が少ない、 (ii)DFBレーザは端面反射を無くし、回折格子の
位相シフト技術などを用いた方が単一モード発振が得ら
れやすい、 (iii )端面無反射コート技術は条件制御が厳しく
、容易でない、 等が主であり、窓構造により無反射を実現する事が重要
であった。
In a semiconductor laser having such a window structure, optical damage (catastrophic optical damage) at the end facets occurs.
calDama, ge (COD)) level, that is, the critical optical output at which optical damage occurs, it is possible to increase the optical output, obtain an effective low reflectance, and improve the far field pattern (far field pattern). ) at θN/
Effects such as bringing the θ□ ratio closer to 1.0 and obtaining high reliability can be expected. Until now, window structures have been particularly used in distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers).
However, many examples have been implemented using embedded heterostructures. The reasons for this are: (i) DFB lasers essentially do not require end face reflections, so even if the end face reflectance decreases, the threshold current increases little; (ii) DFB lasers eliminate end face reflections and use diffraction gratings. (iii) It is easier to obtain single mode oscillation using phase shift technology, etc. (iii) Edge anti-reflection coating technology requires strict control of conditions and is not easy. things were important.

なお、本出願人は、先に特願昭61−177372号(
特開昭63−33891 号) において、一対のクラ
ッド層に挟まれた活性層と、回折格子を有するDFBレ
ーザにおいて、回折格子をストライプ状に形成し、この
ストライプ状回折格子の両側に平坦領域を介してストラ
イプ状回折格子と同一の回折格子構造のダミー領域を形
成してなるDFBレーザを提案している。このDFBレ
ーザでは狭幅ストライブ状の回折格子を再現性よく形成
できる。又、ストライプ状回折格子の両側のガイド層表
面が平坦面であるため、回折格子を形成した後、その上
に各結晶層を成長したとき、結晶層の結晶性が良好とな
り、半導体レーザの寿命及び動作の安定性が向上するも
のである。
The present applicant previously filed Japanese Patent Application No. 177372/1983 (
In JP-A No. 63-33891), in a DFB laser that has an active layer sandwiched between a pair of cladding layers and a diffraction grating, the diffraction grating is formed in a stripe shape, and flat regions are provided on both sides of the stripe-shaped diffraction grating. A DFB laser is proposed in which a dummy region having the same diffraction grating structure as the striped diffraction grating is formed through the stripe-shaped diffraction grating. With this DFB laser, a narrow striped diffraction grating can be formed with good reproducibility. In addition, since the surfaces of the guide layers on both sides of the striped diffraction grating are flat, when each crystal layer is grown on top of the diffraction grating after forming the grating, the crystallinity of the crystal layer is good and the life of the semiconductor laser is improved. and the stability of operation is improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、DFBレーザにおいて、上述の効果を期待し
ての窓構造の利用には、素子特性上いくつかの問題点が
あった。それは、(i)TEモードとTMモードの選択
性が失われ、2モ一ド発振しやすいこと、(ii >外
部微分量子効率が低下しやすく駆動電流値の上昇を招く
こと等であった。
By the way, in the DFB laser, the use of a window structure with the expectation of the above-mentioned effects has some problems in terms of device characteristics. These are (i) selectivity between TE mode and TM mode is lost and bimodal oscillation is likely to occur, and (ii) external differential quantum efficiency is likely to decrease, resulting in an increase in drive current value.

又、これまでの利用構造、特に埋込みへテロ構造におい
ては、製造上の問題点も多かった。即ち、DFBレーザ
の場合は、回折格子の形成後の結晶成長、窓領域の形成
後の結晶成長、埋込みへテロ構造のためのエツチング後
の結晶成長が必要であるため、最低でも2回、通常の場
合3回以上の結晶成長が必要となっていた。また結晶成
長を2回で行う場合、エツチング後に形成される埋込み
領域(電流狭窄のためpn接合を有している)と同様の
構造を窓領域に採用する為、出力光は窓領域に存在する
pn接合部で屈折、牧乱ささる可能性が大であった。
Furthermore, the structures used so far, especially the embedded heterostructures, have had many manufacturing problems. That is, in the case of a DFB laser, crystal growth is required after forming the diffraction grating, crystal growth after forming the window region, and crystal growth after etching for the buried heterostructure, so it is usually performed at least twice. In this case, three or more crystal growths were required. In addition, when crystal growth is performed in two steps, the window region has the same structure as the buried region (which has a pn junction for current confinement) formed after etching, so the output light is present in the window region. There was a high possibility that refraction and distortion would occur at the pn junction.

又、DFBレーザだけでなく端面反射率を利用する所謂
ファブリ−・ペロー型の半導体レーザに窓構造を適用す
る場合、窓領域長を短くしないと閾値電流の大幅な上昇
を招くこと、液晶成長法などにより成長表面が平になる
ブレーナ構造となってしまうため、目印がなくなり、微
少加工が困難となる等の欠点があった。
Furthermore, when applying a window structure not only to DFB lasers but also to so-called Fabry-Perot semiconductor lasers that utilize end face reflectance, the threshold current will significantly increase unless the window region length is shortened. As a result, the growth surface becomes a flattened Blenner structure, which has disadvantages such as lack of marks and difficulty in microfabrication.

本発明は、上述の点に鑑み、素子特性、信頼性を向上し
、且つ製造を容易にした窓構造の半導体レーザを提供す
るものである。
In view of the above-mentioned points, the present invention provides a semiconductor laser with a window structure that has improved device characteristics and reliability and is easy to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、クラッド層と活性層とガイド層を有する半導
体レーザにおいて、ガイド層の中央領域がストライプ状
に厚く形成されたリブ構造の光導波機構を有し、活性層
(4)及びガイド層の両端に接して一方のクラッド層と
同じ結晶構造からなりレーデ発振光に対して透明な窓領
域を形成し、この窓領域長lを、窓領域端面での実効的
な端面反射率が1%以上なる長さに選定して構成する。
The present invention provides a semiconductor laser having a cladding layer, an active layer, and a guide layer, which has an optical waveguide mechanism having a rib structure in which the center region of the guide layer is thickly formed in a stripe shape. A window region that is in contact with both ends and has the same crystal structure as one of the cladding layers and is transparent to Raded oscillation light is formed, and the length l of this window region is such that the effective end face reflectance at the end face of the window region is 1% or more. Select and configure the length.

本発明の半導体レーザは、DFBレーザ及びファブリ・
ペロー型の半導体レーザに適用できる。
The semiconductor laser of the present invention includes a DFB laser and a Fabry laser.
Applicable to Perot type semiconductor lasers.

〔作用〕[Effect]

本発明の半導体レーデは、高出力化、高信頼等の窓構造
による効果が得られると同時に、リブ導波路型に構成さ
れで、窓領域がクラッド層と同じ結晶構造で形成される
ので、2回の結晶成長で製造、でき、信頼性、素子特性
が向上する。特に従来の2回成長による場合に比べて窓
領域にはpn接合部が存在しないので窓領域での出力光
の屈折、散乱が全く生じない。
The semiconductor radar of the present invention achieves effects such as high output and high reliability due to the window structure, and at the same time, it is configured in a rib waveguide type, and the window region is formed with the same crystal structure as the cladding layer. It can be manufactured with multiple crystal growth steps, improving reliability and device characteristics. In particular, compared to the conventional double-growth method, since no pn junction exists in the window region, no refraction or scattering of output light occurs in the window region.

窓領域長lは端面反射率が1%以上となる短い長さに制
限されている。従って、DFBレーデに適用した場合に
は、端面反射率が大きく低下しないので、閾値電流が下
がり、またTEモード及び7Mモードの選択が可能とな
り単一モード発振が得られる。また窓領域だけで端面反
射率を制御し、低下させた場合には外部微分量子効率が
低下するが、本構成では窓領域のみで端面反射率をおと
してしまわないため、端面コーティングなどにより端面
反射率を制御することができ、端面反射率の制御が容易
となり且つ外部微分量子効率の低下が防止される。
The window region length l is limited to a short length such that the end face reflectance is 1% or more. Therefore, when applied to a DFB radar, the end face reflectance does not decrease significantly, the threshold current decreases, and the TE mode and 7M mode can be selected, resulting in single mode oscillation. In addition, if the end face reflectance is controlled and reduced only by the window region, the external differential quantum efficiency will decrease, but in this configuration, the end face reflectance is not reduced only by the window region, so the end face reflection is The end face reflectance can be easily controlled, and a decrease in external differential quantum efficiency can be prevented.

一方、ファブリ・ペロー型半導体レーザに適用した場合
も端面反射率が大きく低下しないので、レーザ発振する
On the other hand, when applied to a Fabry-Perot type semiconductor laser, the end face reflectance does not decrease significantly, so the laser oscillates.

〔実施例〕〔Example〕

以下、図面を参照して本発明による半導体レーザの実施
例をその製法と共に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a semiconductor laser according to the present invention will be described with reference to the drawings, together with a manufacturing method thereof.

第1図はAji’GaAs系のDFBレーザに適用した
場合である。本例においては、第1図AI、A2及びA
3 に示すようにn(又はp)形GaAs基板(1)上
にn(又はp)形Aj2GaAsによるクラッド層(2
)、n(又はp)形Aj!GaAsによるガイド層(3
)、GaAsの活性層(4)及びp(又はn)形Aj!
GaAsによるガイド層(5)を例えばMOCVD(宥
機金属気相成長) 法、MBE (分子線エピタキシー
)法或はLPE (液相成長)法等により順次エピタキ
シャル成長し、ガイド層(5)の表面の中央領域に狭幅
WI で所定ピッチを有するストライプ状の回折格子(
6)と、その両側に平坦領域(7)を介して回折格子(
6)に同一の回折格子(8)を有するダミー領域(9)
を形成する。
FIG. 1 shows a case where the present invention is applied to an Aji'GaAs-based DFB laser. In this example, FIG. 1 AI, A2 and A
3, a cladding layer (2) of n (or p) type Aj2GaAs is formed on an n (or p) type GaAs substrate (1).
), n (or p) form Aj! Guide layer made of GaAs (3
), GaAs active layer (4) and p (or n) type Aj!
A guide layer (5) made of GaAs is sequentially epitaxially grown by, for example, MOCVD (metallic chemical vapor deposition), MBE (molecular beam epitaxy), or LPE (liquid phase epitaxy), so that the surface of the guide layer (5) is A striped diffraction grating (
6) and a diffraction grating (
Dummy region (9) with the same diffraction grating (8) as in 6)
form.

ガイド層(5〕の実効的な厚さは、回折格子(6)が形
成さ゛れた中央ストライプ部で厚く、その両側の平坦領
域(7)で小とする。ここにおいて、リブ構造の光導波
機構が構成される。なお、回折格子(8)が形成された
ダミー領域(9)は中央ストライプ部と同様に厚く形成
される。
The effective thickness of the guide layer (5) is thick at the central stripe portion where the diffraction grating (6) is formed, and is smaller at the flat regions (7) on both sides. Note that the dummy region (9) in which the diffraction grating (8) is formed is formed thickly like the central stripe portion.

この回折格子(6)が形成された中央ストライプ部、平
坦領域(7)及びダミー領域(9)は次のように形成さ
れる。
The central stripe portion in which the diffraction grating (6) is formed, the flat region (7), and the dummy region (9) are formed as follows.

ガイド層(5)上にポジ型のホトレジスト層を塗布した
後、平坦領域に対応する部分を選択的に露光しく第1の
露光)、次にホログラフィック露光法、例えば^r゛ 
レーザ351. lnm ラ、インを用いて2光線干渉
法により回折格子の潜像を露光する(第2の露光)。第
1の露光工程と第2の露光工程とは順序を入れ替えても
よい。次に、現像してレジストマスクを形成した後、ガ
イド層(5)を選択エツチングする。現像条件、エツチ
ング条件は全面に回折格子を形成する場合と全く同条件
でよい。この選択エツチングにより、狭幅のストライプ
状のリブ構造(10)が形成されると同時に、そのリブ
表面に光の進行方向に沿って周期的な凹凸即ち回折格子
(6)が形成され、このストライプ状回折格子ω)の両
側に平面状に且つ活性層(4)に至らない厚さまでエツ
チングされて平坦領域(7)として形成され、さらに平
坦領域(7)の外側に比較的広い面積に回折格子(8)
をもつダミー領域(9)が形成される。このようにして
リブ構造(lO)による屈折率光導波機構が形成される
。リブ導波路の幅Wl  は例えば2〜5μm程度、平
坦領域(7)の幅W2 は10μm程度、ダミー領域(
9)の幅W3 は270μm程度とすることができる。
After applying a positive photoresist layer on the guide layer (5), parts corresponding to the flat areas are selectively exposed (first exposure), and then a holographic exposure method, e.g.
Laser 351. The latent image of the diffraction grating is exposed by two-beam interferometry using lnm laser beams (second exposure). The order of the first exposure step and the second exposure step may be reversed. Next, after developing to form a resist mask, the guide layer (5) is selectively etched. The development conditions and etching conditions may be exactly the same as those for forming a diffraction grating on the entire surface. By this selective etching, a narrow stripe-like rib structure (10) is formed, and at the same time, periodic unevenness, that is, a diffraction grating (6), is formed on the surface of the rib along the direction of propagation of light. A flat region (7) is formed on both sides of the diffraction grating ω), which is etched to a thickness that does not reach the active layer (4), and a diffraction grating is formed in a relatively wide area outside the flat region (7). (8)
A dummy region (9) is formed. In this way, a refractive index optical waveguide mechanism using the rib structure (lO) is formed. The width Wl of the rib waveguide is, for example, about 2 to 5 μm, the width W2 of the flat region (7) is about 10 μm, and the dummy region (
The width W3 of 9) can be about 270 μm.

次に、第1図已に示すようにリブ導波路を形成した後、
ガイド層(5)、活性層(4)及びガイド層(3)に対
してその窓領域となるべき領域を幅2j2をもって選択
的にエツチング除去する。エツチングの方向はリブ導波
路の長手方向にほぼ垂直で、結晶臂開方向にできるだけ
平行とする。このとき、ガイド層(5)、活性層(4)
及びガイド層(3)の合計の厚みdは0.3μm程度で
あるのでエツチング溝(11)の形成は容易である。
Next, after forming a rib waveguide as shown in Figure 1,
The guide layer (5), the active layer (4), and the guide layer (3) are selectively etched away in areas that are to become window areas with a width of 2j2. The etching direction is approximately perpendicular to the longitudinal direction of the rib waveguide and parallel to the crystal opening direction as much as possible. At this time, the guide layer (5), the active layer (4)
Since the total thickness d of the guide layer (3) and the guide layer (3) is about 0.3 μm, the etching groove (11) can be easily formed.

次に、第1図Cに示すようにガイド層(5)及びエツチ
ング溝(11)を含む全面に、2度目の結晶成長をMO
CVD法もしくはMBE法等法相気相成長う。
Next, as shown in FIG.
Methods such as CVD or MBE are used for vapor phase growth.

即ち、ガイド層(5) (3)及び活性層(4)に比し
てバイトギャップが大なるp(又はn)形のAlGaA
s層を気相成長し、エツチング溝(11)内に窓領域(
13)を形成すると同時に、之に連続してガイド層(5
)上にクラッド層(12)を気相成長し、さらにクラッ
ド層(12)上に之と同導電形のP(又はn)形のGa
Asよリするキャップ層(14)を気相成長する。ここ
で、窓領域(13)に対応する位置には表面に段差部(
15)がはっきり現われる。
That is, the p (or n) type AlGaA has a larger bite gap than the guide layer (5) (3) and the active layer (4).
The s-layer is grown in a vapor phase, and a window region (
At the same time as forming the guide layer (5), the guide layer (5) is formed continuously.
) on which a cladding layer (12) is grown in a vapor phase, and further on the cladding layer (12) is a P (or n) type Ga having the same conductivity type as the cladding layer (12).
A cap layer (14) containing As is grown in a vapor phase. Here, a step portion (
15) clearly appears.

次に、第1図り、及びD2 に示すように、窓領域(1
3)付近のキャップ層(14)を選択的にエツチング除
去する。即ちキャップ層(14)としてはリブ導波路上
即ちストライプ状回折格子(6)上に対応するようにス
トライブ状に形成する。なお、図示せざるも、キャップ
層(14)をバクーニングせずに、キャップ層(14)
、クラッド層(12)、窓領域(11)の−部にかけて
ストライプ状回折格子(6)に対応する中央部を除いた
領域にプロトン、ボロン等をイオン注入して電流狭窄用
のイオン打込み層を形成するようになすこともできる。
Next, as shown in the first diagram and D2, the window area (1
3) selectively etching away the nearby cap layer (14); That is, the cap layer (14) is formed in a stripe shape so as to correspond to the rib waveguide, that is, the striped diffraction grating (6). Note that although not shown in the drawings, the cap layer (14) is
, protons, boron, etc. are ion-implanted into the cladding layer (12), the negative part of the window region (11), excluding the central part corresponding to the striped diffraction grating (6), to form an ion-implanted layer for current confinement. It can also be made to form.

そして、基板(1)の裏面及びキャップ層(1)を含む
上面全面にオーミック電極(16)及び(17)を被着
形成する。次いで窓領域(11)に対応する表面に現わ
れた段差部(15)を目印として、之より襞間成は選択
エツチングにより分割し、レーザ光出力面(17)を形
成する。
Then, ohmic electrodes (16) and (17) are formed on the entire upper surface of the substrate (1) including the back surface and the cap layer (1). Next, using the stepped portion (15) appearing on the surface corresponding to the window region (11) as a mark, the inter-fold formation is divided by selective etching to form a laser beam output surface (17).

斯くして、第1図E、及びE2 に示すように目的とす
る窓構造を有するリブ導波路型のDFBレーザ(19)
を得る。このDFBレーザ(19)にふける窓領域(1
1)の長さβはレーザ光出力面(18)における実効的
な端面反射率が1%以上となる長さに制限されるもので
ある。実際には窓領域長lは、活性層(4)の屈折率、
厚み、ガイド層(3) (5)の屈折率、厚み、リブの
高さh等に応じて決まる。標準的にはlは数10μm以
下とすることができる。
In this way, a rib waveguide type DFB laser (19) having the desired window structure as shown in FIGS. 1E and E2 is obtained.
get. The window area (1) indulged in this DFB laser (19)
1) The length β is limited to a length at which the effective end face reflectance at the laser beam output surface (18) is 1% or more. Actually, the window region length l is the refractive index of the active layer (4),
It is determined depending on the thickness, the refractive index of the guide layer (3) (5), the thickness, the height h of the rib, etc. Typically, l can be several tens of micrometers or less.

かかる窓構造のDFBレー’j(18)によれば、結晶
成長として2回の結晶成長により形成されるので、素子
特性、信頼性が向上する。特に、光導波機構をリブ導波
路型とし、窓領域(11)としてはクラッド層(12)
と同時に形成しクラッド層(12)と同じ結晶構造を有
しているために、従来の2回結晶成長法による窓構造の
埋込みへテロDFBレーザに比べて窓領域(11)には
pn接合がなく、従って出力光の窓領域(11)での屈
折、散乱は生じない。
According to the DFB Ray'j (18) having such a window structure, the crystal growth is performed twice, so that the device characteristics and reliability are improved. In particular, the optical waveguide mechanism is a rib waveguide type, and the window region (11) is a cladding layer (12).
Since it is formed at the same time and has the same crystal structure as the cladding layer (12), there is no p-n junction in the window region (11) compared to a buried hetero DFB laser with a window structure formed by the conventional two-step crystal growth method. Therefore, no refraction or scattering of the output light occurs in the window region (11).

又、2回目の結晶成長は気相成長を用いるため、窓領域
(11)の位置を示す段差部(15)がエピタキシャル
成長後に、表面に現われ、以後の襞間、エツチングにお
いて目印となり、細かい窓領域長βの制御が簡単にでき
る。
In addition, since the second crystal growth uses vapor phase growth, a step portion (15) indicating the position of the window region (11) appears on the surface after epitaxial growth, and serves as a mark in the subsequent creases and etching. Long β can be easily controlled.

又、窓領域長lを端面反射率が1%以上となる長さに選
定し、端面反射率を窓領域(11)のみで低下させない
ために、端面コーティング等の手法で端面反射率の制御
を容易にすることができ、且つ外部微分量子効率の低下
も防ぐことができる。因みに、窓領域の端面反射率だけ
で制御して端面反射率を低下した場合には、外部微分量
子効率が低下する。
In addition, the length l of the window area is selected to be such that the end face reflectance is 1% or more, and in order to prevent the end face reflectance from being reduced only by the window area (11), the end face reflectance is controlled by methods such as end face coating. In addition, it is possible to prevent a decrease in external differential quantum efficiency. Incidentally, when the end face reflectance is reduced by controlling only the end face reflectance of the window region, the external differential quantum efficiency decreases.

また、窓領域の端面反射率が大きく低下しない為にDF
BレーデにおいてそのTEモード及び1Mモードの選択
が可能となり、単一モード発振が得られる。さらに全体
的に製造が容易になる。
In addition, since the end face reflectance of the window area does not decrease significantly, the DF
The TE mode and 1M mode can be selected in the B radar, and single mode oscillation can be obtained. Furthermore, the overall manufacturing ease is achieved.

そして、このDFBレーザ(19)においては高出力化
、実効的な低反射率、ファーフィールドパターンにおけ
るθN/θ□比の1.0への接近、高信頼性等の窓構造
による効果が得られる。
In this DFB laser (19), effects such as high output, effectively low reflectance, θN/θ□ ratio approaching 1.0 in the far field pattern, and high reliability can be obtained by the window structure. .

上側ではDFBレーザに適用したが、窓領域の端面反射
率が大きく低下しないので、端面反射を利用するリブ導
波路型のファプリーペロー半導体レーザ(例えば第1図
E1 及びE2 において回折格子を形成してない構造
等)にも適用できる。
In the upper case, it is applied to a DFB laser, but since the end face reflectance of the window region does not decrease significantly, a rib waveguide-type Fabry-Perot semiconductor laser that uses end face reflection (for example, a diffraction grating is formed in E1 and E2 in Fig. 1) is used. It can also be applied to structures that are not

又、材料としても、^i’ GaAs系に限らず、他の
系の材料も適用できる。
Furthermore, the material is not limited to ^i' GaAs, but other types of materials can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、窓構造を有するので高光出力化を可能
とし、信頼性のある半導体レーザが得られる。特に、リ
ブ導波路型として窓領域をクラッド層と同じ結晶構造で
形成し、窓領域長を短く形成するので、素子特性及び信
頼性が向上する。即ち、DFBレーザに適用した場合、
TEモード及び1Mモードの選択が可能となって単一モ
ード発振が得られる。外部微分量子効率が上がり、駆動
電流値を下げることができる。出力光の窓領域での屈折
、散乱も生じない。2回の結晶成長で形成できるので信
頼性が上がり、この半導体レーザを簡単に製作すること
ができる。
According to the present invention, since it has a window structure, it is possible to increase the optical output and obtain a reliable semiconductor laser. In particular, as a rib waveguide type, the window region is formed with the same crystal structure as the cladding layer, and the length of the window region is shortened, so that element characteristics and reliability are improved. That is, when applied to a DFB laser,
Single mode oscillation can be obtained by selecting between TE mode and 1M mode. The external differential quantum efficiency increases and the drive current value can be lowered. There is no refraction or scattering of the output light in the window area. Since it can be formed by two crystal growths, reliability is increased and this semiconductor laser can be manufactured easily.

又、ファプリーペロー半導体レーザにも適用可能となる
Further, it can be applied to a Fapley-Perot semiconductor laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザの一例を示す製造工
程図である。 (1)は基板、(2)(12>はクラッド層、(3) 
(5)はガイド層、(4)は活性層、(6)は回折格子
、(II)は窓領域、(14)はキャップ層である。 代 理 人 伊 藤 貞 同 松 隈 秀 盛
FIG. 1 is a manufacturing process diagram showing an example of a semiconductor laser according to the present invention. (1) is the substrate, (2) (12> is the cladding layer, (3)
(5) is a guide layer, (4) is an active layer, (6) is a diffraction grating, (II) is a window region, and (14) is a cap layer. Agent Sadado Ito Hidemori Matsukuma

Claims (1)

【特許請求の範囲】 クラッド層と活性層とガイド層を有する半導体レーザに
おいて、 上記ガイド層の中央領域がストライプ状に厚く形成され
たリブ構造の光導波機構を有し、上記活性層及びガイド
層の両端に接して上記クラッド層と同じ結晶構造からな
る窓領域が形成され、 該窓領域長は、実効的な端面反射率が1%以上となる長
さに設定されて成る半導体レーザ。
[Claims] A semiconductor laser having a cladding layer, an active layer, and a guide layer, wherein the central region of the guide layer has an optical waveguide mechanism with a rib structure formed thickly in a stripe shape, and the active layer and the guide layer Window regions having the same crystal structure as the cladding layer are formed in contact with both ends of the cladding layer, and the length of the window region is set to a length such that an effective end face reflectance is 1% or more.
JP21188788A 1988-08-26 1988-08-26 Semiconductor laser Pending JPH0260184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21188788A JPH0260184A (en) 1988-08-26 1988-08-26 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21188788A JPH0260184A (en) 1988-08-26 1988-08-26 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0260184A true JPH0260184A (en) 1990-02-28

Family

ID=16613279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21188788A Pending JPH0260184A (en) 1988-08-26 1988-08-26 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0260184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345460A (en) * 1991-09-06 1994-09-06 Sharp Kabushiki Kaisha Semiconductor laser device with window regions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345460A (en) * 1991-09-06 1994-09-06 Sharp Kabushiki Kaisha Semiconductor laser device with window regions

Similar Documents

Publication Publication Date Title
KR100341946B1 (en) Patterned mirror vertical surface emitting laser and its manufacturing method
US6291256B1 (en) Method of manufacturing non-regrowth distributed feedback ridge semiconductor
JP2746326B2 (en) Semiconductor optical device
JPH02205092A (en) Semiconductor device laser and its manufacture
US4589117A (en) Butt-jointed built-in semiconductor laser
JP2716693B2 (en) Semiconductor laser
JPH0461514B2 (en)
JP3264321B2 (en) Waveguide-type semiconductor optical integrated device and method of manufacturing the same
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPH0260184A (en) Semiconductor laser
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS63213383A (en) Semiconductor laser
JP3208860B2 (en) Semiconductor laser device
JPS59126693A (en) Distributed feedback type semiconductor laser and manufacture thereof
US4456998A (en) Semiconductor laser
JPH037153B2 (en)
JPS5992588A (en) Mono-axial mode semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JP4024319B2 (en) Semiconductor light emitting device
JPH0272689A (en) Semiconductor laser
JPS625354B2 (en)
JPS5864085A (en) Semiconductor laser and manufacture thereof
JP2687404B2 (en) Distributed feedback semiconductor laser
JPH11163465A (en) Optical semiconductor element and manufacture thereof
JPH04372185A (en) Semiconductor laser