JP2687404B2 - Distributed feedback semiconductor laser - Google Patents

Distributed feedback semiconductor laser

Info

Publication number
JP2687404B2
JP2687404B2 JP63072289A JP7228988A JP2687404B2 JP 2687404 B2 JP2687404 B2 JP 2687404B2 JP 63072289 A JP63072289 A JP 63072289A JP 7228988 A JP7228988 A JP 7228988A JP 2687404 B2 JP2687404 B2 JP 2687404B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
active layer
distributed feedback
guide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63072289A
Other languages
Japanese (ja)
Other versions
JPH01244688A (en
Inventor
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63072289A priority Critical patent/JP2687404B2/en
Publication of JPH01244688A publication Critical patent/JPH01244688A/en
Application granted granted Critical
Publication of JP2687404B2 publication Critical patent/JP2687404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回折格子を有する分布帰還形半導体レーザの
構造に関する。
The present invention relates to a structure of a distributed feedback semiconductor laser having a diffraction grating.

〔従来の技術〕[Conventional technology]

分布帰還形半導体レーザは安定な単一縦モード発振す
るために、注入電流や動作温度が変っても発振波長が変
動しないという優れた特性を有しており大容量長距離光
伝送システムの光源として注目を集めている。従来の技
術としては第2図に示すような分布帰還形半導体レーザ
が提案されている。この構造はIuGaAsP/InP結晶からな
り、InPからなる基板結晶1に凹凸の周期構造からなる
回折格子8を形成し、この上にInGaAsPの光ガイド層2,I
nGaAsP活性層4、InPクラッド層5、InGaAsPキャップ層
6が積層されている。したがって、凹凸の周期条件で決
る波長のみが増幅されて、レーザ発振となるために単一
発振スペクトルが得られる。
Since the distributed feedback semiconductor laser oscillates in a stable single longitudinal mode, it has the excellent characteristic that the oscillation wavelength does not fluctuate even if the injection current or operating temperature changes. It is getting attention. As a conventional technique, a distributed feedback semiconductor laser as shown in FIG. 2 has been proposed. This structure is made of an IuGaAsP / InP crystal, and a diffraction grating 8 having an uneven periodic structure is formed on a substrate crystal 1 made of InP, and an InGaAsP optical guide layer 2, I is formed on the diffraction grating 8.
An nGaAsP active layer 4, an InP clad layer 5, and an InGaAsP cap layer 6 are laminated. Therefore, only the wavelength determined by the periodic condition of the unevenness is amplified and laser oscillation occurs, so that a single oscillation spectrum is obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、この構造の分布帰還形半導体レーザは
回折格子からの反射を大きくするために、光ガイド層2
と活性層4との屈折率差を小さくするような組成の層構
造とする必要がある。その結果、回折格子との結合効率
は良くなるが新たな問題が発生する。
However, the distributed feedback type semiconductor laser of this structure is designed to increase the reflection from the diffraction grating, so that the optical guide layer 2
It is necessary to have a layer structure having a composition that reduces the difference in refractive index between the active layer 4 and the active layer 4. As a result, the coupling efficiency with the diffraction grating is improved, but a new problem occurs.

光ガイド層と活性層との屈折率差を小さくすることは
両者の禁制帯幅が近づいてくることにほかならない。活
性層内に注入されたキャリアをこの層内に閉じこめるに
は活性層を挟んでいる層間でそれ相当の禁制帯幅が必要
となる。故にこの方法によると、活性層内のキャリヤが
光ガイド層に簡単にもれだすおそれがある。特に高温動
作でこの現象が顕著となり、レーザのしきい値電流の温
度特性が悪くなる。
Reducing the difference in the refractive index between the optical guide layer and the active layer is nothing but the approach of the forbidden band width of both. In order to confine the carriers injected into the active layer in this layer, a corresponding forbidden band width is required between the layers sandwiching the active layer. Therefore, according to this method, carriers in the active layer may easily leak to the light guide layer. This phenomenon becomes remarkable especially at high temperature operation, and the temperature characteristics of the threshold current of the laser deteriorate.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は特性の良好なものを安定して製造でき
る分布帰還形半導体レーザを提供することにある。
An object of the present invention is to provide a distributed feedback semiconductor laser capable of stably manufacturing one having excellent characteristics.

本発明の分布帰還形半導体レーザは活性層より禁制帯
幅が大きいクラッド層で活性層を抜み、片方のクラッド
層に隣接して活性層より禁制帯幅の小さい光ガイド層を
設けた多層構造を、表面に回折格子を形成した半導体基
板上に積層されている構成となっている。
The distributed feedback semiconductor laser of the present invention has a multilayer structure in which the active layer is removed by a clad layer having a larger forbidden band width than the active layer, and an optical guide layer having a smaller forbidden band width than the active layer is provided adjacent to one clad layer. Is laminated on a semiconductor substrate having a diffraction grating formed on the surface thereof.

〔実施例1〕 次に本発明について図面を参照して説明する。第1図
は本発明の一実施例の分布帰還形半導体レーザの斜視図
である。この実施例はInGaAsPからなる活性層4より禁
制帯幅が大きい結晶層すなわちInPからなるクラッド層
3,5で活性層4を挟み、更にInGaAsPからなる光ガイド層
2がInPクラッド層側と設けてあり、回折格子を形成し
たInP基板結晶上に活性層を含む半導体多層膜結晶が積
層されているものである。次に、この実施例の製造方法
について説明する。先ず、n−InPからなる基板結晶1
表面上にホトレジスト膜を約500Å塗布する。この後、
波長3250ÅのHe−Cdレーザ光源による干渉回折露光装置
を用いて回折格子状にホトレジスト膜を露光し、周期約
2010Åの回折格子を形成する。次にこれをマスクとして
基板結晶1を化学エッチングして凹凸状の回折格子7を
形成する。ホトレジスト膜を除去した後に、このn−In
P基板1上に以下各層が液相エピタキシャル成長によっ
て連続して成長される。まず組成が1.4μmのn−InGaA
sP光ガイド層2を成長し、次いでn−InPクラッド層
3、1.3μmのInGaAsP活性層4、P−InPクラッド層
5、キャップ層の1.1μmP−InGaAsP6が成長されて終了
する。典型的な各層厚は光ガイド層2が0.08μm、n−
クラッド層3が0.05μm、活性層4が0.1μm、P−ク
ラッド層5が1.5μmキャップ層6が3μmである。最
後にP側電極8とn側電極9を各々形成して完了する。
Embodiment 1 Next, the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a distributed feedback semiconductor laser according to an embodiment of the present invention. In this embodiment, a crystal layer having a band gap larger than that of the active layer 4 made of InGaAsP, that is, a clad layer made of InP.
The active layer 4 is sandwiched between 3 and 5, and the optical guide layer 2 made of InGaAsP is provided on the InP clad layer side. The semiconductor multilayer film crystal including the active layer is laminated on the InP substrate crystal on which the diffraction grating is formed. There is something. Next, the manufacturing method of this embodiment will be described. First, a substrate crystal 1 made of n-InP
Apply about 500Å of photoresist film on the surface. After this,
The photoresist film is exposed in the shape of a diffraction grating using an interference diffraction exposure device using a He-Cd laser light source with a wavelength of 3250Å
Form a 2010 Å diffraction grating. Next, using this as a mask, the substrate crystal 1 is chemically etched to form an uneven diffraction grating 7. After removing the photoresist film, this n-In
The following layers are successively grown on the P substrate 1 by liquid phase epitaxial growth. First, n-InGaA with a composition of 1.4 μm
The sP light guide layer 2 is grown, and then the n-InP clad layer 3, the 1.3 μm InGaAsP active layer 4, the P-InP clad layer 5, and the cap layer 1.1 μm P-InGaAsP6 are grown and completed. The typical thickness of each layer is 0.08 μm for the light guide layer 2 and n-
The clad layer 3 is 0.05 μm, the active layer 4 is 0.1 μm, the P-clad layer 5 is 1.5 μm, and the cap layer 6 is 3 μm. Finally, the P-side electrode 8 and the n-side electrode 9 are respectively formed and completed.

〔実施例2〕 前述の実施例では活性層の波長が1.3μmの場合につ
いて説明したが、1.2μmと波長が短くなった場合でも
本発明を適用しうる。実施例2として、発振波長1.2μ
mの場合を説明する。この実施例では活性層組成を1.2
μm、光ガイド層組成を1.3μm、回折格子の周期を約1
850Åにするのみで他はたとえば各層厚、クラッド層と
してのInP等は変更する必要はない。したがって構造は
実施例1と同様である。
Example 2 In the above example, the case where the wavelength of the active layer is 1.3 μm has been described, but the present invention can be applied even when the wavelength is shortened to 1.2 μm. Example 2 has an oscillation wavelength of 1.2μ.
The case of m will be described. In this example, the active layer composition is 1.2
μm, light guide layer composition 1.3 μm, diffraction grating period about 1
It is only 850 Å, and other than that, for example, it is not necessary to change each layer thickness, InP as a clad layer, and the like. Therefore, the structure is similar to that of the first embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の構造によれば、活性層と
クラッド層間に十分に大きな禁制帯幅の差が形成されて
いるため、活性層に注入されたキャリヤの拡散を防ぎ、
キャリヤの閉じ込めがなされる。高温動作においてもこ
の効果はそこなわない。一方レーザ光はクラッド層が薄
いため、この層を介して光ガイド層にしみ出る。光ガイ
ド層に回折格子を設けた事により十分な回折効率が得ら
れる。活性層と光ガイド層との間に薄いクラッド層を設
けた事により光ガイド層の組成は光ガイド層側へのキャ
リヤのもれ現象を考慮せずに屈折率のみをパラメーター
とする設計が可能となる。
As described above, according to the structure of the present invention, a sufficiently large forbidden band difference is formed between the active layer and the clad layer, so that diffusion of carriers injected into the active layer is prevented,
The carrier is confined. This effect is not impaired even at high temperature operation. On the other hand, since the clad layer is thin, the laser light seeps into the light guide layer through this layer. Sufficient diffraction efficiency can be obtained by providing the diffraction grating in the light guide layer. By providing a thin cladding layer between the active layer and the light guide layer, the composition of the light guide layer can be designed with only the refractive index as a parameter without considering the phenomenon of carrier leakage to the light guide layer side. Becomes

この事は、製法上次ぎのような利点をもたらす。光ガ
イド層の屈折率を活性層より大きくしたことで,InP基板
上の回折格子と、その上に成長された光ガイド層との間
に形成される屈折率差が従来構成の分布帰還型半導体レ
ーザのそれより大きくできる。すなわち、半導体レーザ
が必要とする回折効率を形成しようとするならば、本発
明は回折格子の凹凸の高さを低くすることが可能とな
る。その結果回折格子基板の製法が容易になる。
This brings about the following advantages in the manufacturing method. By making the refractive index of the optical guide layer larger than that of the active layer, the difference in refractive index formed between the diffraction grating on the InP substrate and the optical guide layer grown on the InP substrate causes the distributed feedback semiconductor of the conventional configuration. Can be larger than that of a laser. That is, in order to form the diffraction efficiency required by the semiconductor laser, the present invention can reduce the height of the unevenness of the diffraction grating. As a result, the manufacturing method of the diffraction grating substrate becomes easy.

さらに、本発明の半導体レーザは、戻り光に対して安
定な分布帰還型半導体レーザとなる。従来の分布帰還型
半導体レーザが戻り光に対して不安定であるのは、クラ
ッド層、活性層、光ガイド層で構成された導波路領域が
戻り光に対して透明体であるため、戻り光が導波路領域
の奥深くまで侵入し電磁界分布を擾乱させるためであ
る。本発明のように、光ガイド層の禁制帯幅が活性層の
禁制帯幅よりも大きく、光ガイド層が発振光に対して吸
収体としての作用を有する場合は、戻り光が半導体レー
ザに戻っても出射光端面近傍で吸収され導波路領域の奥
深く迄は侵入することはない。従って、電磁界分布の擾
乱も起こり難く、戻り光に対して強い(安定な)分布帰
還型半導体レーザが得られる。
Furthermore, the semiconductor laser of the present invention becomes a distributed feedback semiconductor laser that is stable with respect to return light. The conventional distributed feedback semiconductor laser is unstable with respect to the return light because the waveguide region composed of the cladding layer, the active layer and the optical guide layer is transparent to the return light. Is to penetrate deep into the waveguide region and disturb the electromagnetic field distribution. As in the present invention, when the forbidden band width of the light guide layer is larger than the forbidden band width of the active layer and the light guide layer has an action as an absorber for oscillated light, the return light returns to the semiconductor laser However, it is absorbed in the vicinity of the end face of the emitted light and does not penetrate deep into the waveguide region. Therefore, the disturbance of the electromagnetic field distribution is unlikely to occur, and a distributed feedback semiconductor laser that is strong (stable) against return light can be obtained.

尚、実施例では第1図からもわかるように電極ストラ
イプ構成となっているが、横モード制御のためのストラ
イプ構造は、例えば埋め込みストライプ構造、プレーナ
ストライプ構造、オキサイドストライプ構造等どのよう
な構造でも本発明は適用できる。
Although the electrode stripe structure is used in the embodiment as can be seen from FIG. 1, the stripe structure for transverse mode control may be any structure such as a buried stripe structure, a planar stripe structure, or an oxide stripe structure. The present invention can be applied.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の半導体レーザの斜視図、第
2図は従来例の半導体レーザの斜視図である。 1……n−InPかなる基板結晶、2……n−InGaAsPから
なる光ガイド層、3……n−InPからなるクラッド層、
4……InGaAsPからなる活性層、5……P−InPからなる
クラッド層、6……P−InGaAsPからなるキャップ層、
7……回折格子、8……P側電極、9……n側電極。
FIG. 1 is a perspective view of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional semiconductor laser. 1 ... n-InP substrate crystal, 2 ... n-InGaAsP optical guide layer, 3 ... n-InP cladding layer,
4 ... Active layer made of InGaAsP, 5 ... Clad layer made of P-InP, 6 ... Cap layer made of P-InGaAsP,
7 ... Diffraction grating, 8 ... P-side electrode, 9 ... N-side electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に光ガイド層、光ガイド層よ
りも禁制帯幅が大きいクラッド層、クラッド層よりも禁
制帯幅が小さく光ガイド層よりも禁制帯幅が大きい活性
層、活性層よりも禁制帯幅が大きいクラッド層を順次積
層した多層構造を備え、前記半導体基板と前記光ガイド
層との境界に回折格子を備えていることを特徴とする分
布帰還形半導体レーザ。
1. An optical guide layer on a semiconductor substrate, a clad layer having a band gap larger than that of the light guide layer, an active layer having a band gap smaller than that of the clad layer and a band gap larger than that of the optical guide layer, and an active layer. A distributed feedback semiconductor laser comprising a multilayer structure in which clad layers having a larger forbidden band width are sequentially stacked, and a diffraction grating is provided at a boundary between the semiconductor substrate and the optical guide layer.
JP63072289A 1988-03-25 1988-03-25 Distributed feedback semiconductor laser Expired - Lifetime JP2687404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072289A JP2687404B2 (en) 1988-03-25 1988-03-25 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072289A JP2687404B2 (en) 1988-03-25 1988-03-25 Distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPH01244688A JPH01244688A (en) 1989-09-29
JP2687404B2 true JP2687404B2 (en) 1997-12-08

Family

ID=13484967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072289A Expired - Lifetime JP2687404B2 (en) 1988-03-25 1988-03-25 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP2687404B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240178A (en) * 1984-05-15 1985-11-29 Fujikura Ltd Distributed feedback type semiconductor laser
JPS6364385A (en) * 1986-09-04 1988-03-22 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH01244688A (en) 1989-09-29

Similar Documents

Publication Publication Date Title
JPH0256837B2 (en)
US20040140476A1 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
JP2587628B2 (en) Semiconductor integrated light emitting device
US6678302B2 (en) Semiconductor device and manufacturing method thereof
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JPH01319986A (en) Semiconductor laser device
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JP2786063B2 (en) Semiconductor light control device
JP2687404B2 (en) Distributed feedback semiconductor laser
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JPH11204773A (en) Waveguide type semiconductor optical integrated element and its manufacture
JP5163355B2 (en) Semiconductor laser device
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
JPH08274406A (en) Distributed feedback semiconductor laser and its manufacture
JP2760276B2 (en) Selectively grown waveguide type optical control device
JPS5911690A (en) Semiconductor laser device
JP2002111126A (en) Semiconductor laser
JPH0582888A (en) Distributed feedback semiconductor laser
JPH03192788A (en) Integrated optical modulator
JP3228235B2 (en) Method for manufacturing semiconductor optical waveguide structure
JPS641075B2 (en)
JPH07109922B2 (en) Method for manufacturing distributed reflection semiconductor laser
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JPH07335977A (en) Semiconductor laser and optical integrated device and manufacture thereof