JPH07118563B2 - Semiconductor distributed feedback laser device - Google Patents

Semiconductor distributed feedback laser device

Info

Publication number
JPH07118563B2
JPH07118563B2 JP3210924A JP21092491A JPH07118563B2 JP H07118563 B2 JPH07118563 B2 JP H07118563B2 JP 3210924 A JP3210924 A JP 3210924A JP 21092491 A JP21092491 A JP 21092491A JP H07118563 B2 JPH07118563 B2 JP H07118563B2
Authority
JP
Japan
Prior art keywords
layer
diffraction grating
semiconductor
active layer
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3210924A
Other languages
Japanese (ja)
Other versions
JPH0555686A (en
Inventor
邦雄 多田
義昭 中野
宏力 曹
毅 羅
武史 井上
万知夫 土橋
Original Assignee
光計測技術開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光計測技術開発株式会社 filed Critical 光計測技術開発株式会社
Priority to JP3210924A priority Critical patent/JPH07118563B2/en
Publication of JPH0555686A publication Critical patent/JPH0555686A/en
Publication of JPH07118563B2 publication Critical patent/JPH07118563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気光変換素子として利
用する半導体分布帰還型レーザ装置に関する。本発明
は、長距離大容量光通信装置、光情報処理装置、光記録
装置、光応用計測装置、その他光電子装置の光源として
利用するに適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor distributed feedback laser device used as an electro-optical conversion element. INDUSTRIAL APPLICABILITY The present invention is suitable for use as a light source of a long-distance large-capacity optical communication device, an optical information processing device, an optical recording device, an optical application measuring device, and other optoelectronic devices.

【0002】[0002]

【従来の技術】活性層の近傍に設けた回折格子により活
性層に光の分布帰還を施して誘導放出光を発生させる半
導体分布帰還型レーザ装置は、一般に、比較的簡単な構
成により優れた発振スペクトル特性の誘導放出光が得ら
れるので、従来から幾多の研究開発が進められており、
長距離大容量光通信、光情報処理および記録、光応用計
測などに用いる好適な光源装置としてその有用性が期待
されている。
2. Description of the Related Art A semiconductor distributed feedback laser device which generates stimulated emission light by performing distributed feedback of light to the active layer by a diffraction grating provided in the vicinity of the active layer is generally excellent in oscillation due to its relatively simple structure. Since stimulated emission light with spectral characteristics can be obtained, many researches and developments have been made in the past.
Its usefulness is expected as a suitable light source device used for long-distance and large-capacity optical communication, optical information processing and recording, optical applied measurement, and the like.

【0003】このような半導体分布帰還型レーザ装置で
は、活性層を透明なヘテロ接合半導体層などにより囲
み、効率よく誘導放出光を発生させる光導波路構造が採
られている。特に、活性層にごく近接した透明な導波路
層の活性層から遠い側の界面に例えば三角波状の断面形
状をもつ回折格子を形成し、導波路屈折率を周期的に変
化させることにより光分布帰還を施す方向の研究開発が
専ら進められている。
Such a semiconductor distributed feedback laser device employs an optical waveguide structure in which the active layer is surrounded by a transparent heterojunction semiconductor layer or the like to efficiently generate stimulated emission light. In particular, by forming a diffraction grating with a triangular wave-shaped cross-section on the interface of the transparent waveguide layer, which is very close to the active layer, on the side far from the active layer, and periodically changing the waveguide refractive index, Research and development in the direction of returning home is being carried out exclusively.

【0004】しかし、このような屈折率結合による光分
布帰還においては、光導波路層の層厚変化の周期に対応
して反射するブラッグ波長の光に対して、光位相につい
ての適正な帰還が行われない。このため、安定なレーザ
発振が得られず、ブラッグ波長から上下に対称に離隔し
た二つの波長の縦モード発振が同時に生じる可能性が高
い。また、このような二つの波長の縦モード発振のうち
の一方のみが生じる場合にも、二つの波長のうちのいず
れの波長の縦モード発振を行わせるかをあらかじめ選定
することが困難であるため、発振波長設定の精度が著し
く損なわれることになる。
However, in such a distributed light feedback by the refractive index coupling, an appropriate feedback about the optical phase is performed with respect to the light of the Bragg wavelength which is reflected corresponding to the period of the layer thickness change of the optical waveguide layer. I don't know. For this reason, stable laser oscillation cannot be obtained, and there is a high possibility that longitudinal mode oscillation of two wavelengths vertically symmetrically separated from the Bragg wavelength will occur at the same time. Further, even when only one of the two longitudinal mode oscillations is generated, it is difficult to select in advance which wavelength of the two wavelengths the longitudinal mode oscillation is to be performed. However, the accuracy of setting the oscillation wavelength is significantly impaired.

【0005】すなわち、光導波路層における屈折率の周
期的摂動に基づく屈折率結合を利用した光分布帰還で
は、原理的に、二波長縦モード発振縮重の問題が生じて
しまい、これを避けることは困難である。
That is, in the distributed optical feedback utilizing the refractive index coupling based on the periodic perturbation of the refractive index in the optical waveguide layer, in principle, the problem of degeneracy of two-wavelength longitudinal mode oscillation occurs, which should be avoided. It is difficult.

【0006】もちろん、このような困難を解決する手段
も従来から種々検討されている。しかし、例えば回折格
子のほぼ中央で4分の1波長分だけ位相シフトさせる構
造など、いずれも、レーザ装置の構造を複雑化し、縮重
解消のためのみの製造工程を付加する必要があり、その
上、レーザ素子端面に反射防止膜を形成する必要があっ
た。
Of course, various means for solving such difficulties have been studied. However, in any case, for example, a structure in which the phase is shifted by a quarter wavelength at approximately the center of the diffraction grating, the structure of the laser device is complicated, and it is necessary to add a manufacturing process only for eliminating degeneracy. In addition, it is necessary to form an antireflection film on the end face of the laser element.

【0007】一方、上述のように屈折率結合により光分
布帰還を行うとブラッグ波長領域に発振阻止帯域が生じ
るが、利得係数の周期的摂動に基づく利得結合により光
分布帰還を行えば、発振阻止帯域の出現を抑えて完全に
単一波長の縦モード発振が得られるはずであるとの原理
的な理論が、コゲルニック他、「分布帰還レーザの結合
波理論」、ジャーナル・オブ・アプライド・フィジク
ス、1972年、第43巻、第2327頁から第233
5頁("Coupled-Wave Theory of Distributed Feedback
Lasers", Journal of AppliedPhysics, 1972 Vol.43, p
p.2327-2335)に示されている。この論文はあくまでも原
理的な検討結果であって、具体的な構造については示さ
れていない。
On the other hand, when the distributed optical feedback is performed by the refractive index coupling as described above, an oscillation stop band is generated in the Bragg wavelength region. However, if the distributed optical feedback is performed by the gain coupling based on the periodic perturbation of the gain coefficient, the oscillation prevention is performed. The fundamental theory that a single-wavelength longitudinal mode oscillation should be obtained by suppressing the appearance of a band is Kogelnik et al., “Coupling wave theory of distributed feedback lasers”, Journal of Applied Physics, 1972, Vol. 43, pp. 2327 to 233.
Page 5 ("Coupled-Wave Theory of Distributed Feedback
Lasers ", Journal of Applied Physics, 1972 Vol.43, p.
p.2327-2335). This paper is the result of theoretical examination only, and does not show the concrete structure.

【0008】本願発明者らは、上記コゲルニック他の基
礎理論を適用した新しい半導体レーザ装置を発明し、い
くつかの特許を出願した。主なものとしては、 (1)特願昭63−189593、昭和63年7月30
日出願 活性層の近傍に半導体の不透明層を設け、その不透明層
に回折格子を形成することにより、その不透明層の利得
係数または損失係数に周期的摂動に基づく分布帰還を施
す構造およびその製造方法。 (2)特開平3−34489(特願平1−16872
9、平成1年6月30日出願) 回折格子パターン上の成長を利用して活性層の厚みに周
期的な変動を設けた構造およびその製造方法。 (3)特願平2−235235、平成2年9月5日出願 活性層近傍に導電性を周期的に変化させた層を設けるこ
とにより利得の周期分布を得る構造。 (4)特願平2−282698、平成2年10月19日
出願 回折格子の周期に相応する凹凸形状の各頂部に光吸収層
を設け、その上に緩衝層を介して活性層を成長させるこ
とにより、利得の周期分布と光吸収の周期的分布とを組
み合わせた構造。がある。
The inventors of the present invention invented a new semiconductor laser device to which the basic theory of Kogelnik et al. Is applied, and applied for some patents. (1) Japanese Patent Application No. Sho 63-189593, July 30, 1988
A structure in which a semiconductor opaque layer is provided in the vicinity of an active layer, and a diffraction grating is formed in the opaque layer to perform distributed feedback based on periodic perturbation in a gain coefficient or a loss coefficient of the opaque layer, and a manufacturing method thereof. . (2) JP-A-3-34489 (Japanese Patent Application No. 1-16872)
9, filed on June 30, 1991) A structure in which the thickness of an active layer is periodically changed by utilizing the growth on a diffraction grating pattern, and a method for manufacturing the structure. (3) Japanese Patent Application No. 2-235235, filed on September 5, 1990 A structure in which a periodic gain distribution is obtained by providing a layer whose conductivity is periodically changed in the vicinity of the active layer. (4) Japanese Patent Application No. 2-282698, filed October 19, 1990 An optical absorption layer is provided on each top of the uneven shape corresponding to the period of the diffraction grating, and an active layer is grown on the light absorption layer via a buffer layer. Therefore, the structure that combines the periodic distribution of gain and the periodic distribution of light absorption. There is.

【0009】[0009]

【発明が解決しようとする課題】しかし、これらの出願
に示した構造にもいくらかの解決すべき課題が残ってい
た。例えば(1)の出願に示した構造では、吸収層の付
加によって、しきい値電流の増加が見られる。(2)の
出願に示した構造では、利得結合係数がしきい値電流密
度によって決められるため、ある程度以上に大きな結合
係数を得ることは困難である。(3)の出願に示した構
造のように周期的な導電性反転だけでは、低注入で動作
させる場合には十分な利得結合を得ることが困難であ
る。さらに、(4)の出願に示した構造では、全面均一
電流注入により電流利用効率が低くなる可能性があり、
低しきい値電流動作が困難と考えられる。
However, there are still some problems to be solved in the structures shown in these applications. For example, in the structure shown in the application (1), the threshold current is increased by adding the absorption layer. In the structure shown in the application of (2), since the gain coupling coefficient is determined by the threshold current density, it is difficult to obtain a coupling coefficient larger than a certain level. It is difficult to obtain a sufficient gain coupling when operating with low injection only by periodical conductivity reversal like the structure shown in the application of (3). Further, in the structure shown in the application of (4), current utilization efficiency may be reduced due to uniform current injection over the entire surface,
It is considered that low threshold current operation is difficult.

【0010】本発明は、以上の課題を解決した新しい構
造の半導体分布帰還型レーザ装置を提供することを目的
とする。
It is an object of the present invention to provide a semiconductor distributed feedback laser device having a new structure that solves the above problems.

【0011】[0011]

【課題を解決するための手段】本発明の半導体分布帰還
型レーザ装置は、活性層に平行なレーザ光軸方向に沿っ
て導電性が周期的に変化し、かつこの周期的変化と同一
周期で活性層の発生する誘導放出光に対する吸収係数が
変化する構造を備えたことを特徴とする。具体的には、
活性層を挟んで互いに導電性の異なる二つの半導体層を
設け、この二つの半導体層の少なくとも一方に、その半
導体層と異なる導電性の回折格子を埋め込む。
In the semiconductor distributed feedback laser device of the present invention, the conductivity periodically changes along the laser optical axis direction parallel to the active layer, and at the same cycle as this periodic change. It is characterized by having a structure in which the absorption coefficient for the stimulated emission light generated by the active layer changes. In particular,
Two semiconductor layers having different conductivity from each other are provided with the active layer sandwiched therebetween, and a diffraction grating having a conductivity different from that of the semiconductor layer is embedded in at least one of the two semiconductor layers.

【0012】このような構造を得る一つの方法として
は、活性層の上に緩衝層を挟んでその活性層と実質的に
同一の組成の半導体層を設け、その半導体層をエッチン
グして回折格子を形成する。回折格子を形成した半導体
層の導電性は、これを埋め込む層の導電性と異なるよう
にする。これにより、吸収性と導電性とが同時に周期的
に変化する。
As one method for obtaining such a structure, a semiconductor layer having substantially the same composition as that of the active layer is provided on the active layer with a buffer layer interposed therebetween, and the semiconductor layer is etched to form a diffraction grating. To form. The conductivity of the semiconductor layer in which the diffraction grating is formed is made different from the conductivity of the layer in which it is embedded. Thereby, the absorptivity and the electrical conductivity simultaneously change periodically.

【0013】また、もう一つの方法として、回折格子の
周期に相応する凹凸形状が印刻された半導体層にその凹
凸形状に相応する周期的な形状が上面に残るように緩衝
層を成長させ、その上にその上面の周期的な形状に相応
する厚みの変化が生じるように活性層を成長させるとき
に、前記半導体層の凹凸形状の各頂部に、周囲の層と導
電性が異なりかつ吸収性を有する半導体層を設けておい
てもよい。すなわち、回折格子がレーザ光軸方向に沿っ
て周期的な凹凸形状に形成され、この凹凸形状の頂部に
吸収性の組成を有する半導体層が配置され、この凹凸形
状に対応して活性層の厚みに周期的変化が設けられる。
この場合の緩衝層は、回折格子印刻時に基板やエピタキ
シャル成長層に導入された各種の結晶欠陥が活性層に伝
搬することを防止するためのものである。
As another method, a buffer layer is grown on a semiconductor layer on which uneven shapes corresponding to the period of the diffraction grating are imprinted so that the periodic shapes corresponding to the uneven shapes remain on the upper surface, and When the active layer is grown so that a thickness change corresponding to the periodical shape of the upper surface thereof occurs, the conductivity is different from that of the surrounding layers and the absorptivity is provided on each top of the uneven shape of the semiconductor layer. You may provide the semiconductor layer which it has. That is, a diffraction grating is formed in a periodic uneven shape along the laser optical axis direction, a semiconductor layer having an absorptive composition is arranged on the top of this uneven shape, and the thickness of the active layer is corresponding to this uneven shape. Is provided with a periodic change.
In this case, the buffer layer is for preventing various crystal defects introduced into the substrate or the epitaxial growth layer at the time of engraving the diffraction grating from propagating to the active layer.

【0014】回折格子は、その回折格子を埋め込む半導
体層と導電性の異なる層が周期的に切断された形状であ
ることがよい。回折格子は、pまたはnの導電型がその
回折格子を埋め込む半導体層の導電型と異なることが望
ましい。
The diffraction grating may have a shape in which a semiconductor layer filling the diffraction grating and a layer having a different conductivity are periodically cut. It is preferable that the conductivity type of the diffraction grating is different from the conductivity type of the semiconductor layer in which the diffraction grating is embedded.

【0015】回折格子を埋め込む半導体層には、その回
折格子による屈折率の周期分布を相殺する屈折率分布相
殺構造を備えることが望ましい。また、これとは別に、
回折格子の凹凸に対応して活性層の厚みに周期的変化が
設けられている場合には、回折格子による屈折率の周期
分布が活性層の厚み分布による屈折率の周期分布と相殺
されるように、回折格子および活性層の材料および形状
を選択することが望ましい。
The semiconductor layer in which the diffraction grating is embedded preferably has a refractive index distribution canceling structure for canceling the periodic distribution of the refractive index due to the diffraction grating. Also, apart from this,
When the thickness of the active layer is periodically changed to correspond to the unevenness of the diffraction grating, the periodic distribution of the refractive index due to the diffraction grating is canceled by the periodic distribution of the refractive index due to the thickness distribution of the active layer. In addition, it is desirable to select the material and shape of the diffraction grating and the active layer.

【0016】導電性の変化と導電性の変化とを一つの層
で実現することもできるが、互いに接する二つの層ない
し近接する二つの層で実現することもできる。
The change in conductivity and the change in conductivity can be realized by one layer, but can also be realized by two layers which are in contact with each other or two layers which are adjacent to each other.

【0017】導電性に周期的変化を与えるには、周囲と
導電性の異なる層で凹凸形状を形成する他に、イオン注
入や拡散を用いることもできる。
To give a periodic change in conductivity, ion implantation or diffusion can be used in addition to forming the concavo-convex shape with a layer having different conductivity from the surroundings.

【0018】本明細書において「上」とは、結晶成長の
方向、すなわち基板から離れる方向をいう。
As used herein, the term "upper" means the direction of crystal growth, that is, the direction away from the substrate.

【0019】[0019]

【作用】誘導放出光を発生させる活性層の上または下
に、その活性層の発生した光を吸収するとともに活性層
に注入される電流を阻止する層を周期的に設けることに
より、 (1)活性層に電流密度の分布すなわちキャリア密度の
分布が生じるとともに、光吸収係数の周期分布も生じ
る。 (2)また、活性層に厚み分布をもたせる場合には、そ
の厚みの変化による利得係数の周期的変化も得られる。 (3)したがって、共振器軸方向に伝搬する光波に対す
る利得係数が回折格子の周期に一致した周期で変化し、
利得結合による分布帰還が実現される、 (4)これらの利得結合発生のメカニズムを総合的に組
み合わせることにより、より強い利得結合性を得ること
ができ、さらに、電流利用効率が高められ、より低しき
い値電流動作が期待できる。
By periodically providing, above or below the active layer for generating stimulated emission light, a layer that absorbs the light generated by the active layer and blocks the current injected into the active layer, (1) A current density distribution, that is, a carrier density distribution is generated in the active layer, and a periodic distribution of the light absorption coefficient is also generated. (2) When the active layer has a thickness distribution, a periodic change in the gain coefficient due to the change in the thickness can be obtained. (3) Therefore, the gain coefficient for the light wave propagating in the cavity axis direction changes at a period that matches the period of the diffraction grating,
Distributed feedback is realized by gain coupling. (4) By combining these mechanisms for generating gain coupling, stronger gain coupling can be obtained, and further, current utilization efficiency can be improved and lower Threshold current operation can be expected.

【0020】また、GaAs/AlGaAs系のレーザ
装置、すなわちGaAsに格子整合させた構造の装置の
場合には、回折格子をAl組成の少ない材料で形成で
き、その上に再成長する結晶の品質が高められる。
Further, in the case of a GaAs / AlGaAs laser device, that is, a device having a structure in which GaAs is lattice-matched, the diffraction grating can be formed of a material having a small Al composition, and the quality of the regrown crystal can be improved. To be enhanced.

【0021】[0021]

【実施例】図1は本発明第一実施例の半導体分布帰還型
レーザ装置の構造を示す斜視図である。
1 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to a first embodiment of the present invention.

【0022】この実施例は活性層の上に周期的な電流阻
止構造を設けたものであり、基板1上にはバッファ層
2、クラッド層3、活性層4および緩衝層5がエピタキ
シャルに形成され、緩衝層5の上には回折格子7が設け
られる。回折格子7の上にはさらに、クラッド層8およ
びコンタクト層9がエピタキシャルに形成される。コン
タクト層9は絶縁層10に開けられた窓を通して電極層
11に接続される。基板1の裏面には電極層12が設け
られる。
In this embodiment, a periodic current blocking structure is provided on an active layer, and a buffer layer 2, a cladding layer 3, an active layer 4 and a buffer layer 5 are epitaxially formed on a substrate 1. A diffraction grating 7 is provided on the buffer layer 5. A clad layer 8 and a contact layer 9 are further epitaxially formed on the diffraction grating 7. The contact layer 9 is connected to the electrode layer 11 through a window opened in the insulating layer 10. An electrode layer 12 is provided on the back surface of the substrate 1.

【0023】ここで本実施例の特徴とするところは、回
折格子7が吸収性電流阻止層6により形成され、活性層
4に平行なレーザ光軸方向に沿って導電性が回折格子7
の周期で変化し、かつこの周期的変化と同一周期で活性
層4の発生する誘導放出光に対する吸収係数が変化する
ことにある。
The feature of this embodiment is that the diffraction grating 7 is formed by the absorptive current blocking layer 6, and the conductivity of the diffraction grating 7 is parallel to the laser optical axis direction parallel to the active layer 4.
And the absorption coefficient for the stimulated emission light generated by the active layer 4 changes in the same cycle as this cyclic change.

【0024】このレーザ装置を製造するには、基板1上
にダブルヘテロ接合構造の半導体レーザ素子の各層を二
段階に分けて連続的にエピタキシャル成長させる。すな
わち、基板1上にバッファ層2、クラッド層3、活性層
4、緩衝層5および吸収性電流阻止層6をこの順にエピ
タキシャル成長させる。続いて、干渉露光法と選択エッ
チング可能なドライエッチングとを適用し、成長層の最
上層である吸収性電流阻止層6に回折格子7を印刻す
る。このとき、エッチング部分では吸収性電流阻止層6
が完全に除去されることが望ましい。続いて、回折格子
7を印刻した吸収性電流阻止層6上に上部クラッド層8
およびコンタクト層9をこの順にエピタキシャル成長さ
せ、ダブルヘテロ接合構造を完成させる。この後、コン
タクト層9の上面に絶縁層10を堆積させ、ストライプ
状の窓を形成し、次いで負側の電極層11を全面に蒸着
する。また、基板1の裏面には正側の電極層10を蒸着
する。最後に、このようにして製造された半導体ブロッ
クを劈開して、個々の半導体レーザ素子を完成する。
To manufacture this laser device, each layer of a semiconductor laser device having a double heterojunction structure is continuously epitaxially grown on the substrate 1 in two steps. That is, the buffer layer 2, the cladding layer 3, the active layer 4, the buffer layer 5, and the absorptive current blocking layer 6 are epitaxially grown in this order on the substrate 1. Then, the interference exposure method and the dry etching capable of selective etching are applied to imprint the diffraction grating 7 on the absorptive current blocking layer 6 which is the uppermost layer of the growth layer. At this time, in the etched portion, the absorptive current blocking layer 6
Should be completely removed. Then, the upper clad layer 8 is formed on the absorptive current blocking layer 6 on which the diffraction grating 7 is engraved.
Then, the contact layer 9 is epitaxially grown in this order to complete the double heterojunction structure. Then, the insulating layer 10 is deposited on the upper surface of the contact layer 9 to form a striped window, and then the negative electrode layer 11 is vapor-deposited on the entire surface. Further, the positive electrode layer 10 is vapor-deposited on the back surface of the substrate 1. Finally, the semiconductor block thus manufactured is cleaved to complete individual semiconductor laser devices.

【0025】各層の導電型、組成、厚さの例を以下に示
す。 基板1 p+ −GaAs バッファ層2 p+ −GaAs、厚さ0.5μm クラッド層3 p−AlGaAs、厚さ1μm 活性層4 GRIN−SCH−SQW 緩衝層5 n−Al0.45Ga0.55As、厚さ0.1μm 吸収性電流阻止層6 p−Al0.03Ga0.97As、厚さ0.1μm 回折格子7 周期260nm クラッド層8 n−Al0.45Ga0.55As、厚さ1μm コンタクト層9 n+ −GaAs、厚さ0.5μm 絶縁層10 SiO2 (ストライプ状の窓の幅約10μm) 電極層11 Au/Au−Ge 電極層12 Au/Cr
Examples of the conductivity type, composition, and thickness of each layer are shown below. Substrate 1 p + -GaAs buffer layer 2 p + -GaAs, thickness 0.5 μm clad layer 3 p-AlGaAs, thickness 1 μm active layer 4 GRIN-SCH-SQW buffer layer 5 n-Al 0.45 Ga 0.55 As, thickness 0.1 μm absorptive current blocking layer 6 p-Al 0.03 Ga 0.97 As, thickness 0.1 μm diffraction grating 7 periods 260 nm clad layer 8 n-Al 0.45 Ga 0.55 As, thickness 1 μm contact layer 9 n + -GaAs, thickness 0.5 μm insulating layer 10 SiO 2 (width of a striped window is about 10 μm) Electrode layer 11 Au / Au-Ge Electrode layer 12 Au / Cr

【0026】この実施例では活性層4として単一量子井
戸を用いる場合について示したが、多重量子井戸やバル
ク結晶を用いてもよい。この実施例の構造は活性層4が
平坦であり、単一量子井戸や多重量子井戸を用いてその
利点を有効に利用できる。また、基板1を含めてすべて
の半導体層の導電型を反転させても本発明を実施でき
る。ここでは示さなかったが、クラッド層8には回折格
子7による屈折率の周期分布を相殺する屈折率分布相殺
構造が設けられることが望ましい。このような構造とし
ては、本願出願人による特許出願、特願平3−1812
09に示されたように、屈折率の異なる層を組み合わせ
た構造を用いることができる。
Although a single quantum well is used as the active layer 4 in this embodiment, a multiple quantum well or a bulk crystal may be used. In the structure of this embodiment, the active layer 4 is flat, and the advantage can be effectively utilized by using a single quantum well or multiple quantum wells. Further, the present invention can be implemented by inverting the conductivity types of all semiconductor layers including the substrate 1. Although not shown here, it is desirable that the cladding layer 8 be provided with a refractive index distribution canceling structure that cancels the periodic distribution of the refractive index due to the diffraction grating 7. As such a structure, a patent application by the applicant of the present application, Japanese Patent Application No. 3-1812
As shown in FIG. 09, a structure in which layers having different refractive indexes are combined can be used.

【0027】図2は本発明第二実施例の半導体分布帰還
型レーザ装置の構造を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to the second embodiment of the present invention.

【0028】この実施例は周期的な電流阻止構造に活性
層の厚みの周期的変化を組み合わせたものであり、基板
21上にはバッファ層22、クラッド層23、パターン
供給層33、34がエピタキシャルに形成され、パター
ン供給層33、34には溝の底部がパターン供給層33
に達するような、すなわちパターン供給層34を切断す
るような凹凸形状が回折格子の周期で形成される。この
凹凸形状の上には、その凹凸形状に相応する周期的な形
状を上面に残して緩衝層25が形成され、その上に、緩
衝層25の上面の周期的な形状に相応する厚みの変化を
もつ活性層24が形成される。活性層24の上には、ク
ラッド層28およびコンタクト層29がエピタキシャル
に形成される。コンタクト層29は絶縁層30に開けた
窓を通して電極層31に接続される。基板21の裏面に
は電極層32が設けられる。
In this embodiment, a periodic current blocking structure is combined with a periodic change in the thickness of the active layer. A buffer layer 22, a cladding layer 23, and pattern supply layers 33 and 34 are epitaxially formed on the substrate 21. And the bottom of the groove is formed in the pattern supply layers 33 and 34.
To reach, that is, to cut the pattern supply layer 34 is formed at the period of the diffraction grating. A buffer layer 25 is formed on the irregular shape, leaving a periodic shape corresponding to the irregular shape on the upper surface, and a change in thickness corresponding to the periodic shape of the upper surface of the buffer layer 25 is formed thereon. An active layer 24 having A clad layer 28 and a contact layer 29 are epitaxially formed on the active layer 24. The contact layer 29 is connected to the electrode layer 31 through a window opened in the insulating layer 30. An electrode layer 32 is provided on the back surface of the substrate 21.

【0029】ここで本実施例の特徴とするところは、パ
ターン供給層34が吸収性電流阻止層により形成された
ことにある。すなわち、パターン吸収層34の導電型が
基板21ないしパターン供給層33の導電型と異なって
設定され、しかもこのパターン供給層34の組成が活性
層24からの誘導放出光を吸収するように設定されてい
る。また、パターン供給層34がエッチングされて形成
された回折格子による屈折率の周期分布が活性層24の
厚み分布による屈折率の周期分布と相殺されるように、
パターン供給層33、34および活性層24、さらには
緩衝層25の組成および形状が選択される。
The feature of this embodiment is that the pattern supply layer 34 is formed of an absorptive current blocking layer. That is, the conductivity type of the pattern absorption layer 34 is set to be different from that of the substrate 21 or the pattern supply layer 33, and the composition of the pattern supply layer 34 is set so as to absorb the stimulated emission light from the active layer 24. ing. In addition, the periodic distribution of the refractive index due to the diffraction grating formed by etching the pattern supply layer 34 is offset by the periodic distribution of the refractive index due to the thickness distribution of the active layer 24.
The composition and shape of the pattern supply layers 33 and 34, the active layer 24, and the buffer layer 25 are selected.

【0030】以上の実施例ではGaAs系で本発明を実
施した場合について説明したが、本発明はInP系など
他の材料系の場合にも同様に実施できる。第一実施例の
構造をInP系で実施する場合の各層の導電型、組成、
厚さの例を以下に示す。 基板1 (100)n−InP バッファ層2、クラッド層3 n−InP、厚さ0.5μm 活性層4 InGaAsとInGaAsP(λg =1.3μm)との 多重量子井戸構造(等価的なλg =1.55μm) 緩衝層5 p−InP、厚さ0.1μm 吸収性電流阻止層6 n−InGaAsP(λg =1.55μm)、 厚さ0.1μm クラッド層8 p−InP、厚さ1μm コンタクト層9 p+ −InGaAs、厚さ0.5μm ただし、InGaAs、InGaAsPはInPに格子
整合している。λgは禁制帯幅に対応する光の波長を表
す。
In the above embodiments, the case where the present invention is applied to the GaAs system has been described, but the present invention can also be applied to other material systems such as InP. When the structure of the first embodiment is implemented with an InP system, the conductivity type, composition, and
An example of the thickness is shown below. Substrate 1 (100) n-InP buffer layer 2, cladding layer 3 n-InP, thickness 0.5 μm active layer 4 InGaAsP and InGaAsP (λ g = 1.3 μm) multiple quantum well structure (equivalent λ g = 1.55 μm) Buffer layer 5 p-InP, thickness 0.1 μm Absorbing current blocking layer 6 n-InGaAsP (λ g = 1.55 μm), thickness 0.1 μm Cladding layer 8 p-InP, thickness 1 μm Contact layer 9 p + -InGaAs, thickness 0.5 μm However, InGaAs and InGaAsP are lattice-matched to InP. λ g represents the wavelength of light corresponding to the band gap.

【0031】InP系の場合にも導電型を入れ換えて本
発明を実施できる。また、活性層にバルク混晶を用いる
こともできる。
Even in the case of InP type, the present invention can be carried out by changing the conductivity type. Further, a bulk mixed crystal can be used for the active layer.

【0032】以上の実施例では吸収性電流阻止層6とし
て周囲の層とp、nの導電型が異なる場合について説明
したが、単に電気抵抗が異なるだけでも、場合によって
は導電型が異なる場合に近い効果が得られる。例えばI
nP系の場合であれば、Feドープにより高抵抗化され
たInGaAsPを吸収性電流阻止層として用いること
ができる。
In the above embodiments, the absorption current blocking layer 6 has been described as having a different conductivity type of p and n from the surrounding layers. However, when the conductivity types are different, the conductivity types may be different. A similar effect can be obtained. For example I
In the case of the nP type, InGaAsP whose resistance is increased by Fe doping can be used as the absorptive current blocking layer.

【0033】[0033]

【発明の効果】利得結合による光分布帰還を利用した半
導体分布帰還型レーザ装置は、従来の屈折率結合型半導
体分布帰還型レーザ装置とは異なり、完全に単一の波長
の縦モード発振が行われ、従来装置におけるような発振
波長の不確定性も見られないと考えられる。もっとも、
従来の半導体分布帰還型レーザ装置でも完全単一縦モー
ド化は可能であるが、いずれも半導体レーザ装置の構成
が複雑化し、その上、レーザ素子端面への反射防止膜形
成が必要など、その製造工程数が増大するのに対し、本
発明装置では、従来の製造工程をほとんど変えることな
く、反射防止措置も要らずに簡単に完全単一縦モード化
を実現できる。また、利得結合によって光分布帰還を達
成すると、近端あるいは遠端からの反射戻り光などによ
って誘起される干渉雑音が生じたとしても、従来の屈折
率結合による場合に比較して格段に小さくなることが期
待される。さらに、共振器が電流注入によって生じる利
得の周期分布に起因するため、高速電流変調において超
短パルス発生が可能であり、かつ発振波長のチャーピン
グも小さいと期待される。
The semiconductor distributed feedback laser device utilizing the distributed optical feedback by gain coupling is different from the conventional refractive index coupled semiconductor distributed feedback laser device in that the longitudinal mode oscillation of a single wavelength is completely generated. Therefore, it is considered that the uncertainty of the oscillation wavelength as in the conventional device is not seen. However,
The conventional semiconductor distributed feedback laser device can also be used for complete single longitudinal mode, but in both cases, the structure of the semiconductor laser device is complicated, and in addition, it is necessary to form an antireflection film on the end face of the laser element. In contrast to the increase in the number of steps, the device of the present invention can easily realize the complete single longitudinal mode without changing the conventional manufacturing process and without the need for antireflection measures. Further, when distributed optical feedback is achieved by gain coupling, even if interference noise induced by reflected return light from the near end or far end occurs, it becomes much smaller than in the case of conventional refractive index coupling. It is expected. Furthermore, it is expected that ultra-short pulses can be generated in high-speed current modulation and chirping of the oscillation wavelength is small because the resonator is caused by the period distribution of gain generated by current injection.

【0034】特に本発明の半導体分布帰還型レーザ装置
は、周期的な光吸収層を設けるとともに、導電性に周期
性をもたせて電界の腹の部分に選択的にキャリアを注入
するので、十分に大きな利得結合を得ることができる。
また、注入電流の無駄が少ないので、高効率が期待でき
る。
Particularly, in the semiconductor distributed feedback laser device of the present invention, the periodic light absorption layer is provided, and the conductivity is made periodic so that the carriers are selectively injected into the antinode portion of the electric field. A large gain coupling can be obtained.
Further, since the waste of the injection current is small, high efficiency can be expected.

【0035】また、GaAs/AlGaAs系で実施す
る場合には、再成長界面のアルミ組成を低減でき、結晶
品質を改善できる。
When the GaAs / AlGaAs system is used, the aluminum composition at the regrowth interface can be reduced and the crystal quality can be improved.

【0036】したがって本発明の半導体分布帰還型レー
ザ装置は、長距離光通信用、波長多重光通信用などに必
要な高性能光源として有望であるばかりでなく、光情報
処理や光情報記録、光応用計測、高速光学現象の光源な
どの分野で従来用いられていた気体レーザ装置や固体レ
ーザ装置に代替し得る高性能かつ小型の光源として用い
られることが見込まれる。
Therefore, the semiconductor distributed feedback laser device of the present invention is not only promising as a high-performance light source required for long-distance optical communication, wavelength-multiplexed optical communication, etc., but also optical information processing, optical information recording, and optical information recording. It is expected to be used as a high-performance and small-sized light source that can replace the gas laser device and the solid-state laser device that have been conventionally used in the fields of applied measurement, light source of high-speed optical phenomenon, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の半導体分布帰還型レーザ装
置の構造を示す斜視図。
FIG. 1 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to a first embodiment of the present invention.

【図2】本発明第二実施例の半導体分布帰還型レーザ装
置の構造を示す斜視図。
FIG. 2 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、21 基板 2、22 バッファ層 3、8、23、28 クラッド層 4、24 活性層 5、25 緩衝層 6 吸収性電流阻止層 7 回折格子 9、29 コンタクト層 11、12、31、32 電極層 10、30 絶縁層 33、34 パターン供給層 1, 21 Substrate 2, 22 Buffer layer 3, 8, 23, 28 Cladding layer 4, 24 Active layer 5, 25 Buffer layer 6 Absorptive current blocking layer 7 Diffraction grating 9, 29 Contact layer 11, 12, 31, 32 Electrode Layer 10, 30 Insulation layer 33, 34 Pattern supply layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 武史 東京都武蔵野市中町2丁目11番13号 光計 測技術開発株式会社内 (72)発明者 土橋 万知夫 東京都武蔵野市中町2丁目11番13号 光計 測技術開発株式会社内 (56)参考文献 特開 平3−35581(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Inoue 2-11-13 Nakamachi, Musashino City, Tokyo Photometer Measurement Technology Development Co., Ltd. (72) Inventor Machiko Tsuchihashi 2-11 Nakamachi, Musashino City No. 13 Photometer Measurement Technology Development Co., Ltd. (56) Reference JP-A-3-35581 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 誘導放出光を発生する活性層と、 この活性層に沿って配置されこの活性層発生する誘導
放出光に対する吸収係数がこの活性層に平行なレーザ光
軸方向に沿って周期的に変化する周期構造とを備えた半
導体分布帰還型レーザ装置において、 前記周期構造は、前記活性層の利得に周期的変化が生じ
るように、吸収係数の周期的変化と同一周期で導電性が
周期的に変化する構造を含むことを特徴とする半導体分
布帰還型レーザ装置。
1. A induced an active layer for generating emitted light, arranged along the active layer induced emission light against absorption coefficient parallel laser light to the active layer generated in the active layer
In a semiconductor distributed feedback laser device including a periodic structure that periodically changes along the axial direction, the periodic structure causes a periodic change in gain of the active layer.
Therefore, the conductivity changes in the same cycle as the periodic change of absorption coefficient.
A semiconductor distributed feedback laser device including a structure that changes periodically .
【請求項2】 活性層を挟んで互いに導電性の異なる二
つの半導体層を備え、 前記周期構造はこの二つの半導体層の少なくとも一方に
埋め込まれたその一方の半導体層と異なる導電性の回折
格子を含む請求項1記載の半導体分布帰還型レーザ装
置。
2. A diffraction grating having two semiconductor layers different in conductivity from each other with an active layer interposed therebetween, and the periodic structure having a conductivity different from that of the one semiconductor layer embedded in at least one of the two semiconductor layers. The semiconductor distributed feedback laser device according to claim 1, further comprising:
【請求項3】 回折格子はレーザ光軸方向に沿って周期
的な凹凸形状に形成され、 この凹凸形状の頂部に吸収性の組成を有する半導体層を
含み、 この凹凸形状に対応して活性層の厚みに周期的変化が設
けられた請求項2記載の半導体分布帰還型レーザ装置。
3. The diffraction grating is formed in a periodic uneven shape along the laser optical axis direction, and includes a semiconductor layer having an absorptive composition at the top of the uneven shape, and the active layer corresponding to this uneven shape. 3. The semiconductor distributed feedback laser device according to claim 2, wherein the thickness of the laser is periodically changed.
【請求項4】 回折格子はその回折格子を埋め込む半導
体層と導電性の異なる層が周期的に切断された形状であ
る請求項2または3記載の半導体分布帰還型レーザ装
置。
4. The semiconductor distributed feedback laser device according to claim 2, wherein the diffraction grating has a shape in which a semiconductor layer filling the diffraction grating and a layer having a different conductivity are periodically cut.
【請求項5】 回折格子はpまたはnの導電型がその回
折格子を埋め込む半導体層の導電型と異なる請求項2な
いし4のいずれかに記載の半導体分布帰還型レーザ装
置。
5. The semiconductor distributed feedback laser device according to claim 2, wherein the conductivity type of the diffraction grating is different from that of the semiconductor layer in which the diffraction grating is embedded.
【請求項6】 回折格子を埋め込む半導体層にはその回
折格子による屈折率の周期分布を相殺する屈折率分布相
殺構造が設けられた請求項2記載の半導体分布帰還型レ
ーザ装置。
6. The semiconductor distributed feedback laser device according to claim 2, wherein the semiconductor layer in which the diffraction grating is embedded is provided with a refractive index distribution canceling structure for canceling the periodic distribution of the refractive index due to the diffraction grating.
【請求項7】 回折格子による屈折率の周期分布が活性
層の厚み分布による屈折率の周期分布と相殺されるよう
に前記回折格子および前記活性層の材料および形状が選
択された請求項3記載の半導体分布帰還型レーザ装置。
7. The material and shape of the diffraction grating and the active layer are selected so that the periodic distribution of the refractive index by the diffraction grating is offset by the periodic distribution of the refractive index by the thickness distribution of the active layer. Semiconductor distributed feedback laser device.
JP3210924A 1991-08-22 1991-08-22 Semiconductor distributed feedback laser device Expired - Lifetime JPH07118563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210924A JPH07118563B2 (en) 1991-08-22 1991-08-22 Semiconductor distributed feedback laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210924A JPH07118563B2 (en) 1991-08-22 1991-08-22 Semiconductor distributed feedback laser device

Publications (2)

Publication Number Publication Date
JPH0555686A JPH0555686A (en) 1993-03-05
JPH07118563B2 true JPH07118563B2 (en) 1995-12-18

Family

ID=16597333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210924A Expired - Lifetime JPH07118563B2 (en) 1991-08-22 1991-08-22 Semiconductor distributed feedback laser device

Country Status (1)

Country Link
JP (1) JPH07118563B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705409B2 (en) * 1991-11-21 1998-01-28 三菱電機株式会社 Semiconductor distributed feedback laser device
US5208824A (en) * 1991-12-12 1993-05-04 At&T Bell Laboratories Article comprising a DFB semiconductor laser

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088394B2 (en) * 1989-06-30 1996-01-29 三菱電機株式会社 Semiconductor laser and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0555686A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US5384797A (en) Monolithic multi-wavelength laser diode array
JP4026334B2 (en) Semiconductor laser, distributed feedback semiconductor laser, and wavelength tunable semiconductor laser
CN105720479A (en) High-speed semiconductor laser with beam diffusion structure
JP2746326B2 (en) Semiconductor optical device
JPS6180882A (en) Semiconductor laser device
WO1992007401A1 (en) Distributed feedback semiconductor laser
JPH0335581A (en) Semiconductor laser and manufacture thereof
US4302729A (en) Channeled substrate laser with distributed feedback
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JPS6322637B2 (en)
JPH04783A (en) Semiconductor optical element
JPH01319986A (en) Semiconductor laser device
JPH05145169A (en) Semiconductor distributed feedback laser apparatus
JPH0337874B2 (en)
JP3215477B2 (en) Semiconductor distributed feedback laser device
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JP5163355B2 (en) Semiconductor laser device
JP3075822B2 (en) Semiconductor distributed feedback laser device
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2713445B2 (en) Semiconductor laser device
JPH0147031B2 (en)
JPH08274406A (en) Distributed feedback semiconductor laser and its manufacture
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
WO2023135629A1 (en) Semiconductor laser and module element