JPS5987888A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS5987888A
JPS5987888A JP19793582A JP19793582A JPS5987888A JP S5987888 A JPS5987888 A JP S5987888A JP 19793582 A JP19793582 A JP 19793582A JP 19793582 A JP19793582 A JP 19793582A JP S5987888 A JPS5987888 A JP S5987888A
Authority
JP
Japan
Prior art keywords
stripe
resonator
layer
semiconductor laser
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19793582A
Other languages
Japanese (ja)
Other versions
JPH05875B2 (en
Inventor
Haruhisa Takiguchi
滝口 治久
Kaneki Matsui
完益 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19793582A priority Critical patent/JPS5987888A/en
Publication of JPS5987888A publication Critical patent/JPS5987888A/en
Publication of JPH05875B2 publication Critical patent/JPH05875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface

Abstract

PURPOSE:To prevent any noise from increasing and to improve the combination of semiconductor laser element of a gain waveguide mechanism with an optical system by a method wherein the thickness of active layer of a crystal layer for operating laser deposited on an internal stripe for current strangulation the width of which becomes wider near an end of a resonator and narrower inside the resonator. CONSTITUTION:A current confining layer 2 is grown in a GaAs substrate 1 to form a stripe groove by one time photoetching process. Next when a P type clad layer 23 is epitaxially grown, the surface of the layer 3 is flattened in the region with stripe width of W2 while the same surface is dented in the region with stripe width of W1 because more P-GaAlAs is needed to bury the stripe groove in the region with wider stripe width of W1. In such a constitution, the refractive index difference in the lateral direction is larger to focus a laser beam on a spot with fine diameter not exceeding 1mum near an end of a resonator while the laser beam is enlarged up to 3-4mum in the lateral direction due to smaller refractive index difference in the same direction inside the resonator.

Description

【発明の詳細な説明】 〈技術分野〉 本発明は、戻り光による干渉雑音を低減した半導体レー
ザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor laser device that reduces interference noise due to returned light.

〈従来技術〉 従来、半導体レーザ装置をディスク情報処理装置の光源
として使用した場合、ビデオディスク。
<Prior Art> Conventionally, when a semiconductor laser device is used as a light source for a disk information processing device, it is used in a video disk.

オーディオディスク等の光学系との結合に於いてディス
ク面からの反射による出力レーザ光の戻り光が半導体レ
ーザ素子へ再入射されることがあり出力光に対する再入
射光の干渉により第7図に実線で示す如く注入電流と光
出力の間の直線性が低下し、また第一図に実線ノ1で示
す如く出力光の雑音が増加するため、実用に供すること
ができなくなることがある。この問題を解決する手段と
して、電流注入幅即ちストライプ幅を通常の70〜/j
μmに比べて活性層中のキャリア拡散長程度即ち2〜グ
μm程度に狭くし、歪の発生あるいは戻り光雑音の増加
を回避することが試行されている。このような半導体レ
ーザでは、利得分布によリレーザの光分布が決定される
が、共振器体積の小さいことから自然放出光のレーザモ
ードの関与が大きくなると共に注入電流密度が大きいた
め利得のスペクトル幅が拡大され、多軸モードにより発
振してこの多軸モード発振により再入射光の影響が低減
される。
When coupled to an optical system such as an audio disc, the return light of the output laser light due to reflection from the disc surface may be re-injected into the semiconductor laser element, and the solid line in Figure 7 may occur due to interference of the re-incoming light with the output light. As shown in Figure 1, the linearity between the injected current and the optical output decreases, and as shown in the solid line No. 1 in Figure 1, the noise of the output light increases, so that it may become impossible to put it into practical use. As a means to solve this problem, the current injection width, that is, the stripe width, has been changed from the usual 70~/j
Attempts have been made to narrow the carrier diffusion length in the active layer to about 2 to 1.mu.m compared to .mu.m in order to avoid the occurrence of distortion or an increase in return optical noise. In such a semiconductor laser, the light distribution of the laser is determined by the gain distribution, but since the cavity volume is small, the involvement of the spontaneous emission laser mode becomes large, and the injection current density is large, so the gain spectral width is is expanded, oscillates in a multi-axis mode, and the influence of re-incident light is reduced by this multi-axis mode oscillation.

しかしながら、利得導波i!構の半導体レーザ素子は、
注入電流あるいは経時変化等によって近視野像が変化す
るため、光学系との結合が不安定になりかつ非点収差が
大きいため、レンズ等の光学系との結合効率か低下する
といった欠点を生じる。
However, the gain guided i! The semiconductor laser element of the structure is
Since the near-field image changes due to the injection current or changes over time, the coupling with the optical system becomes unstable and the astigmatism is large, resulting in a disadvantage that the coupling efficiency with the optical system such as a lens decreases.

〈発明の目的〉 不発りjは、従来の半導体レーザ素子に於ける上述の欠
点を根本的に解決するものであり、屈折率導波機構を有
しかつ縦マルチモード発振することによって雑音の増加
を防止するとともに、利得導波機構の半導体レーザ素子
と光学系との結合状態を良好にすることがてきる新規釘
用な半導体レーザ素子を提供することを目的とするもの
である。
<Purpose of the Invention> The FUJIJ fundamentally solves the above-mentioned drawbacks of conventional semiconductor laser devices, and has a refractive index waveguide mechanism and longitudinal multi-mode oscillation, which reduces the increase in noise. It is an object of the present invention to provide a new semiconductor laser device for nails, which can prevent the above problems and improve the coupling state between the semiconductor laser device of the gain waveguide mechanism and the optical system.

〈実施例〉 第3図は本発明の一実施例を示す半導体レーザ素子の共
振器長方向の断面構成図である。
<Embodiment> FIG. 3 is a cross-sectional configuration diagram in the resonator length direction of a semiconductor laser device showing an embodiment of the present invention.

P−GaAs基板/上に電流通路を制御するためのn−
GaAsから成る電流閉じ込め層、2.1)−GaAI
Asから成るP型クラッド層3.p又はn−GaAIA
s(又はGaAs )からなる活性層グ。
n- to control the current path on/on the P-GaAs substrate
Current confinement layer made of GaAs, 2.1)-GaAI
P-type cladding layer made of As3. p or n-GaAIA
The active layer consists of S (or GaAs).

n−GaAIASから成るn型りラッド層! 、 n 
−GaAsから成るキャップ層乙が順次液相エピタキシ
ャル成長法により積層されている。尚、図中7、♂は共
振器の各々の端面である。電流閉じ込め層ノの層厚はO
♂μm程度とし、GaAs基板lに堆積された後、後述
する如くストライプ状の溝を表面よりGaAs基板/基
板法る迄深さ約/μm程度エツチング加工して電流通路
を形成している。
An n-type rad layer made of n-GaAIAS! , n
- A cap layer B made of GaAs is sequentially laminated by liquid phase epitaxial growth. Note that 7 and ♂ in the figure are respective end faces of the resonator. The thickness of the current confinement layer is O
After being deposited on a GaAs substrate 1, striped grooves are etched from the surface to a depth of about 1 μm from the surface to the GaAs substrate/substrate layer to form a current path.

GaAs基板/基板法 、u −Z nから成るP側電
極、キャップ層ZにはA u −G e −N i −
A uから成るn側電極を蒸着形成する。電流閉じ込め
層ノが介在している領域は逆極性に接合されるため電流
が流れず、電流閉じ込め層コが除去されたストライプ状
の溝部のみが電流通路となる。
GaAs substrate/substrate method, P-side electrode made of u-Zn, cap layer Z with Au-Ge-Ni-
An n-side electrode made of Au is formed by vapor deposition. Since the region where the current confinement layer is interposed is connected with opposite polarity, no current flows, and only the striped groove portion from which the current confinement layer has been removed serves as a current path.

−Bl1面図であり、共振器内部の断面構造を示す。-Bl is a plane view showing the cross-sectional structure inside the resonator.

共振器内部では電流閉じ込め層Jに形成されるストライ
プ溝の幅Wlは2μmであり幅WIのストライプ溝の長
さは、20μmとする。このストライプ溝の影響を受け
て共振器端面の活性層グはストライプ溝直上で平凸形状
あるいは三日月形状となる。一方、共振器内部では電流
閉じ込め層−に形成されるストライプ溝の幅W2はりμ
mであり長さはコθθμmに設定されている。尚、スト
ライプ溝の中心線は共振器の端面と内部で合致している
。この部分の活性層グは平坦化され、ストライプ溝の形
状の影響を受けない。
Inside the resonator, the width Wl of the stripe groove formed in the current confinement layer J is 2 μm, and the length of the stripe groove having the width WI is 20 μm. Under the influence of the stripe grooves, the active layer on the end face of the resonator assumes a plano-convex shape or a crescent shape directly above the stripe grooves. On the other hand, inside the resonator, the width W2 of the stripe groove formed in the current confinement layer is μ
m, and the length is set to θθμm. Note that the center line of the stripe groove matches the end face of the resonator internally. The active layer in this portion is flattened and is not affected by the shape of the stripe groove.

第2図はGaAs基板/基板法閉じ込め層−を成長させ
、7回のフォトエツチング工程でストライプ溝を形成し
た形状を示す斜視図である。
FIG. 2 is a perspective view showing the shape of a GaAs substrate/substrate method confinement layer grown and striped grooves formed by seven photo-etching steps.

第に図に示す状態でP型クラッド層3をエピタキシャル
成長させると、P型クラッド層3はストライプ幅W2の
領域では上面が平坦になり、ストライプ幅W1 の領域
では上面に窪みが形成される。
When the P-type cladding layer 3 is epitaxially grown in the state shown in the figure, the upper surface of the P-type cladding layer 3 becomes flat in the stripe width W2 region, and a depression is formed in the upper surface in the stripe width W1 region.

これはストライプ幅W1 の領域の方が溝幅が広いため
、この溝部分を埋めるに要するP−GaAIAsが多く
なることに起因する。従ってこのP型クラッド層3上に
成長される活性層はP型クラッド層3の上面形状により
第7図及び第5図の如くとなる。このような構造とする
ことにより、共振器端るが、共振器内部では横方向の屈
折率差が小さくなるため光は横方向に3〜グμm広がる
This is because the groove width is wider in the stripe width W1 region, and therefore more P-GaAIAs is required to fill this groove portion. Therefore, the active layer grown on this P-type cladding layer 3 becomes as shown in FIGS. 7 and 5 depending on the top surface shape of the P-type cladding layer 3. With such a structure, although the resonator ends, the difference in refractive index in the lateral direction becomes small inside the resonator, so that light spreads by 3 to 1 μm in the lateral direction.

この素子において、P型クラッド層3.活性層グ、n型
クラッド層jの各混晶比x r Y 、zを例えば、 X−θjθ(P型りラッド層) y−θ/6(活性層) 2二Oグ3;(n型クラッド層) の如く非対称としかつP型りラ・ソド層3の混晶比を大
きく設定する。これによって光は基板側に漏れにくくな
り、従って横方向屈折率差が充分小さくなり、通常の電
極ストライプレーザと同様に利得によって導波されるの
で縦マルチモード発振する。しかし、共振器端面ては、
活性層の厚さか横方向で変化しているため屈折率で導波
され、従ってビームウェイスト端面て一致し、非点収差
が現われない。
In this device, a P-type cladding layer 3. For example, the respective mixed crystal ratios x r Y , z of the active layer (g) and the n-type cladding layer (j) are as follows: The cladding layer 3 is made asymmetrical as shown in FIG. This makes it difficult for light to leak to the substrate side, so that the difference in refractive index in the lateral direction becomes sufficiently small, and the laser is guided by the gain like a normal electrode stripe laser, resulting in longitudinal multimode oscillation. However, the resonator end face is
Since the thickness of the active layer changes in the lateral direction, the wave is guided by the refractive index, so that the beam waste end faces coincide and no astigmatism appears.

第7図は第3図に示す半導体レーザ素子の電流光出力特
性を示す特性図である。第2図は第3図に示す半導体レ
ーザ菓子のスペクトル図である。
FIG. 7 is a characteristic diagram showing the current-light output characteristics of the semiconductor laser device shown in FIG. 3. FIG. 2 is a spectrum diagram of the semiconductor laser confectionery shown in FIG. 3.

第3図に示す半導体レーザは、直流出力/ j m W
まで縦マルチモードで発振し、しかも非点収差はjpm
以下であった。
The semiconductor laser shown in FIG. 3 has a DC output / j m W
It oscillates in longitudinal multimode up to
It was below.

〈発明の効果〉 以上詳述した如く、本発明によれば、縦マルチモード発
振となって、レーザ端面・\の戻り光による影響が小さ
く直線性の良好な注入電流対光出力特性が得られ、しか
も、非点収差が小さく光学系との結合効率の良いまた近
視野像が注入電流、経時変化等で変化せず安定な出力光
を得ることができる。
<Effects of the Invention> As detailed above, according to the present invention, longitudinal multi-mode oscillation is achieved, and injection current vs. light output characteristics with good linearity and less influence by return light from the laser end face/\ can be obtained. Moreover, it is possible to obtain stable output light with small astigmatism, high coupling efficiency with the optical system, and a near-field image that does not change due to injection current, changes over time, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザ素子の注入電流対光出力特
性図である。実線は14人射光が存在する場合、破線は
再入射光がない場合の特性曲線である。 第2図は従来の半導体レーザ素子の!1f音特性図であ
る。曲線1□ は再入射光が存在する場合、曲線ノ2は
再入射光がない場合の特性曲線である。 第3図は本発明の一実施例を示す半導体レーザ素子の構
成断面図である。第り図は第3図のA −A断面図であ
る。第5図は第3図のB−B断面図である。第2図は第
3図に示す半導体レーザ素子の基板構成を示す要部詳細
斜視図である。 第7図は第3図に示す半導体レーザ素子の電流対光出力
特性を示す特性図である。第2図は第3図に示す半導体
レーザ素子のスペクトル図である。 か・・GaAs基板、 コ・・・電流閉じ込め層、3・
・・P型クラッド層、  り・・・活性層、j・・・n
型クラッド層、  2・・・キャップ層、76.?・・
・共振器端面。 化171人 弁理士 福 士 愛 彦(他−名)連X竜
*、  I 第1図 第21閲 第3図 第4FA 第5図 第6図 第7図 ην   層   八や ツーL&/IM−ノ 第θ図
FIG. 1 is a diagram showing the injection current versus light output characteristic of a conventional semiconductor laser device. The solid line is the characteristic curve when there is 14 human incident light, and the broken line is the characteristic curve when there is no re-incident light. Figure 2 shows a conventional semiconductor laser device! It is a 1f sound characteristic diagram. Curve 1□ is a characteristic curve when there is re-incident light, and curve No. 2 is a characteristic curve when there is no re-incident light. FIG. 3 is a cross-sectional view of the structure of a semiconductor laser device showing an embodiment of the present invention. The second figure is a sectional view taken along the line A-A in FIG. FIG. 5 is a sectional view taken along line BB in FIG. 3. FIG. 2 is a detailed perspective view of essential parts showing the substrate structure of the semiconductor laser device shown in FIG. 3. FIG. FIG. 7 is a characteristic diagram showing the current versus optical output characteristics of the semiconductor laser device shown in FIG. 3. FIG. 2 is a spectrum diagram of the semiconductor laser device shown in FIG. 3. K...GaAs substrate, C...Current confinement layer, 3.
...P-type cladding layer, Ri...active layer, j...n
mold cladding layer, 2... cap layer, 76. ?・・・
・Resonator end face. 171 Patent Attorneys Aihiko Fukushi (other names) Ren Figure θ

Claims (1)

【特許請求の範囲】[Claims] l 共振器端面近くでストライプ幅が広く、共振器内方
でストライプ幅が狭くなる電流狭窄川内部ストライプ溝
を有し、該ストライプ溝上に堆積されたレーザ動作用結
晶層の活性層厚を共振器端面近くで厚く形成したことを
特徴とする半導体レーザ素子。
l Has an internal stripe groove in which the stripe width is wide near the cavity end face and becomes narrower inside the cavity, and the active layer thickness of the crystal layer for laser operation deposited on the stripe groove is A semiconductor laser device characterized in that it is formed thick near the end face.
JP19793582A 1982-11-10 1982-11-10 Semiconductor laser element Granted JPS5987888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19793582A JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19793582A JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS5987888A true JPS5987888A (en) 1984-05-21
JPH05875B2 JPH05875B2 (en) 1993-01-06

Family

ID=16382733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19793582A Granted JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS5987888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302732A2 (en) * 1987-08-04 1989-02-08 Sharp Kabushiki Kaisha A semiconductor laser device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536932A (en) * 1978-09-06 1980-03-14 Toshiba Corp Manufacturing of light emitting element
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS5640293A (en) * 1979-09-11 1981-04-16 Nec Corp Semiconductor laser
JPS59175182A (en) * 1983-03-23 1984-10-03 Sharp Corp Semiconductor laser element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536932A (en) * 1978-09-06 1980-03-14 Toshiba Corp Manufacturing of light emitting element
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS5640293A (en) * 1979-09-11 1981-04-16 Nec Corp Semiconductor laser
JPS59175182A (en) * 1983-03-23 1984-10-03 Sharp Corp Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302732A2 (en) * 1987-08-04 1989-02-08 Sharp Kabushiki Kaisha A semiconductor laser device
US4926431A (en) * 1987-08-04 1990-05-15 Sharp Kabushiki Kaisha Semiconductor laser device which is stable for a long period of time

Also Published As

Publication number Publication date
JPH05875B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
JPS60150682A (en) Semiconductor laser element
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPS5987888A (en) Semiconductor laser element
JPS63108788A (en) Optical integrated circuit
JPH0449273B2 (en)
JPS59165481A (en) Distributed feedback type semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS5990982A (en) Semiconductor laser element
JP2555197B2 (en) Semiconductor laser device
JPH0422033B2 (en)
JPS5911690A (en) Semiconductor laser device
KR100284765B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS59172287A (en) Semiconductor laser element
JPS6010795A (en) Semiconductor laser element
JPH01132191A (en) Semiconductor laser element
JPH0550158B2 (en)
JPS6142188A (en) Semiconductor laser device
JPS594870B2 (en) semiconductor light emitting device
JPH02257691A (en) Integrated type semiconductor laser
JPS60170992A (en) Optical integrated circuit
JPS61161786A (en) Semiconductor laser device
JPH09260773A (en) Semiconductor laser device and its manufacture
JPH06125147A (en) Semiconductor laser and manufacture thereof
JPS59104172A (en) Semiconductor laser element
JPH09223843A (en) Self-oscillation type semiconductor laser and manufacture thereof