JPS60170992A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPS60170992A
JPS60170992A JP59026163A JP2616384A JPS60170992A JP S60170992 A JPS60170992 A JP S60170992A JP 59026163 A JP59026163 A JP 59026163A JP 2616384 A JP2616384 A JP 2616384A JP S60170992 A JPS60170992 A JP S60170992A
Authority
JP
Japan
Prior art keywords
laser
wave path
elements
coupling
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59026163A
Other languages
Japanese (ja)
Inventor
Shinzo Suzaki
慎三 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59026163A priority Critical patent/JPS60170992A/en
Publication of JPS60170992A publication Critical patent/JPS60170992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To attain a high industrial productivity by a method wherein a plurality of photo elements provided in a single substrate is intercommunicated in an outer wave path so that laser coupling of the photo elements with the outer wave path may be properly established. CONSTITUTION:A laser-emitting element 14 and laser-receiving element 13 are formed on a semiconductor substrate 1. The element 14 is of a distributed feedback type, with the surface of diffraction lattice 4 provided on the substrate 1 facing an activation layer 3 inside the element 14. The element 13 is again of the distributed feedback type, incorporating a lattice surface 4 provided within a mode selecting feature within. An end face 24 of the element 13 is a crystal cleavage face wherefrom a laser beam is emitted. Between the elements 14, 13, an outer wave path 9 is provided, not furnished with a diffraction lattice face, for the establishment of optical coupling. The beam outputted by the element 14 is led through a wave path 9 to be guided into the element 13 and the yielded power is monitored there. With the circuit being constructed as such, the growth is effected with ease on crystals between the wave paths inside the elements 14, 13 constituting the outer wave path 9, ensuring operation even in the presence of coupling inefficiency. This results in an excellent industrial productivity.

Description

【発明の詳細な説明】 〈発明の分野〉 本発明は、同一の半導体基板上に分布帰還型のレーザ発
光素子、受光素子、変調素子等を形成し各素子間を外部
導波路にて光結合させた光集積回路に関するものである
[Detailed Description of the Invention] <Field of the Invention> The present invention is directed to forming a distributed feedback type laser emitting element, a light receiving element, a modulating element, etc. on the same semiconductor substrate, and optically coupling between each element using an external waveguide. The invention relates to optical integrated circuits.

〈従来技術とその問題点〉 従来、In、P等の化合物半導体基板上に、レーザ発光
素子、受光素子あるいは変調素子等を成長させ、光集積
回路を形成するものとして例えば第1図のものが知られ
ている。
<Prior art and its problems> Conventionally, a laser emitting element, a light receiving element, a modulating element, etc. are grown on a compound semiconductor substrate of In, P, etc. to form an optical integrated circuit, such as the one shown in Fig. 1. Are known.

第1図は分布反射型のレーデ発光素子が形成された光集
積回路のレーザ光軸に沿った横断面図であって、InP
化合物半導体基板1上のバッファ層4 (Inp)に、
光の外部導波路(領域)9に対応して、モード選択性を
有する定ピツチの回折格子面4がホト・リソグラフィー
にょシ一様に形成され′ているものである。
FIG. 1 is a cross-sectional view along the laser optical axis of an optical integrated circuit in which a distributed reflection type radar emitting device is formed, and is an InP
In the buffer layer 4 (Inp) on the compound semiconductor substrate 1,
Corresponding to the external optical waveguide (region) 9, a diffraction grating surface 4 having a constant pitch and having mode selectivity is uniformly formed by photolithography.

そしてこのレーデ発光素子1oは外部に分布反射器aを
有する分布反射型であシ、この素子よ多発光したレーザ
光の出力は常時定パワーとなるように受光素子12(あ
るいは11)によってモニターされている。
The radar light emitting element 1o is of a distributed reflection type having an external distributed reflector a, and the output of multiple laser beams emitted from this element is monitored by a light receiving element 12 (or 11) so that the power is always constant. ing.

さて上記の如く分布反射型のレーザ発光素子を有してい
て、他の光素子との結合を、モード選択性を有する回折
格子が形成された外部光導波路にて行なう方式の光集積
回路は、工業生産性の面で以下に示すような問題点を有
していた。
Now, as mentioned above, an optical integrated circuit having a distributed reflection type laser emitting element and coupling with other optical elements is performed through an external optical waveguide in which a diffraction grating having mode selectivity is formed. It had the following problems in terms of industrial productivity.

、 すなわち、外部導波路自体にモード選択性を有して
いるだめ受光、変調素子等を通過した際に発生す多次モ
ードを可及的に抑制する効果は十分にあるが、外部導波
路に作られる回折格子面の端部と、各素子間の内部導波
路(あるいは活性導波路)間の結晶成長が難かしく、結
合部にて乱反射等の不腋合が生じ、光の結合効率が非常
に悪化する傾向がめった。このためしきい値電流等の特
性に大きな影響を与え実用に供しうるものの製作はなが
なか困莫1#であった。
In other words, since the external waveguide itself has mode selectivity, it is effective in suppressing as much as possible the multi-order modes generated when light passes through the receiving and modulating elements, etc., but the external waveguide itself has mode selectivity. It is difficult to grow crystals between the edges of the diffraction grating plane and the internal waveguides (or active waveguides) between each element, and mismatches such as diffuse reflection occur at the coupling parts, resulting in extremely low light coupling efficiency. It rarely tends to get worse. For this reason, it has been very difficult to manufacture a device that can be put to practical use because it has a large effect on characteristics such as threshold current.

〈発明の目的〉 本発明は、このような従来技術の問題点に鑑みなされた
ものであって、その目的とするところは、外部の光導波
路とレーザ発光素子等の光素子間のレーザ光結合が良好
で、工業生産性に浸れた分布帰還型の光集積回路を提供
することにある。
<Object of the Invention> The present invention has been made in view of the problems of the prior art, and its purpose is to improve laser light coupling between an external optical waveguide and an optical element such as a laser emitting element. The object of the present invention is to provide a distributed feedback type optical integrated circuit with good performance and industrial productivity.

〈発明の構成〉 本発明は、上記の問題点を解決するために、半導体基板
上にエピタキシャル成長される光素子を分布帰還型とし
各素子間に回折格子面を有しない低損失の光導波路を形
成したことを特徴とするものである。
<Structure of the Invention> In order to solve the above-mentioned problems, the present invention employs a distributed feedback type optical element epitaxially grown on a semiconductor substrate to form a low-loss optical waveguide having no diffraction grating plane between each element. It is characterized by the fact that

〈実施例〉 かかる本発明の一実施例、及びその製造過程を示すと第
2図、第3図の如くなる。
<Example> An example of the present invention and its manufacturing process are shown in FIGS. 2 and 3.

第2図には半導体基板1上にレーザ発光素子14と、例
えば受光素子13が形成されている場合(受光器付きレ
ーザ発光素子)の光軸に沿った横断面図が示されている
FIG. 2 shows a cross-sectional view along the optical axis of a case where a laser emitting element 14 and, for example, a light receiving element 13 are formed on the semiconductor substrate 1 (laser emitting element with a light receiver).

とのレーザ発光素子は、素子内部の活性層3に対応する
半導体基板1上に回折格子面4を有する分布帰還型素子
であって、好ましくは破線17にて示される如く、レー
ザ光軸に対して斜め方向に結晶の一端面をワイヤーソー
等で荒らして切断するか、あるいは斜めファセットを形
成する。
The laser emitting device is a distributed feedback type device having a diffraction grating surface 4 on a semiconductor substrate 1 corresponding to an active layer 3 inside the device, preferably with respect to the laser optical axis as shown by a broken line 17. One end surface of the crystal is roughened and cut in an oblique direction using a wire saw or the like, or an oblique facet is formed.

受光素子は発光素子と同様に内部にモード選択性を有す
る回折格子面4を有する分布帰還型の素子である。
Like the light emitting element, the light receiving element is a distributed feedback type element having a diffraction grating surface 4 having mode selectivity therein.

受光素子13の一端面24は結晶へき開面をなしていて
、この面より23の方向にレーザ光が出射される。
One end surface 24 of the light-receiving element 13 forms a crystal cleavage plane, and a laser beam is emitted from this surface in a direction 23.

そして、h1J記2素子間には光結合のために、低損失
かつ両側の導波路層と等側屈折率を−等しくするために
厚みを制御した外部導波路9(回折格子面を有しない)
が形成されていて、レーザ発光素子の出力光は外部導波
路9を導かれ受光素子13に入力し、出力パワーがモニ
ターされるようになっている。
For optical coupling between the two elements h1J, there is an external waveguide 9 (not having a diffraction grating surface) whose thickness is controlled to have low loss and equal refractive index to the waveguide layers on both sides.
is formed, and the output light of the laser emitting element is guided through an external waveguide 9 and input to the light receiving element 13, and the output power is monitored.

なお、上述の説明に於て!d、13を受光素子としたが
これを変調素子としてもよい。同様な構成で半導体基板
上に光素子を複数個形成することは任意に可能である。
In addition, in the above explanation! Although d and 13 are used as light receiving elements, they may also be used as modulation elements. It is possible to arbitrarily form a plurality of optical elements with a similar configuration on a semiconductor substrate.

ちなみに各素子のレーザ光軸方向の長さは、レーザ素子
が300〜1000μm1光導波路が100〜1000
μm1受光素子が200〜500μm1変調素子が20
0〜300μmである。
By the way, the length of each element in the laser optical axis direction is 300 to 1000 μm for the laser element and 100 to 1000 μm for the optical waveguide.
μm 1 light receiving element is 200 to 500 μm 1 modulation element is 20
It is 0 to 300 μm.

次に第3図にもとづいて、この製造方法を順次説明して
ゆく。
Next, this manufacturing method will be sequentially explained based on FIG.

(1) n−InP半導体基板1上に、ホト・リソグラ
フィーによって定ピツチの回折格子面4を形成し、その
上にn=InGaAsP光導波路層19、InGaAs
P活性層3、p−InPクラッド層8、p−InGaA
sPキャップ層16を順次エピタキシャル成長させる(
第3図(a))。
(1) A diffraction grating surface 4 with a constant pitch is formed on an n-InP semiconductor substrate 1 by photolithography, and on top of that, an n=InGaAsP optical waveguide layer 19, an InGaAs
P active layer 3, p-InP cladding layer 8, p-InGaA
The sP cap layer 16 is epitaxially grown (
Figure 3(a)).

(2)外部、93波路となる領域9を基板面までエツチ
ングする(第3図(b))。
(2) Externally, the region 9 that will become the 93 wave path is etched down to the substrate surface (FIG. 3(b)).

(3)外部導波路領域9に、I nGaAs P導波路
層15とInP外部クラッド層7をエピタキシャル成長
させて2.外部導波路を作る(第3図(Q)。あるいは
InP外部クラッド層7を成長させず、InGaAsP
導波路層上に、SiO2,5t31”14等の保護膜7
を形成しでもよい。
(3) Epitaxially growing an InGaAsP waveguide layer 15 and an InP outer cladding layer 7 in the outer waveguide region 9; Create an external waveguide (Fig. 3 (Q). Alternatively, do not grow the InP external cladding layer 7 and grow an InGaAsP
On the waveguide layer, a protective film 7 of SiO2, 5t31"14, etc.
may be formed.

(4) レーデ軸方向に、SiO2等の耐エツチング保
護膜をストライプ状に作シ、その脇をエツチングによシ
削る(第3図(d))。
(4) An etching-resistant protective film such as SiO2 is formed in a stripe shape in the direction of the radar axis, and the sides of the film are etched away (FIG. 3(d)).

(5) 両脇を埋め込むようにp−InP層19 、n
−InP層20をエピタキシャル成長させ電流狭搾層と
し、ラッピングした後電流注入領域を残して保護膜21
を形成し、次に両面に金属電極部22を蒸着する。
(5) P-InP layers 19, n embedded on both sides
- The InP layer 20 is epitaxially grown to become a current confinement layer, and after lapping, a current injection region is left and a protective film 21 is formed.
is formed, and then metal electrode portions 22 are deposited on both sides.

そしてアニールの後にチップ化する(第3図(e))。After annealing, it is made into chips (FIG. 3(e)).

ここで各層に於けるλ(発振波長組成)を示すと第1表
の如くなる。
Table 1 shows the λ (oscillation wavelength composition) in each layer.

第1表 上記の説明ではn型のInP基板を用いているが、p型
の基板を用いる場合には、以後逆の導電型の結晶層を成
長させれば良い。さらに発振波長によってはGaAs基
板を用い、GaAs系の組成を有する結晶成長を施すよ
うにする。
Table 1 In the above description, an n-type InP substrate is used, but if a p-type substrate is used, a crystal layer of the opposite conductivity type may be grown thereafter. Further, depending on the oscillation wavelength, a GaAs substrate may be used to grow a crystal having a GaAs-based composition.

また、実施例では半導体基板上に直接回折格子面を形成
する例を示したが、基板上に・ぐッファ層(InPまた
はGaAs基板 )を成長させた後に回折格子面を形成
させてもよい。
Further, in the embodiment, an example was shown in which the diffraction grating surface was formed directly on the semiconductor substrate, but the diffraction grating surface may be formed after growing a guffer layer (InP or GaAs substrate) on the substrate.

次に、光素子の結合型としては、直接結合型、L −0
・C(Large・0ptical・Cavity )
結合型、I−T−G (Integrated Twi
n−Guide )型等の種々の結合型への適用が可能
である。
Next, as coupling types of optical elements, direct coupling type, L -0
・C (Large・0ptical・Cavity)
Integrated Twi
It can be applied to various bond types such as n-Guide) type.

〈発明の効果〉 本発明は、以上の説明から明らかなように、分布帰還型
の光素子を同一ウニバー上に複数個形成し、各菓子間を
回折格子を有しない外部導波路にて結合させるものであ
るため、外部導波路と光S;子の内部導波路間における
結晶成長が容易となシ、結合効率が悪くても動作するよ
うになる。
<Effects of the Invention> As is clear from the above description, the present invention forms a plurality of distributed feedback type optical elements on the same uniform bar, and couples each confectionery with an external waveguide that does not have a diffraction grating. Therefore, crystal growth between the external waveguide and the internal optical waveguide is easy, and operation can be achieved even if the coupling efficiency is poor.

このため製造時の歩留まりが非常に良くなシ、1渠生産
性に優れた光集積回路を提供することが可能となったも
のである。
For this reason, it has become possible to provide an optical integrated circuit with a very high manufacturing yield and excellent single-channel productivity.

捷だ、発光素子の一面をレーザ光軸に対して斜めに形成
する(好ましくは荒らして形成する)場合には、光軸モ
ード発振(ファブリペローモード)を抑制する効果、及
びレーザ進行方向を規定できる効果を持たせることがで
きる。
However, when one surface of the light emitting element is formed obliquely to the laser optical axis (preferably formed by roughening it), it is effective to suppress optical axis mode oscillation (Fabry-Perot mode) and to define the laser traveling direction. It can have the desired effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光集積回路に於ける、レーザ光軸に沿っ
た横断面図。 第2図は本発明に於ける光集積回路のレーザ光軸に沿っ
た横断面図。 第3図は本発明に於ける光集積回路の製造過程を示すも
のであって、(a) 、 (b) 、 (c)はレーザ
光軸に沿った横断面図を、(d) 、 (e)はレーザ
光軸に対して畢直な面の横断面図である。 図中、1・・・半祷体基板、3・・・活性#j、4・・
・回折格子面、7・・・クラッド層、9・・・外部導波
路、13−受光(変調)素子、14・・・レーザ発光素
子、15・・・光尋波路フ’j+ 0 出 願 人 藤倉・電線株式会社 代理人 竹−内 守 第1図 ?l
FIG. 1 is a cross-sectional view along the laser optical axis of a conventional optical integrated circuit. FIG. 2 is a cross-sectional view along the laser optical axis of the optical integrated circuit according to the present invention. FIG. 3 shows the manufacturing process of the optical integrated circuit according to the present invention, in which (a), (b), and (c) are cross-sectional views taken along the laser optical axis, and (d), ( e) is a cross-sectional view of a plane perpendicular to the laser optical axis. In the figure, 1... Half-body substrate, 3... Active #j, 4...
・Diffraction grating surface, 7... Cladding layer, 9... External waveguide, 13- Light receiving (modulating) element, 14... Laser emitting element, 15... Optical waveguide F'j+ 0 Applicant Fujikura Electric Cable Co., Ltd. Agent Mamoru Takeuchi Figure 1? l

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に直接か、あるいは該半導体基板上に
成長されたバッファ層上にモード選択性を有する回折格
子面が形成されている分布帰還型の光素子が複数個形成
されていて、各素子間の半導体基板上に直接か、あるい
は該半導体基板上に成長されたバッファ層上に光導波路
層が形成されていることを特徴とする光集積回路。
1. A plurality of distributed feedback optical elements are formed, each having a mode-selective diffraction grating plane formed directly on a semiconductor substrate or on a buffer layer grown on the semiconductor substrate. An optical integrated circuit characterized in that an optical waveguide layer is formed directly on a semiconductor substrate between elements or on a buffer layer grown on the semiconductor substrate.
JP59026163A 1984-02-16 1984-02-16 Optical integrated circuit Pending JPS60170992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026163A JPS60170992A (en) 1984-02-16 1984-02-16 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026163A JPS60170992A (en) 1984-02-16 1984-02-16 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPS60170992A true JPS60170992A (en) 1985-09-04

Family

ID=12185879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026163A Pending JPS60170992A (en) 1984-02-16 1984-02-16 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPS60170992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307783A (en) * 1991-01-23 1992-10-29 Philips Gloeilampenfab:Nv Semeconductor diode laser
US6294758B1 (en) 1998-01-28 2001-09-25 Toto Ltd Heat radiator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144989A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Semiconductor light emitting device
JPS58186986A (en) * 1982-04-27 1983-11-01 Kokusai Denshin Denwa Co Ltd <Kdd> Distributed feedback semiconductor laser with monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144989A (en) * 1976-05-28 1977-12-02 Hitachi Ltd Semiconductor light emitting device
JPS58186986A (en) * 1982-04-27 1983-11-01 Kokusai Denshin Denwa Co Ltd <Kdd> Distributed feedback semiconductor laser with monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307783A (en) * 1991-01-23 1992-10-29 Philips Gloeilampenfab:Nv Semeconductor diode laser
US6294758B1 (en) 1998-01-28 2001-09-25 Toto Ltd Heat radiator

Similar Documents

Publication Publication Date Title
US4658403A (en) Optical element in semiconductor laser device having a diffraction grating and improved resonance characteristics
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
JPH0256837B2 (en)
JPH11220212A (en) Optical element and its drive method, and semiconductor laser element
JPH08220358A (en) Waveguide type optical element
JPS63164382A (en) Semiconductor laser device
US4644552A (en) Semiconductor laser
JPS6328520B2 (en)
JPS60170992A (en) Optical integrated circuit
JPS63111689A (en) Distributed feedback type semiconductor laser
JPH11163456A (en) Semiconductor laser
JPS6114787A (en) Distributed feedback type semiconductor laser
JPH0147031B2 (en)
JPS5992592A (en) Semiconductor light emitting element
JPS60152086A (en) Semiconductor laser device
JPH0449273B2 (en)
JPS6295886A (en) Distribution feedback construction semiconductor laser
JPS59127864A (en) Semiconductor light-emitting element
JPH0230195B2 (en)
WO2023227189A1 (en) Tilted semiconductor laser
JPH0673388B2 (en) Single-axis mode semiconductor laser
JPS60165782A (en) Semiconductor laser
JPS60165780A (en) Semiconductor laser device
JPS6386581A (en) Light emitting diode
JPS58105586A (en) Semiconductor laser device