JPS63164382A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63164382A
JPS63164382A JP61312021A JP31202186A JPS63164382A JP S63164382 A JPS63164382 A JP S63164382A JP 61312021 A JP61312021 A JP 61312021A JP 31202186 A JP31202186 A JP 31202186A JP S63164382 A JPS63164382 A JP S63164382A
Authority
JP
Japan
Prior art keywords
resonator
diffraction grating
ring
semiconductor laser
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61312021A
Other languages
Japanese (ja)
Inventor
Jiyun Odani
順 雄谷
Yasushi Matsui
松井 康
Tomoaki Uno
智昭 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61312021A priority Critical patent/JPS63164382A/en
Publication of JPS63164382A publication Critical patent/JPS63164382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove the oscillation of a Fabry-Perot mode and unstable two mode oscillation, which have been at issue in a distributed feedback semiconductor laser with a conventional cleavage plane, simultaneously, and to enable stable single longitudinal mode oscillation by forming a laser resonator to a ring shape and shaping a diffraction grating along the resonator. CONSTITUTION:An N-type InP buffer layer 8, an InGaAsP active layer 9, an InGaAsP waveguide layer 10, a diffraction grating 11 and a P-type clad layer 12 are laminated onto an N-type InP substrate 7 in succession, and a ring-shaped resonator 15, the surface and the rear of which have electrodes 13, 14, is formed. The diffraction grating 11 is shaped smoothly to be connected along the ring- shaped resonator 15. Accordingly, light emission in the active layer 9 is confined into the ring resonator 15, and the loss only of a mode simultaneously satisfying conditions determined by the period of the diffraction grating in modes satisfying a large number of ring resonance conditions is reduced selectively, thus acquiring a semiconductor laser performing stable single longitudinal mode oscillation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光フアイバ通信用の光集積回路の光源に適した
単一縦モード発振の半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a single longitudinal mode oscillation semiconductor laser device suitable as a light source for an optical integrated circuit for optical fiber communication.

従来の技術 光フアイバ通信では、光ファイバが波長分散をもってい
るため、光源にスペクトル広がりがある場合には、伝送
帯域が著しく制限される。このため、長距離・大容量伝
送システムでは、光源として単一縦モード発振の半導体
レーザが要求される。
In conventional optical fiber communications, since optical fibers have chromatic dispersion, if the light source has spectral broadening, the transmission band is significantly limited. For this reason, long-distance, large-capacity transmission systems require a single longitudinal mode oscillation semiconductor laser as a light source.

単一縦モード発振を行う半導体レーザとしては、第3図
に示すように活性層と回折格子を集積化した分布帰還型
半導体レーザがある。第3図において、1はM型InP
バッファ層、2はInGa人SP活性層、3はInGa
AsP導波路層、4は回折格子、6はp型InPクラッ
ド層である。このようなレーザでは、回折格子の周期に
よって決定される波長で単一縦モード発振を行う。
As a semiconductor laser that performs single longitudinal mode oscillation, there is a distributed feedback semiconductor laser in which an active layer and a diffraction grating are integrated, as shown in FIG. In FIG. 3, 1 is M-type InP
Buffer layer, 2 is InGa SP active layer, 3 is InGa
AsP waveguide layer, 4 is a diffraction grating, and 6 is a p-type InP cladding layer. Such lasers oscillate in a single longitudinal mode at a wavelength determined by the period of the diffraction grating.

しかしながら、通常は出射端面6として結晶のへき開面
を利用しているため、両端面で7アブリーベロー共振器
を構成し、高電流注入時あるいは大きな温度変化により
回折格子によって決定される波長とは独立に、ファプリ
ーベロー共振器のモードでも発振してしまう場合が多い
。また、回折格子によって決定される発振波長もへき開
面が回折格子のどの位置にあるかによって変化し、二つ
の波長での発振かまたは二つの波長間でのモードの飛び
が発生する場合も多く、安定な単一モードで発振するも
のが少なかった。
However, since the cleavage plane of the crystal is normally used as the output end face 6, a 7-abry bellows resonator is formed on both end faces, and when a high current is injected or due to a large temperature change, the wavelength determined by the diffraction grating is independent of the wavelength determined by the diffraction grating. , it often oscillates even in the Fapley bellows resonator mode. In addition, the oscillation wavelength determined by the diffraction grating changes depending on the position of the cleavage plane on the diffraction grating, and oscillation at two wavelengths or mode skipping between two wavelengths often occurs. There were few oscillations in a stable single mode.

発明が解決しようとする問題点 上記従来の技術で述べたように、分布帰還型半導体レー
ザは、へき開面を有する場合には、ニモード発振やファ
プリーペローモード発振が生じ、単一縦モード発振の歩
留りが悪かった。
Problems to be Solved by the Invention As mentioned above in the prior art section, when a distributed feedback semiconductor laser has a cleavage plane, two-mode oscillation or Fapley-Perot mode oscillation occurs, and single longitudinal mode oscillation occurs. Yield was poor.

本発明は上記従来の問題点を解決するもので、レーザ共
振器をリング状とし、回折格子が共振器に沿ってなめら
かにつながるように形成することによシ、安定な単一縦
モード発振の半導体レーザを得ることを目的としている
The present invention solves the above-mentioned conventional problems, and by forming the laser resonator in a ring shape and forming the diffraction grating so as to smoothly connect along the resonator, stable single longitudinal mode oscillation can be achieved. The aim is to obtain a semiconductor laser.

問題点を解決するための手段 本発明の半導体レーザ装置は、半導体基板上に、部分的
に形成された少なくとも活性層と閉込め層を含む半導体
レーザの活性領域と、前記活性領域に近接して前記半導
体レーザの共振器に沿って形成された回折格子と、前記
活性領域での発光を出力として取り出し得る光導波路と
を備えた構造とし、前記半導体レーザの共振器がリング
状に形成され、前記回折格子が前記リング状共振器に沿
ってなめらかにつながるように形成されて単一縦モード
発振を行うようにした構成である。
Means for Solving the Problems The semiconductor laser device of the present invention includes an active region of a semiconductor laser including at least an active layer and a confinement layer partially formed on a semiconductor substrate, and a semiconductor laser device in the vicinity of the active region. The structure includes a diffraction grating formed along the resonator of the semiconductor laser, and an optical waveguide capable of extracting light emitted from the active region as an output, and the resonator of the semiconductor laser is formed in a ring shape, and the resonator of the semiconductor laser is formed in a ring shape. This configuration is such that a diffraction grating is formed so as to be smoothly connected along the ring-shaped resonator to perform single longitudinal mode oscillation.

作用 本発明は、上記した構成により、分布帰還型のす/グレ
ーザとなっている。分布帰還型半導体レーザ(DFBレ
ーザ)の発振波長は、次式の発振条件で与えられる。
Operation The present invention is a distributed feedback type laser/grazer with the above-described configuration. The oscillation wavelength of a distributed feedback semiconductor laser (DFB laser) is given by the following oscillation condition.

λ1 −・N=a      ・・・・・・・・・・・・(1
)n ここで、Nは回折格子の次数で自然数、aは回折格子の
間隔、λ1は真空中の波長、nはレーザ媒質の屈折率で
ある。
λ1 −・N=a ・・・・・・・・・・・・(1
) n Here, N is the order of the diffraction grating and is a natural number, a is the interval between the diffraction gratings, λ1 is the wavelength in vacuum, and n is the refractive index of the laser medium.

通常のへき開面を有するDFBレーザの発振波長モード
は、(1)式で与えられるDFBモードの他にこれとは
独立に波長間隔λ2/2nl の77プリーペローモー
ドが存在する。DFBモードと71プリーペローモード
は独立で波長は一致していない。そのため、両モードの
発振しきい利得がほぼ等しくなれば両モードで発振して
しまう。
The oscillation wavelength mode of a DFB laser having a normal cleavage plane includes, in addition to the DFB mode given by equation (1), a 77 Prie-Perot mode with a wavelength interval of λ2/2nl. The DFB mode and the 71 Preperot mode are independent and their wavelengths do not match. Therefore, if the oscillation threshold gains of both modes are approximately equal, oscillation will occur in both modes.

これに対して本発明では、回折格子がリング状共振器に
沿ってなめらかにつながるように形成されているので、
回折格子の間隔aの整数倍がリング共振器長lになって
おシ、一方、リング共振器の共振波長はmを整数として
次式を満足する。
In contrast, in the present invention, the diffraction grating is formed so as to be smoothly connected along the ring-shaped resonator.
The ring resonator length l is an integer multiple of the spacing a of the diffraction gratings, and the resonant wavelength of the ring resonator satisfies the following equation, where m is an integer.

λ −・m=1l      ・・・・・・・・・・・・・
・・(2)n リング共振モード間隔もλ2/2nl  で多数存在す
るが、(1)式と(2)式より、DFBモードとリング
共振モードの条件は同時に満たされている。
λ −・m=1l ・・・・・・・・・・・・・・・
(2) There are many n ring resonance mode intervals of λ2/2nl, but from equations (1) and (2), the conditions for the DFB mode and the ring resonance mode are simultaneously satisfied.

従って、はとんど損失差のない多数のリング共振モード
のうち、回折格子によって選択された波長の光のみが選
択的に損失が小さくなシ、このモードで単一モード発振
を行う。
Therefore, among a large number of ring resonant modes with almost no difference in loss, only the light of the wavelength selected by the diffraction grating has a small loss, and single mode oscillation is performed in this mode.

実施例 第1図に本発明の実施例を構成している半導体レーザの
断面図を示す。ムは平面図、Bは側面図である。図中、
7はn型1nP基板、8はn型1nPバックァ層、9は
InGaム8P活性層、10はInGaAsF導波路層
、11は回折格子、12はp型クラッド層、13.14
は電極であシ、す、ング状の共振器15が形成されてい
る。また、16は光出力域シ出し用の光導波路である。
Embodiment FIG. 1 shows a sectional view of a semiconductor laser constituting an embodiment of the present invention. B is a plan view, and B is a side view. In the figure,
7 is an n-type 1nP substrate, 8 is an n-type 1nP backing layer, 9 is an InGaM 8P active layer, 10 is an InGaAsF waveguide layer, 11 is a diffraction grating, 12 is a p-type cladding layer, 13.14
A ring-shaped resonator 15 is formed with electrodes. Further, 16 is an optical waveguide for determining the optical output range.

活性層e内での発光は、リング共振器16内に閉じ込め
られ、多数のす/グ共振条件を満足するモードのうち、
回折格子の周期によって決まる条件を同時に満足するモ
ードのみが選択的に損失が小さくなり、レーザ発振を行
う。
The light emission within the active layer e is confined within the ring resonator 16, and among the many modes satisfying the S/G resonance condition,
Only a mode that simultaneously satisfies the conditions determined by the period of the diffraction grating has a selectively reduced loss and oscillates as a laser.

第2図に本発明の第2の実施例の上面図を示す。FIG. 2 shows a top view of a second embodiment of the invention.

第1図においては、光導波層の表面にリング状の共振器
に沿って回折格子を形成したが、第2図では、リング状
の共振器の側面に沿って回折格子17が形成されている
ことを除いては第1図の場合と同様の構成を有する。
In FIG. 1, a diffraction grating is formed along the ring-shaped resonator on the surface of the optical waveguide layer, but in FIG. 2, a diffraction grating 17 is formed along the side surface of the ring-shaped resonator. Except for this, it has the same configuration as the case of FIG.

本実施例では、材料をInP基板上のInGaAgP系
結晶としたが、所望の発振波長に応じて他の化合物半導
体材料、例えば、GaAs基板上のAlGaAs系結晶
等であっても本発明の構造は容易に実現できる。
In this example, the material is an InGaAgP crystal on an InP substrate, but the structure of the present invention can be applied to other compound semiconductor materials, such as AlGaAs crystal on a GaAs substrate, depending on the desired oscillation wavelength. It can be easily achieved.

発明の効果 以上述べてきたように、本発明は、レーザ共振器をリン
グ状とし、共振器に沿って回折格子を形成することによ
り、従来のへき開面を有する分布帰還型半導体レーザで
問題となっていたファブリペローモードの発振及び不安
定なニモード発振を同時に除去して安定な単一縦モード
発振を得ることができ、長距離、大容量光伝送用光源、
特に光集積回路用光源として有効である。
Effects of the Invention As described above, the present invention solves the problems encountered in conventional distributed feedback semiconductor lasers having a cleavage plane by forming a ring-shaped laser resonator and forming a diffraction grating along the resonator. It is possible to obtain stable single longitudinal mode oscillation by simultaneously removing the Fabry-Perot mode oscillation and unstable bimode oscillation, which has been associated with long-distance, large-capacity optical transmission.
It is particularly effective as a light source for optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図囚は本発明の第1の実施例を構成している半導体
レーザ装置の上面図、第1図(B)は同装置の断面図、
第2図は本発明の第2の実施例の上面図、第3図は従来
例の分布帰還型半導体レーザの前面図である。 7・・・・・・基板、9・・・・・・活性層、11.1
7・・・・・・回折格子、16・・・・・・す/グ共振
器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
某叔
FIG. 1(B) is a top view of a semiconductor laser device constituting the first embodiment of the present invention, and FIG. 1(B) is a cross-sectional view of the same device.
FIG. 2 is a top view of a second embodiment of the present invention, and FIG. 3 is a front view of a conventional distributed feedback semiconductor laser. 7...Substrate, 9...Active layer, 11.1
7...Diffraction grating, 16...S/G resonator. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
a certain uncle

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、部分的に形成された少なくとも活性層
と閉込め層を含む半導体レーザの活性領域と、前記活性
領域に近接して前記半導体レーザの共振器に沿って形成
された回折格子と、前記活性領域での発光を出力として
取り出し得る光導波路とを備えた構造とし、前記半導体
レーザの共振器がリング状に形成され、前記回折格子が
前記リング状共振器に沿って滑らかにつながるように形
成されて単一縦モード発振を行うようにした半導体レー
ザ装置。
an active region of a semiconductor laser including at least an active layer and a confinement layer partially formed on a semiconductor substrate; a diffraction grating formed along a resonator of the semiconductor laser in proximity to the active region; and an optical waveguide capable of extracting light emitted from the active region as an output, the resonator of the semiconductor laser is formed in a ring shape, and the diffraction grating is smoothly connected along the ring-shaped resonator. A semiconductor laser device formed to perform single longitudinal mode oscillation.
JP61312021A 1986-12-26 1986-12-26 Semiconductor laser device Pending JPS63164382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312021A JPS63164382A (en) 1986-12-26 1986-12-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312021A JPS63164382A (en) 1986-12-26 1986-12-26 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63164382A true JPS63164382A (en) 1988-07-07

Family

ID=18024261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312021A Pending JPS63164382A (en) 1986-12-26 1986-12-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63164382A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU705786B2 (en) * 1995-12-01 1999-06-03 University Of Sydney, The Distributed feedback ring laser
US6272165B1 (en) 1995-12-01 2001-08-07 The University Of Sydney Distributed feedback ring laser
US7038436B2 (en) 2003-06-24 2006-05-02 Rohm Co., Ltd. Switching type dc-dc converter for generating a constant output voltage
US7184629B2 (en) 2005-04-26 2007-02-27 Harris Corporation Spiral waveguide slow wave resonator structure
US7187827B2 (en) * 2005-04-26 2007-03-06 Harris Corporation Coupled waveguide optical microresonator
US7224866B2 (en) 2005-04-26 2007-05-29 Harris Corporation Apparatus and method for forming an optical microresonator
US7236679B2 (en) 2005-04-26 2007-06-26 Harris Corporation Optical microresonator coupling system and associated method
US7286734B2 (en) 2005-04-26 2007-10-23 Harris Corporation Optical microresonator with coupling elements for changing light direction
US7346241B2 (en) 2005-04-26 2008-03-18 Harris Corporation Optical microresonator with microcylinder and circumferential coating forming resonant waveguides
US7424187B2 (en) 2005-04-26 2008-09-09 Harris Corporation Optical microresonator with resonant waveguide imparting polarization
US11239634B2 (en) * 2016-02-29 2022-02-01 Unm Rainforest Innovations Ring laser integrated with silicon-on-insulator waveguide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU705786B2 (en) * 1995-12-01 1999-06-03 University Of Sydney, The Distributed feedback ring laser
US6272165B1 (en) 1995-12-01 2001-08-07 The University Of Sydney Distributed feedback ring laser
US7038436B2 (en) 2003-06-24 2006-05-02 Rohm Co., Ltd. Switching type dc-dc converter for generating a constant output voltage
US7184629B2 (en) 2005-04-26 2007-02-27 Harris Corporation Spiral waveguide slow wave resonator structure
US7187827B2 (en) * 2005-04-26 2007-03-06 Harris Corporation Coupled waveguide optical microresonator
US7190860B2 (en) 2005-04-26 2007-03-13 Harris Corporation Spiral waveguide slow wave resonator structure
US7224866B2 (en) 2005-04-26 2007-05-29 Harris Corporation Apparatus and method for forming an optical microresonator
US7236679B2 (en) 2005-04-26 2007-06-26 Harris Corporation Optical microresonator coupling system and associated method
US7286734B2 (en) 2005-04-26 2007-10-23 Harris Corporation Optical microresonator with coupling elements for changing light direction
US7346241B2 (en) 2005-04-26 2008-03-18 Harris Corporation Optical microresonator with microcylinder and circumferential coating forming resonant waveguides
US7415178B2 (en) 2005-04-26 2008-08-19 Harris Corporation Spiral waveguide slow wave resonator structure
US7424187B2 (en) 2005-04-26 2008-09-09 Harris Corporation Optical microresonator with resonant waveguide imparting polarization
US7555179B2 (en) 2005-04-26 2009-06-30 Harris Corporation Optical microresonator with resonant waveguide imparting polarization
US11239634B2 (en) * 2016-02-29 2022-02-01 Unm Rainforest Innovations Ring laser integrated with silicon-on-insulator waveguide

Similar Documents

Publication Publication Date Title
US5699378A (en) Optical comb filters used with waveguide, laser and manufacturing method of same
US8005123B2 (en) Wavelength tunable laser
US6198863B1 (en) Optical filters
JP2009076942A (en) Distributed-feedback semiconductor laser, distributed-feedback semiconductor laser array, and optical module
JPH0817263B2 (en) Interferometer semiconductor laser
JPH0715087A (en) Single wavelength semiconductor laser
US7873082B2 (en) Semiconductor integrated device
JP3198338B2 (en) Semiconductor light emitting device
JPS63164382A (en) Semiconductor laser device
US6337868B1 (en) Distributed feedback semiconductor laser and a driving method therefor
JPH04142788A (en) Distributed feedback type semiconductor laser
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JPS61191093A (en) Semiconductor device
JPH11312846A (en) Distribution feedback type semiconductor laser comprising phase shift region of polarization dependence and optical transmitter and optical communication system using the same
JP6083644B2 (en) Integrated semiconductor light source
JPH08334796A (en) Optical wavelength conversion integrating element
JPH10261837A (en) Polarization-modulatable semiconductor laser having ring resonator, method for using it, and optical communication system using it
JP2017022247A (en) Wavelength selection device and tunable light source
JPH0147031B2 (en)
JPS63299291A (en) Semiconductor laser
JP2009087956A (en) External resonator type variable wavelength laser and semiconductor optical amplifier built into the same
JP3504830B2 (en) Wavelength conversion element
JP7189431B2 (en) Tunable laser
US20230089696A1 (en) Optical filter and wavelength tunable laser element
JP5034572B2 (en) Light source device