JPS63299291A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63299291A
JPS63299291A JP62134427A JP13442787A JPS63299291A JP S63299291 A JPS63299291 A JP S63299291A JP 62134427 A JP62134427 A JP 62134427A JP 13442787 A JP13442787 A JP 13442787A JP S63299291 A JPS63299291 A JP S63299291A
Authority
JP
Japan
Prior art keywords
region
wavelength
waveguide
light
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62134427A
Other languages
Japanese (ja)
Inventor
Katsuyuki Uko
宇高 勝之
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Shigeyuki Akiba
重幸 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP62134427A priority Critical patent/JPS63299291A/en
Publication of JPS63299291A publication Critical patent/JPS63299291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1025Extended cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make an oscillation wavelength variable by mutually adjusting a refractive index of a region by a method wherein a light-emitting region and a waveguide region are integrated and a filter region equipped with a diffraction grating having a filtering function is installed in one part of the waveguide region or one part extended from the region. CONSTITUTION:A laser resonator is composed of a light-emitting region A, a non-light- emitting region (a waveguide region B and a filter region C) and a pair of reflection end faces 12, 12'; there are a number of resonance modes in accordance with a resonator length L which is an effective device length experienced when the light is propagated essentially. A wavelength width depends on a coupling coefficient and a length of a diffraction grating, on a phase shift amount, on a phase shift position and the like; it is possible to pass only one resonance wavelength lambda0 selectively. If a cycle of the diffraction grating 3 is selected, only a wavelength of a resonance wavelength lambda0 is confined strongly inside a resonator; as a result, it is possible to obtain an oscillation at a single wavelength of the resonance wavelength lambda0. By using a semiconductor laser it is possible to satisfy a requirement to operate at a single wavelength and to lengthen the resonator length; it is possible to realize a narrow oscillation line width by the long resonator length.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、発振線幅が狭く、かつ発振波長が可変の半導
体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor laser having a narrow oscillation linewidth and a variable oscillation wavelength.

(従来の技術) 半導体レーザは、小型、高効率で信頬性が高いことなど
から、光フアイバ通信用光源としてすでに実用に供され
ている。これ迄に実用化されたシステムは、半導体レー
ザの大きな特長の1つである直接変調が可変であること
を利用したもので、半導体レーザへの注入電流量に応じ
た強度変調光を、光フアイバ伝搬後、フォトダイオード
もしくはなだれフォトダイオードで直接受光する、いわ
ゆる直接強度変調−直接検波(D IM−DD)方式が
ある。DIM−DD方式においては、光源として高速変
調時にも安定に単一波長動作する分布帰還形(DFB)
半導体レーザなどの動的単一波長レーザが開発され、こ
れにより単一モードファイバの分散の影響を軽減し、中
継器間隔の延長化が図られている。
(Prior Art) Semiconductor lasers are already in practical use as light sources for optical fiber communications because they are small, highly efficient, and highly reliable. The systems that have been put into practical use thus far take advantage of the fact that direct modulation, which is one of the major features of semiconductor lasers, is variable. There is a so-called direct intensity modulation-direct detection (DIM-DD) method in which the light is directly received by a photodiode or an avalanche photodiode after propagation. In the DIM-DD system, a distributed feedback type (DFB) is used as a light source that stably operates at a single wavelength even during high-speed modulation.
Dynamic single-wavelength lasers, such as semiconductor lasers, have been developed to reduce the dispersion effects of single-mode fibers and extend repeater spacing.

一方、光の持つ周波数や位相といった波動の性質を検波
に積極的に利用することにより受信怒度が大幅に向上し
、従って、DIM−DD方式に比べ一層の中継器間隔を
長くすることが可能である。この方式はコヒーレント伝
送方式と呼ばれ、将来の光通信方式として近年、理論面
ばかりでなく、実験的にも盛んに研究が行われ、その有
為性が確認されつつある(例えばT、0koshi;J
ournal of LightwaveTechno
logy、 vol、LT−2,PP、341−346
.1984参照)。
On the other hand, by actively utilizing the wave properties of light, such as its frequency and phase, for detection, the reception intensity can be greatly improved, making it possible to further lengthen the repeater interval compared to the DIM-DD method. It is. This method is called a coherent transmission method, and in recent years, it has been actively researched not only theoretically but also experimentally as a future optical communication method, and its usefulness is being confirmed (for example, T, 0koshi; J
our own of Lightwave Techno
logy, vol, LT-2, PP, 341-346
.. (see 1984).

コヒーレント伝送方式は、その性質上、送信側の光源及
び受信側の局部発振器としての光源の線幅が狭いこと及
び発振波長が可変であることが不可欠である。これ迄の
実験室段階の研究では、システムのポテンシャルを評価
することが主たる課題であるため、発振線幅の極めて狭
い気体レーザか、もしくは、より実用的な通常の半導体
レーザに外部回折格子を設置し、特定の波長のみを半導
体レーザに帰還することにより、前記高コヒーレンス化
及び発振波長のチューナプル化を達成していた。
Due to the nature of the coherent transmission system, it is essential that the line width of the light source on the transmitting side and the light source as a local oscillator on the receiving side be narrow, and that the oscillation wavelength be variable. In research at the laboratory stage so far, the main challenge has been to evaluate the potential of the system, so an external diffraction grating has been installed on a gas laser with an extremely narrow oscillation linewidth, or on a more practical ordinary semiconductor laser. However, by feeding back only a specific wavelength to the semiconductor laser, the above-mentioned high coherence and tunability of the oscillation wavelength have been achieved.

しかしながら、半導体レーザの発光領域は約1μ糟径と
非常に小さいため、光源と外部回折格子が一体化されて
いないこのような構造では機械的振動や熱変動に弱(、
所望特性が不安定になり易いことや、装置が大がかりに
なることから、実用的でないことは明らかである。
However, since the light emitting region of a semiconductor laser is extremely small with a diameter of approximately 1 μm, such a structure in which the light source and external diffraction grating are not integrated is susceptible to mechanical vibrations and thermal fluctuations (
It is obvious that this method is not practical because the desired characteristics tend to become unstable and the device becomes bulky.

発振線幅の低減にはレーザの共振器長を長くすることが
1つの有効な方法であり、図1に示すような発光領域A
に導波路領域Bをモノリシックに集積化し、長井振器構
造とした一体形半導体レーザがT、Fujita等によ
って検討され、約1.8 mmの共振器長で900kH
zという低い値が報告されている(Electroni
cs Letters、vol、21.pp、374−
376.1985)。
One effective way to reduce the oscillation linewidth is to lengthen the laser cavity length.
An integrated semiconductor laser with a Nagai oscillator structure in which the waveguide region B was monolithically integrated was investigated by T., Fujita et al.
Low values of z have been reported (Electroni
cs Letters, vol, 21. pp, 374-
376.1985).

図1において、lはInGaAsP発光層、2はInG
aAsP発光N1の延長上に設けられたInGaAsP
導波路層、12はへき開面での反射効率を上げる金属膜
である。
In FIG. 1, l is an InGaAsP light emitting layer, and 2 is an InG
InGaAsP provided on the extension of aAsP emission N1
The waveguide layer 12 is a metal film that increases the reflection efficiency at the cleavage plane.

しかし、一般的に共振器が長くなると、共振波長間隔も
これに応じて狭くなるため、多波長発振になり易く、狭
線幅特性も不安定になり易いという欠点があった。さら
に、波長チューニングもとびとびの共振波長を選択する
ことになるから、連続的でなく、実用に不向きであると
いう欠点を有していた。
However, in general, as the resonator becomes longer, the resonant wavelength interval also becomes narrower, which has the disadvantage that multi-wavelength oscillation tends to occur and narrow line width characteristics tend to become unstable. Furthermore, since wavelength tuning involves selecting discrete resonant wavelengths, it is not continuous and has the disadvantage of being unsuitable for practical use.

(発明の目的と特徴) 本発明は、上述した従来技術の欠点に鑑みてなされたも
ので、線幅が狭く、かつ発振波長が可変の単一波長光源
として用いられる半導体レーザを提供することを目的と
する。
(Objects and Features of the Invention) The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a semiconductor laser that is used as a single wavelength light source with a narrow line width and a variable oscillation wavelength. purpose.

本発明の特徴は、発光領域と導波路領域を集積化すると
共に、導波路領域の一部もしくは延長上にフィルタ機能
を持つ回折格子を有するフィルタ領域を設けることによ
り、1本の共振波長のみを選択し、その結果発振線幅の
狭い単一波長で安定に動作せしめると同時に、該フィル
タ領域及び導波路領域の屈折率を相互に調整することに
より発振波長を可変にせしめたことにある。
A feature of the present invention is that the light emitting region and the waveguide region are integrated, and a filter region having a diffraction grating with a filter function is provided on a part or an extension of the waveguide region, so that only one resonant wavelength can be detected. As a result, it is possible to stably operate at a single wavelength with a narrow oscillation linewidth, and at the same time, the oscillation wavelength can be made variable by mutually adjusting the refractive index of the filter region and the waveguide region.

(発明の構成及び作用) 以下図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) The present invention will be described in detail below using the drawings.

(実施例1) 図2は、本発明による一実施例の断面図であり、材料と
してInGaAsP導波路層系を例として取り上げ説明
を行う。図において、1は発光領域Aを形成するInG
aAsP発光層、2は導波路領域を形成するためのもの
であり、発光波長に対して低損失で、発光層1と高効率
で光学的に結合したInGaAsP導波路層、3は本発
明の特徴であるフィルタ領域Cを形成する帯域通過形の
回折格子フィルタであり、その中央付近で回折格子の位
相がシフトしたいわゆる位相シフト形回折格子について
示しており、特に位相シフト量が半導体内の光波長の四
分の−であるλ/4シフト回折格子は、優れた帯域通過
性を有している。同様に、4は1−1nP基板、5はp
−InP層、6はp−InGaAsP層である。また、
7゜8.9は各領域A、 B及びCのp側電極であり、
各々はプロトン打込等による高抵抗領域10もしくはエ
ツチングにより電気的に分離されている。11はn側電
極、12.12°は端面反射率を上げるための金属膜で
あり、絶縁膜13を介して設けられている。また、図中
、Il、 、  /を及びl、は発光領域A、フィルタ
領域C及び導波路領域Bのそれぞれの長さを示し、Lは
共振器長をそれぞれ示している。
(Example 1) FIG. 2 is a cross-sectional view of an example according to the present invention, which will be explained using an InGaAsP waveguide layer system as an example of the material. In the figure, 1 is InG forming the light emitting region A.
The aAsP light emitting layer 2 is for forming a waveguide region, and the InGaAsP waveguide layer 3 is a characteristic feature of the present invention, which has low loss for the emission wavelength and is optically coupled with the light emitting layer 1 with high efficiency. This is a band-pass type diffraction grating filter that forms a filter region C, which is a so-called phase shift type diffraction grating in which the phase of the diffraction grating is shifted near the center. The λ/4 shifted diffraction grating, which is a quarter of the wavelength, has excellent bandpass properties. Similarly, 4 is a 1-1nP substrate, 5 is a p
-InP layer, and 6 is a p-InGaAsP layer. Also,
7°8.9 is the p-side electrode of each region A, B and C,
Each is electrically isolated by a high resistance region 10 by proton implantation or etching. 11 is an n-side electrode, and 12.12° is a metal film for increasing the reflectance of the end face, which is provided with an insulating film 13 interposed therebetween. Further, in the figure, Il, , / and l indicate the respective lengths of the light emitting region A, the filter region C, and the waveguide region B, and L indicates the resonator length, respectively.

次に本発明の基本動作を図3を用いて説明する。Next, the basic operation of the present invention will be explained using FIG.

本発明のレーザ共振器は発光領域A、非非光先頭域導波
路領域B及びフィルタ領域C)及び一対の反射端面12
.12°によって形成されており、本質的に光が伝搬す
ることにより経験する実効的なデバイスの長さである共
振器長しく狭義の共振器長しは、各領域A、B及びCの
総和(Il、+zア+1t3)を意味するが、ここでは
実効的に光が透過する絶縁膜13も含む)に応じて同図
(blに示すように多数の共振モードが存在する。例え
ばL−1mとすると、モード間隔Δλ、は約3人である
が、発光N1は同図(C1に示すような利得分布を有す
るため、発振可能なモードは利得分布のピーク近傍の数
波長に限られている。一方、位相シフト形回折格子3は
、同図(a)に示すように中心波長λ目において急峻な
帯域通過特性を有する。その波長幅Δλ冨は、回折格子
の結合係数や長さ1位相シフト量1位相シフト位置など
に依有するが、一本の共振波長λ0のみを選択的に通過
させるように設計することができる。そこで、中心波長
λ、を利得ピーク近傍の共振波長(発振波長)λ。に一
致させるように回折格子3の周期を選ぶことにより、共
振波長λ。の波長のみが強く共振器内に閉じ込められ、
その結果同図(a)に示すように、共振波長λ。での単
一波長発振を得ることができる。しかも、本発明の半導
体レーザでは、単一波長動作と長共振器長化を同時に満
足させることができるため、長共振器長化により狭い発
振線幅を実現させることができる。
The laser resonator of the present invention includes a light emitting region A, a non-optical leading region waveguide region B, a filter region C), and a pair of reflective end faces 12.
.. The resonator length, which is essentially the effective device length experienced by light propagation, is the sum of each region A, B, and C ( Il, +za+1t3), but here there are many resonance modes as shown in the figure (bl) depending on the insulating film 13 through which light is effectively transmitted.For example, L-1m and Then, the mode spacing Δλ is approximately 3, but since the light emission N1 has a gain distribution as shown in FIG. On the other hand, the phase shift type diffraction grating 3 has a steep bandpass characteristic at the center wavelength λ as shown in FIG. Although it depends on the phase shift position, etc., it can be designed to selectively pass only one resonant wavelength λ0.Therefore, the center wavelength λ can be set as the resonant wavelength (oscillation wavelength) λ near the gain peak. By selecting the period of the diffraction grating 3 to match ., only the wavelength of the resonant wavelength λ is strongly confined within the resonator.
As a result, as shown in the same figure (a), the resonant wavelength λ. single wavelength oscillation can be obtained. Moreover, since the semiconductor laser of the present invention can simultaneously satisfy single wavelength operation and a long cavity length, a narrow oscillation linewidth can be realized by increasing the cavity length.

一方、発振波長λ。は共振器長しによる位相条件を見た
し、かつ、位相シフト回折格子3の中心波長λ8に一致
している。いま、図2における発光領域A、フィルタ領
域C9導波路領域Bの長さ及び屈折率を各々L 、lx
、i3及びnl+  nZ+n、とし、回折格子30周
期を八とすると、λヨー2Δn2かつλ。=λ茜を満足
する。ここで、フィルタ領域Cに電流を注入すると、n
2はΔnzだけ減少し、中心波長も短くなり、その時の
中心波長をλ°、とすると、λ。≠λ゛、となるが、同
時に導波路領域Bもしくは発光領域Aへの各々の電流注
入量を変化させて、各々の領域の屈折率n3゜n、を調
整することにより共振波長も変化し、その時の共振波長
をλ”。とすれば、λ”。−λ″、を維持させることが
できる。ちなみに、各々屈折率の調整量をΔns、 Δ
n、とすると、λ″。−λ゛3を維持させるための条件
式は、 となる。すなわち、上式を満たすように、各電流量を変
化させることにより、発振波長λ。を連続的に変化させ
ることができ、チューナプル化が達成される。ちなみに
、波長可変範囲はフィルタ領域Cの屈折率変化量Δn、
及び発光領域Aの利得波長幅で決まるが、一般に前者の
方が小さい。そこで、例えば電流注入によるキャリア密
度変化に起因する屈折率変化を利用する場合を考える。
On the other hand, the oscillation wavelength λ. meets the phase condition depending on the resonator length, and also coincides with the center wavelength λ8 of the phase shift diffraction grating 3. Now, the length and refractive index of the light emitting region A, filter region C9 and waveguide region B in FIG. 2 are L and lx, respectively.
, i3 and nl+nZ+n, and assuming that the period of the diffraction grating 30 is 8, λyaw2Δn2 and λ. = λ Akane is satisfied. Here, when a current is injected into the filter region C, n
2 decreases by Δnz, the center wavelength also becomes shorter, and if the center wavelength at that time is λ°, then λ. ≠λ゛, but at the same time, by changing the amount of current injected into each waveguide region B or light emitting region A and adjusting the refractive index n3゜n of each region, the resonant wavelength can also be changed, If the resonance wavelength at that time is λ”, then λ”. −λ″, can be maintained.Incidentally, the adjustment amounts of the refractive index are Δns and Δ
n, then the conditional expression for maintaining λ''.-λ゛3 is as follows.In other words, by changing each current amount so as to satisfy the above expression, the oscillation wavelength λ. By the way, the wavelength variable range is the refractive index change amount Δn of the filter region C,
and the gain wavelength width of the light emitting region A, but the former is generally smaller. Therefore, consider a case where a change in refractive index caused by a change in carrier density due to current injection is utilized, for example.

波長可変範囲Δλ8はΔλ8−2ΔΔn8で与えられる
。ここでΔn2はフィルタ領域C屈折率変化量でキャリ
ア密度変化ΔNに対し、Δng −sΔN2で関係づけ
られる。但し、係数SはInGaAsP系材料について
はS = −7Xl0−” cm’である。
The wavelength variable range Δλ8 is given by Δλ8−2ΔΔn8. Here, Δn2 is the amount of change in the refractive index of the filter region C, and is related to the carrier density change ΔN by Δng −sΔN2. However, the coefficient S is S=-7Xl0-''cm' for InGaAsP-based materials.

いま、ΔN! =2 xlO”ロー3とすると、Δλ3
=−65.8人の範囲に亘り発振波長を変化させられる
ことがわかる。また、この時λ。=λ1を維持するのに
必要な導波路領域Bの屈折率変化を得るためのキャリア
密度変化量ΔN、は、発光領域長!。
Now, ΔN! = 2 xlO” low 3, then Δλ3
It can be seen that the oscillation wavelength can be changed over a range of = -65.8 people. Also, at this time λ. The amount of change in carrier density ΔN to obtain the change in refractive index of waveguide region B necessary to maintain =λ1 is the length of the light emitting region! .

及び導波路領域長!、を各々it =20011rs、
  ll5=1500 、cr mとすると、ΔNs 
=2.1X10”cs+−3となり、十分実現可能な値
である。
and waveguide area length! , each it =20011rs,
If ll5=1500 and cr m, ΔNs
=2.1×10”cs+-3, which is a fully achievable value.

ところで図3(a)の位相シフト形回折格子3の透過特
性において、中心波長λ8の両側の低透過率波長帯に含
まれる幾つかのモードは反対方向に反射され、図2にお
ける右側の反射端面との間で共振して発振する恐れがあ
るが、これは左側端面の高反射膜である金属膜12°の
反射率より、回折格子3の実効的な反射率が小さくなる
ように、回折格子3の深さや長さを選ぶか、もしくは図
4に示すように回折格子3′を光の仏殿方向に対して約
10”程度とやや斜めに形成して中心波長λ0以外の波
長をストライプの外に散乱させるなどして、これら不要
な波長のしきい値を上昇させることにより発振は抑圧さ
れる。
By the way, in the transmission characteristic of the phase shift type diffraction grating 3 shown in FIG. 3(a), some modes included in the low transmittance wavelength band on both sides of the center wavelength λ8 are reflected in opposite directions, and the reflection end face on the right side in FIG. There is a risk that the diffraction grating 3 will resonate and oscillate, but this is because the diffraction grating is 3. Alternatively, as shown in Fig. 4, the diffraction grating 3' may be formed at a slight angle of approximately 10" with respect to the direction of the light's temple, and wavelengths other than the center wavelength λ0 may be placed outside the stripe. The oscillation is suppressed by increasing the threshold of these unnecessary wavelengths by scattering them.

なお、以上の説明では発光領域A、導波路領域B及びフ
ィルタ領域C順次配置した構造について述べたが、発光
領域Aを中央に配置しても良く、かつ導波路領域B及び
フィルタ領域Cを複数設けた構造でも良い。
In the above description, the structure in which the light emitting region A, the waveguide region B, and the filter region C are arranged sequentially has been described, but the light emitting region A may be arranged in the center, and a plurality of waveguide regions B and filter regions C may be arranged. A built-in structure may also be used.

実施例1と同じ帯域通過形フィルタ特性は、位相シフト
形回折格子3ではなく、均一な回折格子によっても実現
できる。この場合の半導体レーザ構造は、基本的には図
2及び図4で示したものと同じであり、フィルタ領域C
の回折格子が均一回折格子である点が異なる。均一回折
格子は、位相シフトを有しないものであり、その透過率
の波長依存性を図5(a)に示す0回折格子の周期をΔ
、フィルタ領域Cの導波路の屈折率をn2とすると、透
過率が最低になる中心波長λヨはλ、−2八〇gへなる
が、光波の干渉効果により、λ3の両側の波長に透過率
のピークが存在する。例えば、長波長側の透過率ピーク
波長λ゛、に共振波長の1つλ。
The same band-pass filter characteristics as in the first embodiment can also be achieved by using a uniform diffraction grating instead of the phase-shifted diffraction grating 3. The semiconductor laser structure in this case is basically the same as that shown in FIGS. 2 and 4, and the filter region C
The difference is that the diffraction grating is a uniform diffraction grating. The uniform diffraction grating has no phase shift, and the wavelength dependence of its transmittance is shown in Figure 5(a).The period of the zero diffraction grating is Δ
If the refractive index of the waveguide in filter region C is n2, the center wavelength λyo at which the transmittance is lowest is λ, -280 g, but due to the interference effect of light waves, wavelengths on both sides of λ3 are transmitted. There is a peak in rate. For example, the transmittance peak wavelength λ゛ on the long wavelength side is one of the resonant wavelengths λ.

及び利得ピーク波長を合わせておくことにより、図2と
同様に図5(d)に示すように波長λ。での狭線幅な単
一波長発振が得られる。この波長が図2で述べたように
、各領域の屈折率を調整することによりチューナプル化
できる。
By matching the gain peak wavelength and the gain peak wavelength, the wavelength λ is changed as shown in FIG. 5(d) similarly to FIG. Single wavelength oscillation with a narrow linewidth can be obtained. As described in FIG. 2, this wavelength can be tuned by adjusting the refractive index of each region.

(実施例2) 図6は、本発明による第2の実施例であり、実施例1と
異なる点は半導体レーザの共振器用反射器として前述の
襞間もしくはエツチングによるファセット面に代えて分
布反射器(以下rDBRJと称す)領域り、D’を設け
たものである。DBR領域り及びD゛はInGaAsP
外部導波路14.14°上に回折格子15.15’を形
成し、回折格子15.15’の周期によって決まる中心
波長λ、付近の波長を選択的に反射方向に反射させるも
ので、片側もしくは両側に設けることによりレーザ共振
器が形成される(図6は両側にD B RfiI域り、
D’ を設けた例を示す)。D B R領域り及びD′
を用いることの特徴は導波路を物理的に断つ必要がない
ので、出力光を導波路を通して取り出すことができ、従
って光集積回路内に本発明による半導体レーザを組み込
むことができる。この光集積回路化は、コヒーレント伝
送において、送信側の外部変調器との一体化及び受信側
において信号光とのミキシング、受光器の一体化などで
重要である。
(Example 2) FIG. 6 shows a second example according to the present invention, and the difference from Example 1 is that a distributed reflector is used as a reflector for the resonator of a semiconductor laser instead of the facet surface formed between the folds or etched. (hereinafter referred to as rDBRJ) is provided with a region D'. DBR region and D are InGaAsP
A diffraction grating 15.15' is formed on the external waveguide 14.14°, and wavelengths around the center wavelength λ determined by the period of the diffraction grating 15.15' are selectively reflected in the reflection direction. A laser resonator is formed by providing it on both sides (FIG. 6 shows D B RfiI regions on both sides,
D' is shown). D B R area and D'
A feature of using this method is that there is no need to physically break the waveguide, so output light can be extracted through the waveguide, and therefore the semiconductor laser according to the present invention can be incorporated into an optical integrated circuit. This optical integrated circuit is important in coherent transmission for integration with an external modulator on the transmitting side, mixing with signal light on the receiving side, and integrating a light receiver.

本実施例における各パラメータの波長関係を図7に示す
。基本的には図3と同じであるが、DBR領域り及びD
″はブラッグ反射を利用するため、反射率に波長依存性
を有し、帯域は有限である。
FIG. 7 shows the wavelength relationship of each parameter in this example. It is basically the same as Fig. 3, but the DBR area and D
'' uses Bragg reflection, so the reflectance has wavelength dependence and the band is finite.

従って反射波長λ。を中心波長λ、及び利得ピーク波長
付近に合わせる必要があるが、設けられた導波路層の屈
折率を電流注入、電圧等により変化させることにより、
波長可変幅も前実施例と同様に広くすることができる。
Therefore, the reflection wavelength λ. It is necessary to adjust the wavelength to near the center wavelength λ and the gain peak wavelength, but by changing the refractive index of the provided waveguide layer by current injection, voltage, etc.
The wavelength variable width can also be widened as in the previous embodiment.

本発明による半導体レーザは、狭線幅を有し、かつ発振
波長を可変することが主たる特徴であるが、その地図2
1図6において、フィルタ領域Cの導波路屈折率n2の
みを調節することにより、中心波長λ8を共振波長λ。
The main characteristics of the semiconductor laser according to the present invention are that it has a narrow linewidth and the oscillation wavelength is variable.
1 In FIG. 6, by adjusting only the waveguide refractive index n2 of the filter region C, the center wavelength λ8 is adjusted to the resonance wavelength λ.

からずらせることができ、この場合にはどの共振波長λ
。も通過していないため発振が停止する。すなわち、共
振波長λ。の波長で見ると、共振器の損失が変調される
ことであり、いわゆる高速動作に向いたQスイッチ光源
としても機能させることができる。
In this case, which resonant wavelength λ
. oscillation stops because it has not passed through either. That is, the resonant wavelength λ. When viewed at a wavelength of , the loss of the resonator is modulated, and it can also function as a Q-switched light source suitable for so-called high-speed operation.

また、上述の実施例では、発光層lと導波路層2の光学
的結合法として直接結合構造を取り上げたが、larg
e optical cavity(LOG)構造を始
め、その他の結合方法に適用することができる。特に多
重量子井戸構造は、共振器全体に亘って同一構造でも、
発光領域A以外はそのまま低損失導波路として用いるこ
とができ、作製もその分容易である。光を横方向に閉じ
込めるストライプ構造は特に述べなかったが、埋め込み
構造を始め、あらゆる横モード閉じ込め構造に適用でき
る。半導体材料については、前記の説明では、InGa
AsP/InP系について述べたが、GaAs/AlG
aAs、 InGaAlAs/InP。
In addition, in the above embodiment, a direct coupling structure was used as an optical coupling method between the light emitting layer l and the waveguide layer 2, but the large
It can be applied to other bonding methods including e-optical cavity (LOG) structure. In particular, in a multiple quantum well structure, even if the structure is the same throughout the resonator,
The parts other than the light emitting region A can be used as a low-loss waveguide as is, and the fabrication is correspondingly easier. Although the stripe structure that confines light in the lateral direction was not specifically mentioned, it can be applied to any lateral mode confinement structure including a buried structure. Regarding semiconductor materials, in the above description InGa
Although the AsP/InP system has been described, GaAs/AlG
aAs, InGaAlAs/InP.

AIGaAsb/GaSbなどの化合物半導体結晶につ
いても適用可能である。さらに、導波路の屈折率調整の
方法として、電流注入について述べたが電圧印加による
電気光学効果を用いることもできる。
It is also applicable to compound semiconductor crystals such as AIGaAsb/GaSb. Furthermore, although current injection has been described as a method for adjusting the refractive index of the waveguide, it is also possible to use an electro-optic effect by applying a voltage.

(発明の効果) 以上説明したように、共振器内に帯域通過形の回折格子
フィルタを内蔵した本発明による半導体レーザは、発振
線幅を狭くするために共振器長りを長くした場合に生ず
る多波長発振を抑圧することができる。すなわち、発振
線幅が狭く安定に単一波長動作し、かつ、発振波長も可
変の半導体レーザを実現することができる。従って、コ
ヒーレント伝送その他光計測用光源として有望であり、
その効果は極めて大きい。
(Effects of the Invention) As explained above, the semiconductor laser according to the present invention, which has a built-in bandpass type diffraction grating filter in the resonator, suffers from the problem that occurs when the length of the resonator is lengthened in order to narrow the oscillation line width. Multi-wavelength oscillation can be suppressed. That is, it is possible to realize a semiconductor laser with a narrow oscillation linewidth, stable single-wavelength operation, and variable oscillation wavelength. Therefore, it is promising as a light source for coherent transmission and other optical measurements.
The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来の長井振器を有する半導体レーザの構造例を
示す斜視図、図2は本発明による実施例1の半導体レー
ザの断面図、図3 (a)(b)(C)(d)は本発明
の第1の実施例における構造の各パラメータの波長依存
性を示す特性図、図4は本発明の第1の実施例において
フィルタ領域に回折格子を光の伝搬方向に対し斜めに設
けた構造の平面図、図5(a)(b)(C)(6)は本
発明の第1の実施例においてフィルタ領域に通常の回折
格子を用いた場合の各パラメータの波長依存性を示す特
性図、図6は本発明による第2の実施例の半導体レーザ
の断面図、図7(a)(b)(C)(d)(e)は本発
明の第2実施例における構造の各パラメータの波長依存
性を示す特性図である。 1 =−InGaAsP発光層、2 =4nGaAsP
導波路層、3・・・位相シフト形回折格子、4・・・n
−1nP基板、5 ・・・p−InP層、6−p−In
GaAsPキャップ層、7.8.9・・・p側電極、1
0・・・電気的絶縁領域、11・・・n側電極、12・
・・金属膜、13・・・絶縁膜、14、14’−InG
aAsP外部導波路、15.15°・・・回折格子。
FIG. 1 is a perspective view showing a structural example of a semiconductor laser having a conventional Nagai shaker, FIG. 2 is a cross-sectional view of a semiconductor laser of Example 1 according to the present invention, and FIGS. 3 (a), (b), (C), and (d). is a characteristic diagram showing the wavelength dependence of each parameter of the structure in the first embodiment of the present invention, and FIG. 4 is a characteristic diagram showing the wavelength dependence of each parameter of the structure in the first embodiment of the present invention. 5(a), (b), (C), and (6) show the wavelength dependence of each parameter when a normal diffraction grating is used in the filter region in the first embodiment of the present invention. 6 is a cross-sectional view of a semiconductor laser according to a second embodiment of the present invention, and FIGS. FIG. 3 is a characteristic diagram showing the wavelength dependence of parameters. 1 = -InGaAsP light emitting layer, 2 = 4nGaAsP
Waveguide layer, 3... phase shift type diffraction grating, 4...n
-1nP substrate, 5...p-InP layer, 6-p-In
GaAsP cap layer, 7.8.9... p-side electrode, 1
0... Electrical insulation region, 11... N-side electrode, 12...
...Metal film, 13...Insulating film, 14, 14'-InG
aAsP external waveguide, 15.15°...diffraction grating.

Claims (2)

【特許請求の範囲】[Claims] (1)発光層を有する発光領域と、該発光層の少なくと
も一方側に高効率で結合する導波路層を有する導波路領
域と、該導波路層の一部もしくは前記導波路の延長上に
帯域通過形のフィルタ機能を待つ回折格子を有するフィ
ルタ領域とを同一基板上に集積化して一対の反射端面を
設けることによりレーザ共振器を形成し、かつ、該発光
領域、該導波路領域及び該フィルタ領域のそれぞれを電
気的に分離して電極を具備し、該電極に印加する電圧ま
たは電流注入により少なくとも前記導波路領域と前記フ
ィルタ領域の屈折率変化を生じさせて発振波長を可変な
らしめ、その設定された屈折率に対応して定まる前記フ
ィルタ領域の中心波長に一致する波長の狭線幅の単一波
長の発振出力光を取り出すように構成された半導体レー
ザ。
(1) A light-emitting region having a light-emitting layer, a waveguide region having a waveguide layer coupled with high efficiency to at least one side of the light-emitting layer, and a waveguide region having a part of the waveguide layer or an extension of the waveguide. A laser resonator is formed by integrating a filter region having a diffraction grating waiting for a pass-through filter function on the same substrate and providing a pair of reflective end faces, and the light emitting region, the waveguide region, and the filter are integrated on the same substrate. Each of the regions is electrically separated and provided with an electrode, and the refractive index of at least the waveguide region and the filter region is varied by applying a voltage or current to the electrode, thereby making the oscillation wavelength variable. A semiconductor laser configured to extract single-wavelength oscillation output light having a narrow linewidth and a wavelength matching a center wavelength of the filter region determined in accordance with a set refractive index.
(2)発光層を有する発光領域と、該発光層の少なくと
も一方側に高効率で結合する導波路層を有する導波路領
域と、該導波路層の一部もしくは前記導波路の延長上に
帯域通過形のフィルタ機能を持つ回折格子を有するフィ
ルタ領域と、さらに該フィルタ領域及び該発光領域のう
ち少なくとも一方の延長上に外部導波路層と反射形の回
折格子を有する分布反射器領域とを同一基板上に集積化
してレーザ共振器を形成し、かつ前記発光領域、前記導
波路領域及び前記フィルタ領域のそれぞれを電気的に分
離して電極を具備し、該電極に印加する電圧または電流
注入により少なくとも前記導波路領域と前記フィルタ領
域の屈折率変化を生じさせて発振波長を可変ならしめ、
その設定された屈折率に対応して定まる前記フィルタ領
域の中心波長に一致する波長の狭線幅の単一波長の発振
出力光を前記外部導波路を介して取り出すように構成さ
れた半導体レーザ。
(2) a light emitting region having a light emitting layer; a waveguide region having a waveguide layer coupled with high efficiency to at least one side of the light emitting layer; and a waveguide region having a part of the waveguide layer or an extension of the waveguide. A filter region having a diffraction grating having a pass-through filter function is the same as a distributed reflector region having an external waveguide layer and a reflective diffraction grating on an extension of at least one of the filter region and the light emitting region. A laser resonator is formed by integrating the laser resonator on a substrate, and the light emitting region, the waveguide region, and the filter region are electrically separated from each other by electrodes, and a voltage or current is applied to the electrodes. causing a change in the refractive index of at least the waveguide region and the filter region to make the oscillation wavelength variable;
A semiconductor laser configured to extract single-wavelength oscillation output light with a narrow linewidth corresponding to a center wavelength of the filter region determined in accordance with the set refractive index through the external waveguide.
JP62134427A 1987-05-29 1987-05-29 Semiconductor laser Pending JPS63299291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134427A JPS63299291A (en) 1987-05-29 1987-05-29 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134427A JPS63299291A (en) 1987-05-29 1987-05-29 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63299291A true JPS63299291A (en) 1988-12-06

Family

ID=15128126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134427A Pending JPS63299291A (en) 1987-05-29 1987-05-29 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63299291A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375021A1 (en) * 1988-12-16 1990-06-27 Koninklijke Philips Electronics N.V. Tunable semiconductor diode laser with distributed reflection and method of manufacturing such a semiconductor diode laser
EP0391334A2 (en) * 1989-04-04 1990-10-10 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and wavelength selective fitter, and methods of driving the same
FR2700643A1 (en) * 1993-01-19 1994-07-22 Alcatel Nv Semiconductor source of gain-switching optical pulses and soliton transmission system.
EP0825689A2 (en) * 1996-08-22 1998-02-25 Canon Kabushiki Kaisha Optical device capable of switching output intensity of light of predetermined polarized wave, optical transmitter using the device, network using the transmitter, and method of driving optical device
JP2010021308A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Wavelength variable semiconductor laser
JP2017527121A (en) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド Monolithically integrated wavelength tunable semiconductor laser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375021A1 (en) * 1988-12-16 1990-06-27 Koninklijke Philips Electronics N.V. Tunable semiconductor diode laser with distributed reflection and method of manufacturing such a semiconductor diode laser
EP0391334A2 (en) * 1989-04-04 1990-10-10 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and wavelength selective fitter, and methods of driving the same
FR2700643A1 (en) * 1993-01-19 1994-07-22 Alcatel Nv Semiconductor source of gain-switching optical pulses and soliton transmission system.
EP0608165A1 (en) * 1993-01-19 1994-07-27 Alcatel N.V. Semi-conductor optical pulse source using gain switching and a soliton transmission system
EP0825689A2 (en) * 1996-08-22 1998-02-25 Canon Kabushiki Kaisha Optical device capable of switching output intensity of light of predetermined polarized wave, optical transmitter using the device, network using the transmitter, and method of driving optical device
US6031860A (en) * 1996-08-22 2000-02-29 Canon Kabushiki Kaisha Optical device capable of switching output intensity of light of predetermined polarized wave, optical transmitter using the device, network using the transmitter, and method of driving optical device
EP0825689A3 (en) * 1996-08-22 2001-05-09 Canon Kabushiki Kaisha Optical device capable of switching output intensity of light of predetermined polarized wave, optical transmitter using the device, network using the transmitter, and method of driving optical device
JP2010021308A (en) * 2008-07-10 2010-01-28 Mitsubishi Electric Corp Wavelength variable semiconductor laser
JP2017527121A (en) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド Monolithically integrated wavelength tunable semiconductor laser

Similar Documents

Publication Publication Date Title
EP0314490B1 (en) Semiconductor laser
EP0195425B1 (en) Distributed feedback semiconductor laser
US5699378A (en) Optical comb filters used with waveguide, laser and manufacturing method of same
EP0721240B1 (en) Oscillation polarization mode selective semiconductor laser, modulation method therefor and optical communication system using the same
US5022730A (en) Wavelength tunable optical filter
US6198863B1 (en) Optical filters
US4852108A (en) Wavelength tunable semiconductor laser with narrow band-pass active filter region
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
US6252895B1 (en) Distributed feedback semiconductor laser in which light intensity distributions differ in different polarization modes, and driving method therefor
US4680769A (en) Broadband laser amplifier structure
US6337868B1 (en) Distributed feedback semiconductor laser and a driving method therefor
US7382817B2 (en) V-coupled-cavity semiconductor laser
JPH09311220A (en) Diffraction grating alternately arranged with regions having different dependence on polarization and optical semiconductor device formed by using the same
US7027476B2 (en) Tunable semiconductor lasers
JP5001239B2 (en) Semiconductor tunable laser
KR100216959B1 (en) Laser structure
JP2012256667A (en) Semiconductor laser light source
JPS63299291A (en) Semiconductor laser
JP2000151014A (en) Optical function element and optical communication device
JP6083644B2 (en) Integrated semiconductor light source
JPH0311554B2 (en)
US6795623B2 (en) Optical cavity resonating over a continuous range of frequencies
US11557876B2 (en) Semiconductor laser
Okai et al. Complex-coupled/spl lambda//4-shifted DFB lasers with a flat FM response
JP4074534B2 (en) Semiconductor laser