JPS59172287A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS59172287A
JPS59172287A JP58046810A JP4681083A JPS59172287A JP S59172287 A JPS59172287 A JP S59172287A JP 58046810 A JP58046810 A JP 58046810A JP 4681083 A JP4681083 A JP 4681083A JP S59172287 A JPS59172287 A JP S59172287A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
doped
active layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046810A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
寛 林
Saburo Yamamoto
三郎 山本
Shinji Kaneiwa
進治 兼岩
Kaneki Matsui
完益 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58046810A priority Critical patent/JPS59172287A/en
Publication of JPS59172287A publication Critical patent/JPS59172287A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser element, the increase of noises therefrom is prevented and coupling efficiency thereof with an optical system is improved, by providing an index waveguide mechanism and a self-oscillation phenomenon. CONSTITUTION:A Te doped n-GaAs current stopping layer 2 is grown on a Zn doped p-GaAs substrate 1, a groove 7 reaching to the p-GaAs substrate 1 in a striped shape from the current stopping layer 2 is formed, and a Zn doped p- Ga0.5Al0.5As p type clad layer 3, an undoped Ga0.95Al0.05As active layer 4, a Te doped n-Ga0.8Al0.2As intermediate layer 10, a Te doped n-Ga0.7Al0.3As n type clad layer 5 and a Te doped n-GaAs cap layer 6 are deposited on the groove in succession. An Au-Zn p side electrode 8 is formed to the GaAs substrate 1 and an Au-Ge-Ni-Au n side electrode 9 to the cap layer 6, thus manufacturing a semiconductor laser element in resonance length of 250mum and width of 300mum. The refractive indices n1, n2, n3, n4 of each layer of the p type clad layer 3, the active layer 4, the intermediate layer 10 and the n type clad layer 5 are set in order of n2>n3>n4>n1.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、戻り光による干渉雑音を低減した半導体レー
ザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor laser device that reduces interference noise caused by returned light.

〈従来技術〉 従来、半導体レーザ装置をディスク装置の光源として使
用した場合、ビデオディスク、オーディオディスクの光
学系との結合に於いて、ディスク面からの反射による出
力レーザ光の戻り光が半導体レーザ素子へ再入射される
ことがあり、この結果出力光に対する再入射光の干渉に
よって第1図に実線で示す如く注入電流と光出力の間の
直線性が低下し、まだ第2図に実線71 で示す如く出
力光の雑音が増加して実用に供することが不可能になる
ことがある。この問題を解決する手段として、半導体レ
ーザの電流注入幅即ちストライプ幅を通常の10〜15
μmに比べて活性層中のキャリア拡散長程度即ち2〜4
μm程度に狭くし、歪の発生あるいは戻り光雑音の増加
を回避することが試行されている。このような半導体レ
ーザでは、利得分布によりレーザの光分布が決定される
が、共振器体積の小さいことから自然放出光のレーザモ
ードへの関与が大きくなると共に注入電流密度が太きい
ため利得のスペクトル幅が拡大され、多軸モ−ドにより
発振してこの多軸モード発振により再入射光の影響が低
減される。また、活性層への注入キャリアが横方向へ拡
散することにより、レーザ発振領域と非発振領域との間
でキャリアの振動が生じ、その結果、出力レーザ光が緩
和振動周波数に共振した高周波の自己発振現象を生起す
る○このだめ、出力レーザ光がAM変調やキャリアの増
減に呼応した屈折率の変化によってFM変調され、発振
スペクトル幅が約IX程度に拡大する。このことがレー
ザ光のコヒーレント長を短くシ、光学系から反射しレー
ザ素子へ再入射する光の位相を無秩序化するため、再入
射光との干渉性の雑音の発生がなくなり、再入射光の影
響が低減される。
<Prior art> Conventionally, when a semiconductor laser device is used as a light source for a disk device, when coupled with the optical system of a video disk or an audio disk, the return light of the output laser beam due to reflection from the disk surface is transmitted to the semiconductor laser element. As a result, the linearity between the injected current and the optical output decreases as shown by the solid line in FIG. 1 due to the interference of the re-incoming light with the output light, and the linearity between the injected current and the optical output is reduced as shown by the solid line 71 in FIG. As shown, the noise of the output light may increase, making it impossible to put it into practical use. As a means to solve this problem, the current injection width of the semiconductor laser, that is, the stripe width is increased from the usual 10 to 15
Carrier diffusion length in the active layer compared to μm, that is, 2 to 4
Attempts have been made to narrow the width to about μm to avoid distortion or increase in return optical noise. In such a semiconductor laser, the optical distribution of the laser is determined by the gain distribution, but since the cavity volume is small, spontaneous emission light has a large contribution to the laser mode, and the injection current density is large, so the gain spectrum is The width is expanded, oscillation occurs in a multi-axis mode, and the influence of re-incident light is reduced by this multi-axis mode oscillation. Furthermore, carriers injected into the active layer diffuse in the lateral direction, causing carrier oscillation between the laser oscillation region and the non-laser region. As a result of causing the oscillation phenomenon, the output laser light is FM modulated by AM modulation and a change in the refractive index in response to the increase and decrease of carriers, and the oscillation spectrum width is expanded to about IX. This shortens the coherent length of the laser beam and makes the phase of the light reflected from the optical system and re-injected into the laser element disordered, eliminating interference noise with the re-incoming light and eliminating the interference of the re-incoming light. Impact is reduced.

しかしながら、利得導波機構の半導体レーザ素子は、注
入電流あるいは経時変化等によって近視野像が変化する
ため光学系との結合が不安定になりかつ非点収差が大き
いためレンズ等の光学系との結合効率が低下するといっ
だ欠点を内包する。
However, semiconductor laser elements with a gain waveguide mechanism have unstable coupling with the optical system due to changes in the near-field image due to injection current or changes over time, and large astigmatism, which makes it difficult to connect with optical systems such as lenses. If the coupling efficiency decreases, there will be further drawbacks.

従って、出力レーザ光の安定性、レーザ光と光学系との
結合を考慮する必要がある場合には屈折率lワ1 導波型半導体レーザ素子が要求されることとなる。
Therefore, when it is necessary to consider the stability of the output laser beam and the coupling between the laser beam and the optical system, a waveguide type semiconductor laser element with a refractive index of 1 is required.

従来の屈折率導波型半導体レーザ素子の一例として、第
3図に内部電流狭窄構造を有するVチャネル型半導体レ
ーザ素子を示す。p−GaAs基板1上に電流通路を制
限するだめの1l−GaAsから成る電流阻止層2、p
−GaAlAsから成るp型クラッド層3、p又はn−
GaAlAs (又はGaAE! )からなる活性層4
、n  GaAlA3から成るn型クラッド層5、n−
GaAsから成るキャップ層6が順次液相エピタキシャ
ル成長法により積層されている。GaAs基板1にはA
u−Znから成るp側電極8、キャップ層6にはAu 
−G e −N 1−Auから成るn側電極9が蒸着形
成されている。電流阻止層2が介在している領域は逆極
性に接合されるため電流が流れず、電流阻止層2が除去
されたストライプ状の溝部7のみが電流通路となる。ま
た溝部7とそれ以外の部分とにおけるp型りラッド層3
0層厚の違いを利用して、活性層4で発生するレーザ光
の基板lへの1L Lみ出し“に差を設け、発虚領域と
非発振領域との間に実効的屈折率差を付与して屈折率導
波機構が実現されている。この半導体レーザ素子は屈折
率導波型であることを反映して近視野像、遠視野像とも
に安定な発振状態が得られ、また非点収差もほとんどな
いために光学系との結合効率が高いという特徴を有する
。しかしながら、この半導体レーザ素子に出力レーザ光
の戻り光が再入射した場合、第1図及び第2図にて説明
したような戻り光に起因する干渉雑音の問題が生じる。
As an example of a conventional index-guided semiconductor laser device, FIG. 3 shows a V-channel semiconductor laser device having an internal current confinement structure. A current blocking layer 2 made of 1l-GaAs for restricting the current path is formed on the p-GaAs substrate 1.
- p-type cladding layer 3 made of GaAlAs, p or n-
Active layer 4 made of GaAlAs (or GaAE!)
, n n-type cladding layer 5 made of GaAlA3, n-
A cap layer 6 made of GaAs is successively deposited by liquid phase epitaxial growth. A on the GaAs substrate 1
The p-side electrode 8 is made of u-Zn, and the cap layer 6 is made of Au.
An n-side electrode 9 made of -G e -N 1-Au is formed by vapor deposition. Since the region where the current blocking layer 2 is interposed is bonded with opposite polarity, no current flows, and only the striped groove portion 7 from which the current blocking layer 2 is removed serves as a current path. In addition, the p-type rad layer 3 in the groove portion 7 and other parts
Utilizing the difference in the layer thickness, a difference is created in the projection of the laser light generated in the active layer 4 to the substrate l, and an effective refractive index difference is created between the oscillation region and the non-oscillation region. Reflecting the fact that this semiconductor laser element is of the refractive index waveguide type, stable oscillation states can be obtained in both near-field and far-field patterns, and there is no astigmatism. It has the characteristic of high coupling efficiency with the optical system because it has almost no aberrations.However, when the return light of the output laser beam re-enters this semiconductor laser element, as explained in Figs. 1 and 2, The problem of interference noise arises due to the return light.

これは、第3図の如き従来のVチャネル型半導体レーザ
素子においては、内部電流狭窄構造が活性層に近く非発
振領域に流出する無効電流(発振に寄与しない電流)が
極めて少ないだめに、上述の狭ストライプレーザにみら
れるような自己発振現象が起こらないこと及び光の1し
み出し“による発振領域と非発振領域との間の実効的屈
折率差が比較的大きいために後述するようなキャリアの
振動に基く実効的屈折率差の時間的振動成分が相対的に
小さく々す、自己発振現象が起らないためである○ 〈発明の目的〉 本発明は、従来の半導体レーザ素子に於ける上述の欠点
を根本的に解決するものであり、屈折率導波機構を有し
かつ自己発振現象を付与することによって雑音の増加を
防止するとともに光学系との結合効率を改善した新規有
用な半導体レーザ素子を提供することを目的とするもの
である。
This is because, in the conventional V-channel semiconductor laser device as shown in FIG. 3, the internal current confinement structure is close to the active layer, and the reactive current (current that does not contribute to oscillation) flowing into the non-oscillation region is extremely small. Because the self-oscillation phenomenon seen in narrow stripe lasers does not occur, and the effective refractive index difference between the oscillation region and the non-oscillation region due to light seepage is relatively large, carriers as described below This is because the temporal vibration component of the effective refractive index difference based on the vibration of This is a new and useful semiconductor that fundamentally solves the above-mentioned drawbacks, and has a refractive index waveguide mechanism and imparts a self-oscillation phenomenon, thereby preventing an increase in noise and improving the coupling efficiency with the optical system. The purpose of this invention is to provide a laser device.

一般に、レーザ光の基板へのゝゝしみ出し“効果を利用
して発振領域と非発振領域との間に実効的な屈折率差(
ΔN)を設けた屈折率導波型半導体レーザ素子では、こ
のゝゝしみ出し”量に呼応してΔNが決定される。活性
層に隣接してその屈折率より小さな屈折率を有する中間
層を挿入することにより、活性層を中心として積層方向
のレーザ光電界強度分布を変化させ、基板への1しみ出
し“量の変化に対応してΔNを制御することが可能にな
る。一方、前述したように活性層に於いては、発振に伴
うキャリアの消費とキャリアの横方向拡散に基いて注入
キャリアが時間的に振動し、これに呼応して発振領域と
非発振領域との間の屈折率差は時間的に振動する成分(
Zn)をもつ。通常の屈折率導波型半導体レーザ素子で
は、ZnはΔNに比べて充分に小さいために振動効果は
観測されないが、上述の如き中間層を挿入して基板への
光の1しみ出し“量を減少させ、ΔNを小さくすること
により、屈折率導波型半導体レーザ素子においても自己
発振現象が現出するようになり、単軸モードのスペクト
ル幅が拡大する。本発明はこのよう々中間層挿入効果を
利用して半導体レーザ素子における戻り光雑音の増加を
抑制しようとする技術である。
In general, the effective refractive index difference (
In a refractive index guided semiconductor laser device provided with a refractive index (ΔN), the ΔN is determined in response to the amount of "seepage".An intermediate layer having a refractive index smaller than that of the active layer is provided adjacent to the active layer. By inserting the active layer, it is possible to change the laser beam electric field intensity distribution in the stacking direction with the active layer as the center, and to control ΔN in response to changes in the amount of "1" seeping into the substrate. On the other hand, as mentioned above, in the active layer, the injected carriers oscillate temporally due to carrier consumption accompanying oscillation and lateral diffusion of carriers, and in response to this, the oscillation region and non-oscillation region are separated. The refractive index difference between is a temporally oscillating component (
Zn). In a normal index-guided semiconductor laser device, no vibration effect is observed because Zn is sufficiently small compared to ΔN. By decreasing ΔN, a self-oscillation phenomenon will appear even in the index-guided semiconductor laser device, and the spectral width of the uniaxial mode will be expanded. This is a technique that attempts to suppress the increase in return optical noise in a semiconductor laser device by utilizing the effect.

〈実施例〉 第4図(A)(B)は本発明の一実施例を示す半導体レ
ーザ素子の断面構成図及び溝部X−X部の屈折率分布図
である。
<Example> FIGS. 4(A) and 4(B) are a cross-sectional configuration diagram and a refractive index distribution diagram of a groove section XX section of a semiconductor laser device showing an example of the present invention.

本実施例は活性層とその土層に成長されるn型クラッド
層との間に中間層を介挿しかつp型クラッド層よりn型
クラッド層の曲折率を大きく設定することにより、活性
層で発生するレーザ光の基板へのゝゝしみ出し“量を減
少させ、前述した自己発振現象を容易に生起させたもの
である。以下、GaAs−GaAlAs系半導体レーザ
を例にとって第4図(A)に示す素子構造について説明
する。
In this example, the active layer is This method reduces the amount of generated laser light that "seeps into the substrate" and easily causes the aforementioned self-oscillation phenomenon.Hereinafter, using a GaAs-GaAlAs semiconductor laser as an example, FIG. 4(A) The element structure shown in FIG.

+ X 1018cm ”のキャリア濃度を有するZn
 ドープp−GaAs基板l上に、電流通路を制限する
だめに、液相エピタキシャル成長法により5XI018
cm−sのキャリア濃度を有するTe  ドープn−G
 a As電流阻止層2を08μmの厚さに成長させた
後、電流阻止層2からストライプ状にp−GaAs基板
1に達するまで溝7をエツチング形成する○ストライプ
溝7の幅は31trnとする。この上に再度液相エピタ
キシャル成長法により、Znnドープ−Ga O05A
 ]、0,5 A 3から々るp型りラット層(屈折率
H)8を層厚(溝部外)0.2μm1アンドープGaO
,95A10.Q5ASからなる活性層(屈折率n2)
4を0、 I μm、 Teドドーn −Gao、gA
lo、2 Asからなる中間層(屈折率na ) I 
Oを’ 31’mz Teドドーn−Ga0.7Alo
、3 Asから々るn型クラッド層(屈折率n4)5を
1μmXTeドープn−GaAsからなるキャップ層6
を3μmで順次堆積させる。GaAs基板lにはAu−
Znから成るp側電極8、キャップ層6にはAu−Ge
−Ni−Auから成るn側電極9を蒸着形成する。次に
骨間によって共振長250μm。
Zn with a carrier concentration of +
5XI018 was deposited on a doped p-GaAs substrate by liquid phase epitaxial growth in order to limit the current path.
Te doped n-G with carrier concentration of cm-s
a) After growing the As current blocking layer 2 to a thickness of 08 μm, grooves 7 are etched in a stripe pattern from the current blocking layer 2 until reaching the p-GaAs substrate 1. ○The width of the striped groove 7 is 31 trn. On top of this, Znn-doped-GaO05A was grown again by liquid phase epitaxial growth.
], 0,5 A 3 p-type rat layer (refractive index H) 8 layer thickness (outside the groove) 0.2 μm 1 undoped GaO
, 95A10. Active layer made of Q5AS (refractive index n2)
4 to 0, I μm, Tedodon-Gao, gA
lo, 2 Intermediate layer consisting of As (refractive index na) I
O'31'mz Tedodon-Ga0.7Alo
, 3 an n-type cladding layer (refractive index n4) 5 made of As and a cap layer 6 made of 1 μm XTe-doped n-GaAs.
are sequentially deposited to a thickness of 3 μm. The GaAs substrate l has Au-
The p-side electrode 8 made of Zn and the cap layer 6 are made of Au-Ge.
-Ni-Au n-side electrode 9 is formed by vapor deposition. Next, the resonance length is 250 μm depending on the bone.

幅300μmの半導体レーザ素子とする。A semiconductor laser element with a width of 300 μm is used.

p型クラッド層3.活性層4.中間層10.n型クラッ
ド層5の各層の屈折率nl 、n2.n3 、n4は第
4図(B)に示す如< n2>na>n4>nlに設定
されている。
p-type cladding layer 3. Active layer 4. Middle layer 10. The refractive index of each layer of the n-type cladding layer 5 is nl, n2. n3 and n4 are set to <n2>na>n4>nl as shown in FIG. 4(B).

ストライブ状の溝7を電流通路として活性層4へ電流が
注入され、溝7の直上部に対応する活性層4よりレーザ
発振が開始される。p型クラッド層3は溝部7で層厚が
厚く、溝部7以外では薄く層設されており、第3図同様
横方向に実効的屈折率差が形成されている。即ち、基本
的に活性層4で発生するレーザ光の基板1方向への1し
み出し“量の差を利用した屈折率導波型半導体レーザ素
子が構成される。
A current is injected into the active layer 4 using the striped grooves 7 as current paths, and laser oscillation is started from the active layer 4 directly above the grooves 7. The p-type cladding layer 3 is thick in the groove part 7 and thin in other parts than the groove part 7, so that an effective refractive index difference is formed in the lateral direction as in FIG. That is, a refractive index waveguide type semiconductor laser element is constructed which basically utilizes the difference in the amount of laser light generated in the active layer 4 that permeates in the direction of the substrate 1.

第5図に従来の屈折率導波型半導体レーザ(破線)と上
記実施例に係る中間層IOを備えだ屈折率導波型半導体
レーザ(実線)の電流−光出力特性及び発振スペクトル
特性を示す。
FIG. 5 shows the current-optical output characteristics and oscillation spectrum characteristics of a conventional index-guided semiconductor laser (dashed line) and an index-guided semiconductor laser equipped with the intermediate layer IO according to the above embodiment (solid line). .

上記実施例に係る半導体レーザでは、活性層4に隣接し
て基板1と反対側に活性層4よりも屈折率の小さな中間
層10を設けているため、活性層4内における積層方向
の光の閉じ込め係数が低下し、基板lへの光のゝゝしみ
出し〃量が減少する。
In the semiconductor laser according to the above embodiment, since the intermediate layer 10 having a smaller refractive index than the active layer 4 is provided adjacent to the active layer 4 on the opposite side to the substrate 1, the light in the stacking direction within the active layer 4 is The confinement factor is lowered and the amount of light seeping into the substrate I is reduced.

光の5しみ出し“効果の減少に基いて活性層4内での横
方向光閉じ込めも弱まり、このため発振閾値は従来の半
導体レーザに比べて増加するが、レーザ発振領域と非発
振領域との間の実効的屈折率差ΔNが時間的に振動する
効果が現われ、その単軸発振スペクトル幅が拡大する。
Due to the reduction in the light seepage effect, the lateral light confinement within the active layer 4 is also weakened, which increases the oscillation threshold compared to conventional semiconductor lasers, but the difference between the lasing region and non-oscillating region also weakens. An effect appears in which the effective refractive index difference ΔN between the two oscillates over time, and the uniaxial oscillation spectrum width expands.

第5図においてはこの単軸発振スペクトル幅がo、o 
O] X程度からIX程度に拡大していることが示され
ている。中間層IOの屈折率n3を適宜変化させたレー
ザ素子を作製することによって光の“しみ出し〃量が変
化し、活性層4に於けるレーザ発振領域と非発振領域と
の間の実効的屈折率差ΔNが制御されるととによって自
己発振現象に起因する出力レーザ光の単軸モードスペク
トル幅が適宜拡大制御されること1゛となる。尚、屈折
率導波機構を基本とするレーザ発振であるため、出力レ
ーザ光の近視野像及び遠視野像をともに安定に維持する
ことができる。
In Fig. 5, this uniaxial oscillation spectrum width is o, o
O] It is shown that it has expanded from about X to about IX. By manufacturing a laser element in which the refractive index n3 of the intermediate layer IO is appropriately changed, the amount of light "seepage" is changed, and the effective refraction between the laser oscillation region and the non-laser region in the active layer 4 is changed. When the index difference ΔN is controlled, the uniaxial mode spectrum width of the output laser beam caused by the self-oscillation phenomenon is appropriately expanded and controlled. Therefore, both the near-field image and the far-field image of the output laser beam can be stably maintained.

上記実施例ではGaAs−GaAlAs系半導体レーザ
素子について説明しだが、本発明は他の材料で構成され
る半導体レーザ素子についても適用が可能であることは
当然である。また、上記実施例中に用いた各層の層厚及
び組成の値は本発明の適用範囲を制限するものでは々い
In the above embodiments, a GaAs-GaAlAs semiconductor laser device was explained, but it goes without saying that the present invention can also be applied to semiconductor laser devices made of other materials. Furthermore, the values of the layer thickness and composition of each layer used in the above examples do not limit the scope of application of the present invention.

〈発明の効果〉 以上詳説した如く、本発明によれば、出力レーザ光の単
軸モードスペクトル幅が拡大され、ディスク面等の被照
射体からの反射による戻り光に起因する干渉雑音が抑制
される。また、近視野像及び遠視野像の変化が少なく、
光学系との結合効率を良好に維持することができる。
<Effects of the Invention> As explained in detail above, according to the present invention, the uniaxial mode spectrum width of the output laser beam is expanded, and interference noise caused by return light due to reflection from an irradiated object such as a disk surface is suppressed. Ru. In addition, there is little change in the near-field image and far-field image,
Good coupling efficiency with the optical system can be maintained.

【図面の簡単な説明】 第1図は従来の半導体レーザ素子の注入電流対光出力特
性図である。実線は再入射光が存在する場合、破線は再
入射光がない場合の特性曲線である。 第2図は従来の半導体レーザ、素子の雑音特性図である
。曲線L1は再入射光が存在する場合、曲線t2は再入
射光がない場合の特性曲線である。 第3図は従来の屈折率導波型半導体レーザ素子の構成断
面図である。 第4図(A)(B)は本発明の一実施例を示す半導体レ
ーザ素子の断面構成図及び溝部X−X部の屈折率分布図
である。 第5図は従来の半導体レーザ素子と第4図に示す半導体
レーザ素子の注入電流対光出力特性及び発振スペクトル
特性を示す説明図である。 1・・・GaAs基板、2・・・電流阻止層、3・・・
p型クラッド層、4・・・活性層、5・・・n型クラッ
ド層、6・・・キャップ層、IO・・・中間層代理人 
弁理士 福 士 愛 彦(他2名)逓XVL 充 第11ツ1 0    h作:Ll−、601’Cノ第2 図 鴛 (A)                      
              (B))λ 4Fyl
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the injection current versus light output characteristic of a conventional semiconductor laser device. The solid line is the characteristic curve when there is re-incident light, and the broken line is the characteristic curve when there is no re-incident light. FIG. 2 is a diagram showing the noise characteristics of a conventional semiconductor laser and device. The curve L1 is a characteristic curve when there is re-incident light, and the curve t2 is a characteristic curve when there is no re-incident light. FIG. 3 is a cross-sectional view of a conventional refractive index waveguide type semiconductor laser device. FIGS. 4(A) and 4(B) are a cross-sectional configuration diagram of a semiconductor laser device and a refractive index distribution diagram of a groove section XX, showing an embodiment of the present invention. FIG. 5 is an explanatory diagram showing the injection current versus optical output characteristics and oscillation spectrum characteristics of the conventional semiconductor laser device and the semiconductor laser device shown in FIG. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 2... Current blocking layer, 3...
p-type cladding layer, 4... active layer, 5... n-type cladding layer, 6... cap layer, IO... intermediate layer agent
Patent attorney Aihiko Fukushi (and 2 others) Posted by XVL Mitsuru 11th 10h Written by: Ll-, 601'C No. 2 Illustration (A)
(B))λ 4Fyl

Claims (1)

【特許請求の範囲】 1、基板上に電流狭窄用ストライプ溝を形成しかつレー
ザ発振用活性層を有する多層結晶を堆積してなり、前記
活性層の光を非発振領域で前記基板方向へ漏出する屈折
率導波機構が形成された半導体レーザ素子に於いて、前
記活性層の前記基板と逆方向の界面に隣接して前記活性
層より屈折率の小さい中間層を介挿し、前記基板方向へ
の光の漏出量を制御したことを特徴とする半導体レーザ
素子。 2、前記多層結晶をGaAlAs系化合物半導体材料で
構成した特許請求の範囲第1項記載の半導体レーザ素子
[Claims] 1. Forming striped grooves for current confinement on a substrate and depositing a multilayer crystal having an active layer for laser oscillation, and leaking light from the active layer toward the substrate in a non-oscillation region. In a semiconductor laser device in which a refractive index waveguide mechanism is formed, an intermediate layer having a refractive index smaller than that of the active layer is inserted adjacent to an interface of the active layer in a direction opposite to the substrate; A semiconductor laser device characterized in that the amount of light leakage is controlled. 2. The semiconductor laser device according to claim 1, wherein the multilayer crystal is made of a GaAlAs-based compound semiconductor material.
JP58046810A 1983-03-18 1983-03-18 Semiconductor laser element Pending JPS59172287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046810A JPS59172287A (en) 1983-03-18 1983-03-18 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046810A JPS59172287A (en) 1983-03-18 1983-03-18 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS59172287A true JPS59172287A (en) 1984-09-28

Family

ID=12757677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046810A Pending JPS59172287A (en) 1983-03-18 1983-03-18 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59172287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203693A (en) * 1985-03-06 1986-09-09 Sharp Corp Semiconductor laser
JPH02113586A (en) * 1988-10-21 1990-04-25 Sharp Corp Semiconductor laser element
JPH08213696A (en) * 1995-10-23 1996-08-20 Sharp Corp Semiconductor laser element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203693A (en) * 1985-03-06 1986-09-09 Sharp Corp Semiconductor laser
JPH0451074B2 (en) * 1985-03-06 1992-08-18 Sharp Kk
JPH02113586A (en) * 1988-10-21 1990-04-25 Sharp Corp Semiconductor laser element
JPH08213696A (en) * 1995-10-23 1996-08-20 Sharp Corp Semiconductor laser element

Similar Documents

Publication Publication Date Title
US7515624B2 (en) Semiconductor laser, semiconductor laser driver and method of driving semiconductor laser reducing feedback-induced noise by modulated optical output
US5751756A (en) Semiconductor laser device for use as a light source of an optical disk or the like
JPS61168980A (en) Semiconductor light-emitting element
JP2002289965A (en) Semiconductor laser device and optical pickup device
JPS59172287A (en) Semiconductor laser element
US4937836A (en) Semiconductor laser device and production method therefor
JPH0671121B2 (en) Semiconductor laser device
JP3785429B2 (en) Semiconductor laser device and manufacturing method thereof
JP3319692B2 (en) Semiconductor laser device
JP3236208B2 (en) Semiconductor laser device and optical pickup device
JP3710313B2 (en) Semiconductor laser element
JPS59147479A (en) Semiconductor laser element
JPH09270563A (en) Semiconductor laser element and manufacturing method thereof
JPH04280490A (en) Semiconductor laser equipment
JPH11214792A (en) Semiconductor laser
JPH10144993A (en) Semiconductor laser
JPH0728094B2 (en) Semiconductor laser device
JPS6010795A (en) Semiconductor laser element
JP3768267B2 (en) Semiconductor laser device and manufacturing method thereof
JPS5990982A (en) Semiconductor laser element
JPH02257691A (en) Integrated type semiconductor laser
JPH0997938A (en) Driving of semiconductor laser
JPH05875B2 (en)
JPS59104172A (en) Semiconductor laser element
JPH08264889A (en) Semiconductor laser element