JPS59147479A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPS59147479A JPS59147479A JP2121383A JP2121383A JPS59147479A JP S59147479 A JPS59147479 A JP S59147479A JP 2121383 A JP2121383 A JP 2121383A JP 2121383 A JP2121383 A JP 2121383A JP S59147479 A JPS59147479 A JP S59147479A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- oscillation
- semiconductor laser
- weir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2232—Buried stripe structure with inner confining structure between the active layer and the lower electrode
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は出力レーザ光の戻り光による干渉雑音を低減し
た半導体レーザ素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor laser device in which interference noise caused by return light of an output laser beam is reduced.
〈従来技術〉
従来、半導体レーザ素子をビデオディスクやオーディオ
ディスク等の情報処理装置における光源として使用する
場合、装置の光学系を介してディスク面からの反射によ
る出力レーザ光の戻シ光が半導体レーザ素子へ再入射す
ると、出力光に対する再入射光の干渉によシ第1図の実
線に示す如く半導体レーザ素子の注入電流対光出力特性
線の直線性が再入射光のない場合(破線で示す)に比し
て著しく低下し、まだ第2図に曲線1.で示す如く、出
力光の雑音が増加するため、実用に供することが不可能
に彦ることがある。尚、第2図の曲線t1け再入射光が
ある場合、曲線t2は再入射光がない場合の動作温度対
S/N比特性曲線を表わしている。この問題を解決する
手段として、半導。<Prior Art> Conventionally, when a semiconductor laser element is used as a light source in an information processing device such as a video disk or an audio disk, the output laser beam is reflected from the disk surface through the optical system of the device and returned to the semiconductor laser. When the re-incoming light enters the device, the linearity of the injection current vs. optical output characteristic line of the semiconductor laser device changes as shown by the solid line in Figure 1 due to the interference of the re-incoming light with the output light. ), and still shows curve 1 in Figure 2. As shown in Figure 2, the noise of the output light increases, which may make it impossible to put it to practical use. Incidentally, when there is as much re-incident light as the curve t1 in FIG. 2, the curve t2 represents the operating temperature vs. S/N ratio characteristic curve when there is no re-incident light. Semiconductor is a way to solve this problem.
体レーザ素子の電流注入幅即ちストライプ幅を通常の1
0〜15μmから活性層中のキャリア拡散長程度即ち2
〜4μm程度に迄狭くすることが試みられている。この
ような狭ストライプ幅の半導体レーザ素子では、利得分
布によシレーザ光の光分布が決定されるが、共振器体積
が小さくなることから自然放出光のレーザモードへの関
与が大きくなりかつ注入電流密度が大きいため利得のス
ペクトル幅が拡大され、この結果多軸モードでレーザ発
振して、再入射光による影響が低減される。The current injection width of the laser device, that is, the stripe width, is set to 1
Carrier diffusion length in the active layer from 0 to 15 μm, that is, 2
Attempts have been made to narrow it down to about 4 μm. In a semiconductor laser device with such a narrow stripe width, the optical distribution of the laser beam is determined by the gain distribution, but as the cavity volume becomes smaller, the involvement of the spontaneous emission light in the laser mode increases, and the injection current increases. Since the density is large, the spectral width of the gain is expanded, and as a result, the laser oscillates in a multi-axis mode, and the influence of re-incident light is reduced.
更に、上記半導体レーザ素子では活性層への注入キャリ
アが横方向へ拡散することによりレーザ発振領域と非発
振領域との間でキャリアの振動が生じ、その結果、レー
ザ光出力が緩和振動周波数に共振した高周波の自己発振
現象を生起する。このため、レーザ光出力がAM変調や
キャリアの増減に呼応した屈折率の変化によってFM変
調され、発振スペクトル幅が約IA程度に拡大する。こ
のことがレーザ光のコヒーレント長を短くしまだ光学系
から反射して半導体レーザ素子へ再入射する光の位相を
無秩序化するため、再入射光との干渉性の雑音の発生が
なくなシ、再入射光の影響が低減される。Furthermore, in the semiconductor laser device described above, carriers injected into the active layer diffuse laterally, causing carrier oscillation between the laser oscillation region and the non-oscillation region, and as a result, the laser light output resonates at the relaxation oscillation frequency. This causes a high-frequency self-oscillation phenomenon. Therefore, the laser light output is FM modulated by AM modulation and a change in the refractive index in response to the increase and decrease of carriers, and the oscillation spectrum width is expanded to about IA. This shortens the coherent length of the laser beam and makes the phase of the light reflected from the optical system and re-injected into the semiconductor laser element disordered, eliminating interference noise with the re-incoming light. The influence of re-incident light is reduced.
しかしながら、一般に利得導波型レーザでは注入電流や
経時変化等によって近視野像が変化して光学系との結合
が不安型になシまた非点収差が大きいために光学系との
結合効率が低下する等の欠点を有する。従って、出力レ
ーザ光の安定性及びレーザ光と光学系との結合を考慮す
ると屈折率導波型レーザ素子が要求されてぐる。However, in general, in gain-guided lasers, the near-field image changes due to injection current, changes over time, etc., making the coupling with the optical system unstable, and the coupling efficiency with the optical system decreases due to large astigmatism. It has disadvantages such as: Therefore, in consideration of the stability of the output laser beam and the coupling between the laser beam and the optical system, a refractive index waveguide type laser element is required.
屈折率導波型レーザ素子の1例として、内部電流狭窄構
造を有するVチャネル型半導体レーザ素子を第3図に示
す。この半導体レーザ素子はp−GaAs基板1上にn
−GaAs電流阻止層2を堆積し、ストライプ状の溝7
を形成してこの部分を電流通路とし、また溝7とそれ以
外の領域とにおけるP −Gao、、、Ato、3As
第1堰層3の層厚の違いを利用してGa0.95 At
0.05 As活性層4で生じるレーザ光の電流阻止層
2及び基板lへの11シみ出し”に差を設け、発振領域
と非発振領域との間に実効的屈折率差を付与して屈折率
導波を実現したものである。尚、活性層4上にはn−G
a□、7A7o、3As第2堰層5がクラッドされてダ
ブルへテロ接合が形成され、更にn−GaAsキャップ
層6が堆積されている。また8はP側電極、9はn側電
極である2、この半導体レーザ素子は屈折率導波型であ
ることを反映して近視野像、遠視野像ともに安定な発振
が得られ、まだ非点収差もほとんどないために光学系と
の結合効率が高いという特徴をもつ。しかしながら、出
力レーザ光の戻り光がこの素子内へ再入射した場合、第
1図にて説明したような戻り光に起因する干渉雑音の問
題が生じる。As an example of a refractive index guided laser device, a V-channel semiconductor laser device having an internal current confinement structure is shown in FIG. This semiconductor laser device is formed on a p-GaAs substrate 1.
- Depositing a GaAs current blocking layer 2 and forming striped grooves 7
P-Gao, , Ato, 3As in the groove 7 and other regions
Using the difference in the layer thickness of the first weir layer 3, Ga0.95 At
0.05 A difference is provided in the amount of laser light generated in the As active layer 4 that oozes out into the current blocking layer 2 and the substrate 1, and an effective refractive index difference is provided between the oscillation region and the non-oscillation region. This realizes refractive index waveguide. Furthermore, on the active layer 4 there is an n-G
A□, 7A7o, 3As second weir layer 5 is clad to form a double heterojunction, and further an n-GaAs cap layer 6 is deposited. In addition, 8 is a P-side electrode, and 9 is an n-side electrode 2. Reflecting the fact that this semiconductor laser device is a refractive index waveguide type, stable oscillation can be obtained in both near-field and far-field images, and it is still not stable. Since there is almost no point aberration, the coupling efficiency with the optical system is high. However, when the returned light of the output laser light enters the element again, the problem of interference noise caused by the returned light as explained in FIG. 1 occurs.
こitは、第3図に示すようなレーザ素子構造では内部
電流狭窄部が活性層4に近く、非発振領域に流入する無
効電流(発振に寄与しない電流)が極めて少ない一克め
に上述の狭ストライプ幅レーザ素子にみられるような自
己発振現象が起こらないためである。これを改善する対
策として、内部電流狭窄部と活性層4との距離を離間さ
せる目的から第4図に示す如く第1堰層3の層厚を増加
させることが考えられる。このようなレーザ素子では活
゛1打層4の非発光領域に流入する無効電流を増加させ
ることかでき、上記自己発振現象を生じさせることが可
能になるが、反面第1堰層3の厚さを増すことによって
活性層3から基板1への光のしみ出しが減少する結果、
レーザ発振領域と非発振領域との実効的屈折率差がなく
なり、利得導波型レーザ素子に近似することとなる。This is because in the laser element structure shown in FIG. 3, the internal current confinement part is close to the active layer 4, and the reactive current (current that does not contribute to oscillation) flowing into the non-oscillation region is extremely small. This is because the self-oscillation phenomenon seen in narrow stripe width laser devices does not occur. As a measure to improve this, it is conceivable to increase the layer thickness of the first weir layer 3 as shown in FIG. 4 in order to increase the distance between the internal current confinement portion and the active layer 4. In such a laser element, it is possible to increase the reactive current flowing into the non-emitting region of the first active layer 4, and it is possible to cause the above-mentioned self-oscillation phenomenon. As a result of increasing the thickness, the seepage of light from the active layer 3 to the substrate 1 is reduced.
There is no effective refractive index difference between the laser oscillation region and the non-laser region, and the device approximates a gain waveguide type laser device.
〈発明の目的〉
本発明は、従来の半導体レーザ素子における上述の諸問
題を根本的に解決するものであり、内部電流狭窄機構を
備え、屈折率導波a措を有し、がつ単軸モード発振する
半導体レーザに於いて、単軸モードのスペクトル幅を拡
大することにより再入射光の影響を排除し、直線性の良
好な電流−光出力特性を呈しかつ雑音の増加を防止した
新規有用な半導体レーザ素子を提供することを目的とす
る0
〈実施例〉
本発明は、屈折率niの第1堰層と屈折率n3の活性層
との間に屈折率n2の中間層を挿入し、恩の中間層の層
厚及び屈折率を制御することによって活性層における無
効電流を制御し、かつ発振領域と非発振領域との間の実
効的屈折率差を制御し、屈折率導波型レーザ素子におい
ても戻シ光による雑音の少ないレーザ素子構造を確立し
たものである。上記中間層は活性層忙隣接してその基板
側に設けられるものであシ、戻り光による雑音を抑制す
る上で2つの意味を持つ。その第1番目は堰層と活性層
との間に中間層を導入することにより、内部電流狭窄部
と活性層との距離が広がり、非発振領域へ流入する発振
に寄与しない無効電流が増大することである。その結果
、前述の狭ストライプ幅レーザ素子にみられたような自
己発振現象を、内部電流狭窄構造の形成された屈折率導
波型レーザ素子に於いても生起させることが可能に在る
。実験の結果、無効電流の増大による発振スペクトル幅
の拡大が生じるのは溝部以外に於ける第1堰層と中間層
の層厚和か0.3μm以上の範囲であることが検証され
ている。第2番目は、中間層を設けることにより活性層
で発生するレーザ光の基板へのしみ出し量を制御し、自
己発振現象を起こすことを可能にするものである。レー
ザ光の基板へのしみ出し効果を利用して発振領域と非発
振領域との間に実効的外屈折率差(ΔN)を設けた屈折
率導波型レーザ素子では、との囁しみ出し〃量に呼応し
てΔNが決定される。活性層に隣接して中間層を導入す
ることにより、活性層を中心として積層方向のレーザ光
電界強度分布を変化させ、基板へのNしみ出し〃量を制
御しΔNを変化させることが可能になる。一方、活性層
に於いては発振に伴う注入キャリアの消費とキャリアの
横方向拡散に基いて、注入キャリアは時間的に振動し、
これに呼応して発振領域と非発振領域との間の屈折率差
も時間的に△nの振動数で振動する。通常の屈折率導波
型レーザ素子では△nはΔNに比べて充分小さいために
振動効果は観測されないが、中間層を導入しその層厚及
び屈折率を制御し基板への光の気しみ出し〃を少なくし
てΔNを小さくすることによシ屈折率導波型レーザ素子
に於いて。<Purpose of the Invention> The present invention fundamentally solves the above-mentioned problems in conventional semiconductor laser devices, and has an internal current confinement mechanism, a refractive index waveguide, and a single-axis laser diode. Newly useful semiconductor lasers that emit mode oscillations eliminate the influence of re-incident light by expanding the spectral width of the single-axis mode, exhibiting current-optical output characteristics with good linearity, and preventing noise increase. Embodiment The present invention aims to provide a semiconductor laser device with a refractive index of n2 and an intermediate layer of refractive index of n2 between a first weir layer of refractive index of ni and an active layer of refractive index of n3, By controlling the layer thickness and refractive index of the intermediate layer, the reactive current in the active layer is controlled, and the effective refractive index difference between the oscillation region and the non-oscillation region is controlled, thereby creating an index-guided laser. A laser element structure with less noise caused by returned light has been established in the element. The intermediate layer is provided on the substrate side adjacent to the active layer, and has two meanings in suppressing noise due to returned light. The first is that by introducing an intermediate layer between the weir layer and the active layer, the distance between the internal current confinement part and the active layer increases, increasing the reactive current that does not contribute to oscillation and flows into the non-oscillation region. That's true. As a result, it is possible to cause the self-oscillation phenomenon seen in the narrow stripe width laser device described above also in the refractive index waveguide type laser device in which the internal current confinement structure is formed. As a result of experiments, it has been verified that the expansion of the oscillation spectrum width due to the increase in reactive current occurs in a region other than the groove where the sum of the layer thicknesses of the first weir layer and the intermediate layer is 0.3 μm or more. The second method is to control the amount of laser light generated in the active layer seeping into the substrate by providing an intermediate layer, thereby making it possible to cause a self-oscillation phenomenon. In an index-guided laser element that uses the effect of laser light seeping into the substrate to create an effective outer refractive index difference (ΔN) between the oscillation region and the non-oscillation region, ΔN is determined in response to the amount. By introducing an intermediate layer adjacent to the active layer, it is possible to change the laser beam electric field intensity distribution in the stacking direction centering on the active layer, control the amount of N leaking into the substrate, and change ΔN. Become. On the other hand, in the active layer, the injected carriers oscillate over time due to consumption of the injected carriers and lateral diffusion of the carriers due to oscillation.
Correspondingly, the refractive index difference between the oscillating region and the non-oscillating region also oscillates temporally at a frequency of Δn. In a normal index-guided laser element, △n is sufficiently small compared to ∆N, so no vibration effect is observed, but by introducing an intermediate layer and controlling its layer thickness and refractive index, light seeps into the substrate. In a refractive index waveguide type laser device, by reducing ΔN by reducing 〃.
も自己発振現象が見い出されるようになシ単軸モードの
スペクトル幅が拡大する。As self-oscillation phenomena are discovered, the spectral width of the uniaxial mode expands.
以下、第5図に示す本発明の1実施例の半導体レーザ素
子に従って詳説する。Hereinafter, a detailed explanation will be given according to a semiconductor laser device according to an embodiment of the present invention shown in FIG.
第5図の半導体レーザ素子r/″iP型基板に用いたG
aAs−GaAtAs系のダブルへテロ接合型半導体レ
ーザ素子を示す0
1 X 1018cm 3のキャリア濃度を有するZn
ドープ)’−GaAs基板11上に液相エピタキシャ
ル成長法を用いて5 X 1018cnt ”のキャリ
ア濃度を有するTeドープn−QaAs電流阻止層12
を08μmの厚さに成長させた後、電流阻止層12表面
からストライプ状にP GaAs基板11まで貫通す
る溝17を形成する。この溝17が電流用II一層12
の除去された電流通路となる。溝17のストライプ幅は
3μmである。再度液相エピタキシャル成長法により、
この上傾レーザ動作用多層結晶構造としてZnドープP
−Gao9.7AAo、3Asから成る屈折率nl の
第1堰層13を溝部外の層厚0.2μmで表面・←坦に
成長さぞ、更に順次ZllドープP−G a 1.
x A tx A s (0<X〈1)から成る屈折率
n2の中間M20を層厚0.3μmで、アンドープG
a (1g5A t o、。5Asから成る屈折率n3
の活性層14を層厚0. I Amで、Teドープn
cao、5AtO,5ASから成る屈折率n4の第2
堰層15を層厚1μmで、Teドープn−GaAsから
成るギャップ層16を層厚3μmで、第1堰層13上に
積層する。各層の屈折率はn3〉n2>旧)n4に設定
される。G used for the semiconductor laser device r/″iP type substrate in Figure 5
Zn having a carrier concentration of 0 1 x 1018 cm 3 indicating an aAs-GaAtAs double heterojunction semiconductor laser device
A Te-doped n-QaAs current blocking layer 12 having a carrier concentration of 5 x 1018 cnt'' is formed on a GaAs substrate 11 using a liquid phase epitaxial growth method.
After growing to a thickness of 0.8 μm, grooves 17 penetrating from the surface of the current blocking layer 12 to the PGaAs substrate 11 in a striped pattern are formed. This groove 17 is the current II layer 12.
The current path is removed. The stripe width of the groove 17 is 3 μm. By liquid phase epitaxial growth method again,
Zn-doped P is used as the multilayer crystal structure for this upward tilt laser operation.
- Grow the first weir layer 13 made of Gao 9.7AAo, 3As and have a refractive index nl to a thickness of 0.2 μm on the surface of the outside of the groove, and then sequentially grow Zll doped P-G a 1.
The intermediate M20 with a refractive index n2 consisting of x A tx A s (0 <
a (1g5A t o, .Refractive index n3 made of 5As
The active layer 14 has a layer thickness of 0. I Am, Te doped n
cao, 5AtO, 5AS with refractive index n4
A weir layer 15 with a thickness of 1 μm and a gap layer 16 made of Te-doped n-GaAs with a thickness of 3 μm are laminated on the first weir layer 13. The refractive index of each layer is set to n3>n2>old)n4.
次に基板11の裏面及びキャップ層16上にそれぞれA
u−Znから成るP側電極18 、 Au−Ge−Nj
から成るn側電極19を形成する。共振器端面は臂開法
により形成し、共振長250μm、素子幅300μmの
ダブルへテロ接合型半導体レーザ素子が構成される。Next, on the back surface of the substrate 11 and on the cap layer 16,
P-side electrode 18 made of u-Zn, Au-Ge-Nj
An n-side electrode 19 is formed. The resonator end facets are formed by the arm-opening method, and a double heterojunction semiconductor laser device having a resonance length of 250 μm and a device width of 300 μm is constructed.
P f、11電極18及びn側電極19を介して直流電
圧を印加すると、溝17を電流通路としてストライプ状
に電流が注入され、活性層14よりレーザ発振が開始さ
れる。When a DC voltage is applied through the Pf, 11 electrode 18 and the n-side electrode 19, a current is injected in a stripe pattern using the groove 17 as a current path, and laser oscillation is started from the active layer 14.
中間層20の層厚を0.3μmに固定し、その屈折率n
2を変化させた複数のレーザ素子を試作し。The layer thickness of the intermediate layer 20 is fixed at 0.3 μm, and its refractive index n
We prototyped multiple laser elements with variations in 2.
てその発振スペクトルを調べだところ、n2が活性層1
4の屈折率n3に近い場合には、活性層14で発生する
レーザ光の基板1への囁しみ出し〃がまだ充分大きく、
前述した自己発振現象に基く発振スペクトル幅の拡大は
観測されなかった。n2が減少するにつれて11シみ出
し〃効果は弱まり、n2<3 (n++2r+3)の領
域において自己発振現象が観測された。第6図はこれを
説明する特性図であり、横軸は中間層20のG a l
X A tx A sの混晶比X、縦軸は屈折率を
示す。図中の斜線の領域がn2、< (n++2n3
)を満足する部分である。第7図は従来の屈折率導波型
半導体レーザ素子(破線)と上記実施例に示す中間層2
0を備えだ屈折率導波型半導体レーザ素子(実線)の電
流−光出力特性及び3mW出力時の発振スペクトル特性
を示す特性図である。中間層20を備えた屈折率導波型
半導体レーザ素子では、非発振領域への無効電流の流入
が増加するため発振閾値電流は増大するが、レーザ発振
領域と非発振領域との間で注入キャリアの振動が生じ、
その結果単軸モードスペクトル幅SW1がIAA程度広
くなっていることが確認された。一方、中間層20のな
い従来のレーザ素子では単軸モードスペクトル幅S W
2 k’! 0.001 A程度である。When I investigated its oscillation spectrum, I found that n2 is active layer 1.
When the refractive index n3 of 4 is close to n3, the seepage of the laser light generated in the active layer 14 into the substrate 1 is still sufficiently large;
Expansion of the oscillation spectrum width based on the self-oscillation phenomenon described above was not observed. As n2 decreased, the 11 seepage effect weakened, and a self-oscillation phenomenon was observed in the region of n2<3 (n++2r+3). FIG. 6 is a characteristic diagram explaining this, and the horizontal axis is the G a l of the intermediate layer 20.
The mixed crystal ratio X of X A tx A s, and the vertical axis indicates the refractive index. The shaded area in the figure is n2, < (n++2n3
). FIG. 7 shows a conventional index-guided semiconductor laser device (broken line) and the intermediate layer 2 shown in the above embodiment.
FIG. 2 is a characteristic diagram showing the current-optical output characteristics and the oscillation spectrum characteristics at an output of 3 mW of a refractive index waveguide type semiconductor laser device (solid line) having a refractive index of 0. In the index-guided semiconductor laser device including the intermediate layer 20, the oscillation threshold current increases because the inflow of reactive current into the non-oscillation region increases, but the injected carriers between the lasing region and the non-oscillation region vibration occurs,
As a result, it was confirmed that the single-axis mode spectrum width SW1 was as wide as IAA. On the other hand, in a conventional laser device without the intermediate layer 20, the uniaxial mode spectrum width S W
2 k'! It is about 0.001 A.
第8図は中間層をもつ屈折率導波型半導体レーザ素子の
接合に平行方向におけるビームウェスト位置を測定した
結果を示す説明図である。ビームウェスト位置は共振器
端面に一致していることが確認された。FIG. 8 is an explanatory diagram showing the results of measuring the beam waist position in a direction parallel to the junction of a refractive index waveguide semiconductor laser device having an intermediate layer. It was confirmed that the beam waist position coincided with the resonator end face.
以上、GaAs−GaAAAs系のレーザ素子を実施例
として本発明を説明したが、他の材料からなる半導体レ
ーザ素子にも本発明を適用し得ることは可能である。ま
た、本発明は第1堰層若しくは中間層の層厚まだは中間
層の屈折率を限定するものであるが、上記実施例中に用
いた各層の層厚または組成の値に適用範囲を制限するも
のではない。Although the present invention has been described above using a GaAs-GaAAAs laser element as an example, it is possible to apply the present invention to semiconductor laser elements made of other materials. In addition, although the present invention limits the layer thickness of the first weir layer or the intermediate layer and the refractive index of the intermediate layer, the scope of application is limited to the layer thickness or composition value of each layer used in the above examples. It's not something you do.
〈発明の効果〉
本発明によれば、内部電流狭窄部と活性層間の距離が離
間されるだめ、無効電流が増大しまた発振領域と非発振
領域との間に実効的な屈折率差が形成された状態で自己
発振現象が生起される。これにより単軸モードのスペク
トル幅を拡大するとととなり、再入射光の影響が除去さ
れる0従って、電流対光出力特性の直線性が良好で雑音
の少ない半導体レーザ素子を得ることができる。<Effects of the Invention> According to the present invention, as the distance between the internal current confinement portion and the active layer is increased, the reactive current increases and an effective refractive index difference is formed between the oscillation region and the non-oscillation region. In this state, a self-oscillation phenomenon occurs. As a result, the spectral width of the uniaxial mode is expanded, and the influence of re-incident light is removed. Therefore, it is possible to obtain a semiconductor laser device with good linearity of current vs. light output characteristics and low noise.
第1図は従来の半導体レーザ素子の注入電流対光出力特
性図である。第2図は従来の半導体レーザ素子の動作温
度対8/N比の特性図である。第3図及び第4図は従来
の半導体レーザ素子を示す構成図である0第5図は本発
明の1実施例を示す半導体レーザ素子の構成図である。
第6図はGaニーゆkl Asの混晶比Xと屈折率の関
係を説明する説明図である。第7図(d:第5図に示す
半導体レーザ素子と従来の半導体レーザ素子の注入電流
対光出力特性及び発振スペクトルを示す説明図である。
第8図は第5図に示す半導体レーザ素子の接合に平行方
向のレーザビーム幅を示す説明図である011・基板
12・・・電流阻止層 13・・・第1堰層 14・活
性層 15・・・第2堰層 16 キャ逢入電表
第1t′XI
?f1.2図
第3図
第4 図
第51如
第6図
511λを九(mA)
慎7閉
421−
第8図FIG. 1 is a diagram showing the injection current versus light output characteristic of a conventional semiconductor laser device. FIG. 2 is a characteristic diagram of operating temperature versus 8/N ratio of a conventional semiconductor laser device. 3 and 4 are block diagrams showing a conventional semiconductor laser device. FIG. 5 is a block diagram of a semiconductor laser device showing an embodiment of the present invention. FIG. 6 is an explanatory diagram illustrating the relationship between the mixed crystal ratio X and the refractive index of Ga and As. FIG. 7 (d) is an explanatory diagram showing the injection current vs. optical output characteristics and oscillation spectra of the semiconductor laser device shown in FIG. 5 and the conventional semiconductor laser device. FIG. 011/Substrate which is an explanatory diagram showing the laser beam width in the direction parallel to bonding.
12... Current blocking layer 13... First weir layer 14... Active layer 15... Second weir layer 16 Capacity input table No. 1t'XI? f1.2 Figure 3 Figure 4 Figure 51 Figure 6 Figure 6 511λ9 (mA) Shin 7 Close 421- Figure 8
Claims (1)
折率nlの第1堰層、屈折率n2の中間層、屈折率n3
の活性層、屈折率n4の第2堰層を順次積層してレーザ
動作用多層結晶構造を構成し、各層の屈折率が n3)n2>n+)n< n 2<−!−(nl +213 ) 3 なる関係を満足していることを特徴とする半導体レーザ
素子。 2、 レーザ動作用多層結晶構造を構成する各層がGa
1−xA4xAs(0≦Xく1)より成る特許請求の範
囲第1項記載の半導体レーザ素子。 3、第]堰層と中間層の層厚の和を0.3μm以上に設
定した特許請求の範囲第2項記載の半導体レーザ素子。[Claims] 1. A first weir layer with a refractive index of nl, an intermediate layer with a refractive index of n2, and a refractive index of n3 on a growth surface having a striped current confinement mechanism.
A multilayer crystal structure for laser operation is constructed by sequentially stacking an active layer of , a second weir layer with a refractive index of n4, and a refractive index of each layer of n3)n2>n+)n<n2<-! A semiconductor laser device characterized by satisfying the following relationship: -(nl+213)3. 2. Each layer constituting the multilayer crystal structure for laser operation is made of Ga.
The semiconductor laser device according to claim 1, comprising 1-xA4xAs (0≦X×1). 3. The semiconductor laser device according to claim 2, wherein the sum of the layer thicknesses of the weir layer and the intermediate layer is set to 0.3 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2121383A JPS59147479A (en) | 1983-02-09 | 1983-02-09 | Semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2121383A JPS59147479A (en) | 1983-02-09 | 1983-02-09 | Semiconductor laser element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59147479A true JPS59147479A (en) | 1984-08-23 |
JPH0252868B2 JPH0252868B2 (en) | 1990-11-14 |
Family
ID=12048715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2121383A Granted JPS59147479A (en) | 1983-02-09 | 1983-02-09 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147479A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789286A (en) * | 1980-11-25 | 1982-06-03 | Sharp Corp | Semiconductor laser element |
JPS5792885A (en) * | 1980-12-01 | 1982-06-09 | Sharp Corp | Semiconductor laser element |
JPS57153489A (en) * | 1981-03-17 | 1982-09-22 | Sharp Corp | Manufacture of semiconductor laser element |
-
1983
- 1983-02-09 JP JP2121383A patent/JPS59147479A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789286A (en) * | 1980-11-25 | 1982-06-03 | Sharp Corp | Semiconductor laser element |
JPS5792885A (en) * | 1980-12-01 | 1982-06-09 | Sharp Corp | Semiconductor laser element |
JPS57153489A (en) * | 1981-03-17 | 1982-09-22 | Sharp Corp | Manufacture of semiconductor laser element |
Also Published As
Publication number | Publication date |
---|---|
JPH0252868B2 (en) | 1990-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3322512B2 (en) | Design method of semiconductor laser device | |
JP2000261093A (en) | Distribution feedback type semiconductor laser | |
JPH10178232A (en) | Semiconductor laser and its manufacture | |
JPS59147479A (en) | Semiconductor laser element | |
US4937836A (en) | Semiconductor laser device and production method therefor | |
JP2702871B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPS59172287A (en) | Semiconductor laser element | |
JPH0671121B2 (en) | Semiconductor laser device | |
JPH0728094B2 (en) | Semiconductor laser device | |
JPH0728093B2 (en) | Semiconductor laser device | |
JP3319692B2 (en) | Semiconductor laser device | |
JPH01179487A (en) | Distributed feedback-type semiconductor laser | |
JPH0422033B2 (en) | ||
JPS59198786A (en) | Distributed feedback type semiconductor laser | |
JPH0268975A (en) | Semiconductor laser | |
JPH10144993A (en) | Semiconductor laser | |
JPH04280490A (en) | Semiconductor laser equipment | |
JPH01132191A (en) | Semiconductor laser element | |
JPS6342867B2 (en) | ||
JPS60226191A (en) | Semiconductor laser element | |
JP3422365B2 (en) | Ridge stripe type semiconductor laser device | |
JPS59104172A (en) | Semiconductor laser element | |
JPH098414A (en) | Semiconductor laser device and manufacture thereof | |
JPS581556B2 (en) | mode seigiyo hand tie laser | |
JPH0519998B2 (en) |