JPH0252868B2 - - Google Patents

Info

Publication number
JPH0252868B2
JPH0252868B2 JP58021213A JP2121383A JPH0252868B2 JP H0252868 B2 JPH0252868 B2 JP H0252868B2 JP 58021213 A JP58021213 A JP 58021213A JP 2121383 A JP2121383 A JP 2121383A JP H0252868 B2 JPH0252868 B2 JP H0252868B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
oscillation
semiconductor laser
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58021213A
Other languages
Japanese (ja)
Other versions
JPS59147479A (en
Inventor
Hiroshi Hayashi
Saburo Yamamoto
Shinji Kaneiwa
Kaneki Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2121383A priority Critical patent/JPS59147479A/en
Publication of JPS59147479A publication Critical patent/JPS59147479A/en
Publication of JPH0252868B2 publication Critical patent/JPH0252868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は出力レーザ光の戻り光による干渉雑音
を低減した半導体レーザ素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a semiconductor laser device in which interference noise caused by return light of output laser light is reduced.

<従来技術> 従来、半導体レーザ素子をビデオデイスクやオ
ーデイオデイスク等の情報処理装置における光源
として使用する場合、装置の光学系を介してデイ
スク面からの反射による出力レーザ光の戻り光が
半導体レーザ素子へ再入射すると、出力光に対す
る再入射光の干渉により第1図の実線に示す如く
半導体レーザ素子の注入電流対光出力特性線の直
線性が再入射光のない場合(破線で示す)に比し
て著しく低下し、また第2図に曲線l1で示す如
く、出力光の雑音が増加するため、実用に供する
ことが不可能になることがある。尚、第2図の曲
線l1は再入射光がある場合、曲線l2は再入射光が
ない場合の動作温度対S/N比特性曲線を表わし
ている。この問題を解決する手段として、半導体
レーザ素子の電流注入幅即ちストライプ幅を通常
の10〜15μmから活性層中のキヤリア拡散長程度
即ち2〜4μm程度に迄狭くすることが試みられて
いる。このような狭ストライプ幅の半導体レーザ
素子では、利得分布によりレーザ光の光分布が決
定されるが、共振器体積が小さくなることから自
然放出光のレーザモードへの関与が大きくなりか
つ注入電流密度が大きいため利得のスペクトル幅
が拡大され、この結果多軸モードでレーザ発振し
て、再入射光による影響が低減される。更に、上
記半導体レーザ素子では活性層への注入キヤリア
が横方向へ拡散することによりレーザ発振領域と
非発振領域との間でキヤリアの振動が生じ、その
結果、レーザ光出力が緩和振動周波数に共振した
高周波の自己発振現象を生起する。このため、レ
ーザ光出力がAM変調やキヤリアの増減に呼応し
た屈折率の変化によつてFM変調され、発振スペ
クトル幅が約1Å程度に拡大する。このことがレ
ーザ光のコヒーレント長を短くしまた光学系から
反射して半導体レーザ素子へ再入射する光の位相
を無秩序化するため、再入射光との干渉性の雑音
の発生がなくなり、再入射光の影響が低減され
る。
<Prior art> Conventionally, when a semiconductor laser device is used as a light source in an information processing device such as a video disk or an audio disk, the return light of output laser light due to reflection from the disk surface via the optical system of the device is transmitted to the semiconductor laser device. When the re-incident light enters the laser beam again, the linearity of the injection current vs. optical output characteristic line of the semiconductor laser device changes as shown by the solid line in Figure 1 due to the interference of the re-incident light with the output light compared to when there is no re-incident light (indicated by the broken line). In addition, as shown by curve l1 in FIG. 2, the noise of the output light increases, which may make it impossible to put it to practical use. Note that the curve l1 in FIG. 2 represents the operating temperature vs. S/N ratio characteristic curve when there is re-incident light, and the curve l2 represents the operating temperature versus S/N ratio characteristic curve when there is no re-incident light. As a means to solve this problem, attempts have been made to narrow the current injection width, ie, the stripe width, of the semiconductor laser device from the usual 10 to 15 μm to about the carrier diffusion length in the active layer, that is, about 2 to 4 μm. In a semiconductor laser device with such a narrow stripe width, the optical distribution of the laser beam is determined by the gain distribution, but as the cavity volume becomes smaller, the involvement of spontaneous emission light in the laser mode increases and the injection current density increases. Since the gain is large, the spectral width of the gain is expanded, and as a result, the laser oscillates in a multi-axis mode, and the influence of re-incident light is reduced. Furthermore, in the semiconductor laser device described above, the carriers injected into the active layer diffuse in the lateral direction, causing vibrations of the carriers between the laser oscillation region and the non-laser region, and as a result, the laser light output resonates at the relaxation oscillation frequency. This causes a high-frequency self-oscillation phenomenon. Therefore, the laser light output is FM modulated by AM modulation and a change in the refractive index in response to an increase or decrease in carrier, and the oscillation spectrum width is expanded to about 1 Å. This shortens the coherent length of the laser beam and disorder the phase of the light that is reflected from the optical system and re-enters the semiconductor laser element, eliminating interference noise with the re-entering light and re-entering the laser beam. Light effects are reduced.

しかしながら、一般に利得導波型レーザでは注
入電流や経時変化等によつて近視野像が変化して
光学系との結合が不安定になりまた非点収差が大
きいために光学系との結合効率が低下する等の欠
点を有する。従つて、出力レーザ光の安定性及び
レーザ光と光学系との結合を考慮すると屈折率導
波型レーザ素子が要求されてくる。
However, in general, in gain-guided lasers, the near-field image changes due to the injection current and changes over time, making the coupling with the optical system unstable, and the large astigmatism reduces the coupling efficiency with the optical system. It has drawbacks such as lowering the temperature. Therefore, in consideration of the stability of the output laser beam and the coupling between the laser beam and the optical system, a refractive index waveguide type laser element is required.

屈折率導波型レーザ素子の1例として、内部電
流狭窄構造を有するVチヤネル型半導体レーザ素
子を第3図に示す。この半導体レーザ素子はP―
GaAs基板1上にn―GaAs電流阻止層2を雑積
し、ストライプ状の溝7を形成してこの部分を電
流通路とし、また溝7とそれ以外の領域とにおけ
るP―Ga0.7Al0.3As第1堰層3の層厚の違いを利
用してGa0.95Al0.05As活性層4で生じるレーザ光
の電流阻止層2及び基板1への“しみ出し”に差
を設け、発振領域と非発振領域との間に実効的屈
折率差を付与して屈折率導波を実現したものであ
る。尚、活性層4上にはn―Ga0.7Al0.3As第2堰
層5がクラツドされてダブルヘテロ接合が形成さ
れ、更にn―GaAsキヤツプ層6が堆積されてい
る。また8はP側電極、9はn側電極である。こ
の半導体レーザ素子は屈折率導波型であることを
反映して近視野像,遠視野像ともに安定な発振が
得られ、また非点収差もほとんどないために光学
系との結合効率が高いという特徴をもつ。しかし
ながら、出力レーザ光の戻り光がこの素子内へ再
入射した場合、第1図にて説明したような戻り光
に起因する干渉雑音の問題が生じる。これは、第
3図に示すようなレーザ素子構造では内部電流狭
窄部が活性層4に近く、非発振領域に流入する無
効電流(発振に寄与しない電流)が極めて少ない
ために上述の狭ストライプ幅レーザ素子にみられ
るような自己発振現象が起こらないためである。
これを改善する対策として、内部電流狭窄部と活
性層4との距離を離間させる目的から第4図に示
す如く第1堰層3の層厚を増加させることが考え
られる。このようなレーザ素子では活性層4の非
発光領域に流入する無効電流を増加させることが
でき、上記自己発振現象を生じさせることが可能
になるが、反面第1堰層3の厚さを増すことによ
つて活性層3から基板1への光のしみ出しが減少
する結果、レーザ発振領域と非発振領域との実効
的屈折率差がなくなり、利得導波型レーザ素子に
近似することとなる。
As an example of a refractive index guided laser device, a V-channel semiconductor laser device having an internal current confinement structure is shown in FIG. This semiconductor laser element is P-
An n-GaAs current blocking layer 2 is deposited on a GaAs substrate 1, a striped groove 7 is formed, and this portion is used as a current path . Utilizing the difference in the layer thickness of the first weir layer 3, a difference is created in the "seepage" of the laser light generated in the Ga 0.95 Al 0.05 As active layer 4 into the current blocking layer 2 and the substrate 1, thereby separating the oscillation region and non-oscillation region. This achieves refractive index waveguide by providing an effective refractive index difference between the regions. A second weir layer 5 of n-Ga 0.7 Al 0.3 As is clad on the active layer 4 to form a double heterojunction, and an n-GaAs cap layer 6 is further deposited. Further, 8 is a P-side electrode, and 9 is an n-side electrode. Since this semiconductor laser element is a refractive index waveguide type, stable oscillation can be obtained in both near-field and far-field patterns, and there is almost no astigmatism, so the coupling efficiency with the optical system is high. have characteristics. However, when the returned light of the output laser light enters the element again, the problem of interference noise caused by the returned light as explained in FIG. 1 occurs. This is because in the laser element structure shown in FIG. 3, the internal current confinement part is close to the active layer 4, and the reactive current (current that does not contribute to oscillation) flowing into the non-oscillation region is extremely small. This is because the self-oscillation phenomenon seen in laser devices does not occur.
As a measure to improve this, it is conceivable to increase the layer thickness of the first weir layer 3 as shown in FIG. 4 in order to increase the distance between the internal current confinement portion and the active layer 4. In such a laser element, it is possible to increase the reactive current flowing into the non-emitting region of the active layer 4, and it is possible to generate the above-mentioned self-oscillation phenomenon, but on the other hand, the thickness of the first weir layer 3 is increased. As a result, the leakage of light from the active layer 3 to the substrate 1 is reduced, and as a result, the effective refractive index difference between the laser oscillation region and the non-laser region disappears, and the device approximates a gain waveguide type laser device. .

また、特開昭57―153489号公報の如く、内部電
流狭窄部と活性層との距離を離間させ、屈折率差
ΔNを付ける構造として活性層とクラツド層との
間に中間層を設け、クラツド層のみならず中間層
の層厚をも横方向に変化させた半導体レーザ素子
もある。このように中間層の層厚を横方向に変化
させると層厚差だけで横方向に屈折率差ΔNがつ
き、その大きさは例えば層厚0.6μmのチヤネル中
央と層厚0.1μmのチヤネル外で約0.01となる。し
かし、このΔNの大きさは横モードの安定化には
十分であるが、自己発振現象を起こさせるには大
きすぎ、中間層自身の屈折率を制御しても層厚差
に基くΔNの効果の方が優先し、自己発振の発生
の制御を困難にする。また、中間層は一般に液相
成長させるが、中間層のチヤネル内(肉厚部)と
チヤネル外(平坦部)では成長速度が異なり、中
間層のチヤネル内外の層厚を設計通りに制御して
作製するのは容易でない。
Furthermore, as in Japanese Patent Application Laid-Open No. 57-153489, an intermediate layer is provided between the active layer and the cladding layer to create a structure in which the distance between the internal current confinement portion and the active layer is increased to provide a refractive index difference ΔN. There are also semiconductor laser devices in which not only the layer thickness but also the intermediate layer thickness is changed in the lateral direction. When the layer thickness of the intermediate layer is changed in the lateral direction in this way, a refractive index difference ΔN is created in the lateral direction due to the layer thickness difference alone, and the magnitude of this difference is, for example, between the center of the channel with a layer thickness of 0.6 μm and the outside of the channel with a layer thickness of 0.1 μm. The value is approximately 0.01. However, although the magnitude of ΔN is sufficient to stabilize the transverse mode, it is too large to cause self-oscillation, and even if the refractive index of the intermediate layer itself is controlled, the effect of ΔN based on the layer thickness difference takes priority, making it difficult to control the occurrence of self-oscillation. In addition, the intermediate layer is generally grown in a liquid phase, but the growth rate is different between the inside of the channel (thick part) and the outside of the channel (flat part), so the layer thickness inside and outside the channel of the intermediate layer must be controlled as designed. It is not easy to make.

更に、特開昭57―89286号公報の如く下向きに
凸状のn型クラツド層を設けてストライプを形成
し、上記クラツド層のストライプ部分以外の領域
をZnの拡散領域に形成して上記クラツド層上の
n型層との間にPn接合を設けた半導体レーザ素
子もある。このようにn型クラツド層のストライ
プ部分以外の領域にZnのP型拡散領域を形成す
ると、確実にストライプ内に電流を狭さくできる
ため、無効電流を減少させることができ、低いき
値内部ストライプ形半導体レーザ素子を得ること
が可能となる。しかし、クラツド層上のn型層と
ZnのP型拡散領域によるPn接合は、リモート接
合となり、素子の発光効率の低下を招く。
Further, as in Japanese Patent Application Laid-Open No. 57-89286, a downwardly convex n-type cladding layer is provided to form a stripe, and a region other than the stripe portion of the cladding layer is formed as a Zn diffusion region to form a Zn diffusion region. There are also semiconductor laser devices in which a Pn junction is provided between the upper n-type layer and the upper n-type layer. By forming a P-type Zn diffusion region in a region other than the stripe portion of the n-type cladding layer in this way, the current can be reliably narrowed within the stripe, thereby reducing reactive current and lowering the internal stripe shape with a low threshold. It becomes possible to obtain a semiconductor laser element. However, the n-type layer on the clad layer
The Pn junction formed by the P-type diffusion region of Zn becomes a remote junction, leading to a decrease in the luminous efficiency of the device.

<発明の目的> 本発明は、従来の半導体レーザ素子における上
述の諸問題を根本的に解決するものであり、内部
電流狭窄機構を備え、屈折率導波機構を有し、か
つ単軸モード発振する半導体レーザに於いて、単
軸モードのスペクトル幅を拡大することにより再
入射光の影響を排除し、直線性の良好な電流−光
出力特性を呈しかつ雑音の増加を防止した新規有
用な半導体レーザ素子を提供することを目的とす
る。
<Objective of the Invention> The present invention fundamentally solves the above-mentioned problems in conventional semiconductor laser devices, and has an internal current confinement mechanism, a refractive index waveguide mechanism, and a single-axis mode oscillation. A new and useful semiconductor that eliminates the influence of re-incident light by expanding the spectral width of the single-axis mode, exhibits current-light output characteristics with good linearity, and prevents an increase in noise in semiconductor lasers. The purpose is to provide a laser device.

<実施例> 本発明は、屈折率n1の第1堰層と屈折率n3の活
性層との間に屈折率n2の中間層を挿入し、この中
間層の層厚及び屈折率を制御することによつて活
性層における無効電流を制御し、かつ発振領域と
非発振領域との間の実効的屈折率差を制御し、屈
折率導波型レーザ素子においても戻り光による雑
音の少ないレーザ素子構造を確立したものであ
る。上記中間層は活性層に隣接してその基板側に
設けられるものであり、戻り光による雑音を抑制
する上で2つの意味を持つ。その第1番目は堰層
と活性層との間に中間層を導入することにより、
内部電流狭窄部と活性層との距離が広がり、非発
振領域へ流入する発振に寄与しない無効電流が増
大することである。その結果、前述の狭ストライ
プ幅レーザ素子にみられたような自己発振現象
を、内部電流狭窄構造の形成された屈折率導波型
レーザ素子に於いても生起させることが可能にな
る。実験の結果、無効電流の増大による発振スペ
クトル幅の拡大が生じるのは溝部以外に於ける第
1堰層と中間層の層厚和が0.3μm以上の範囲であ
ることが検証されている。第2番目は、中間層を
設けることにより活性層で発生するレーザ光の基
板へのしみ出し量を制御し、自己発振現象を起こ
すことを可能にするものである。レーザ光の基板
へのしみ出し効果を利用して発振領域と非発振領
域との間に実効的な屈折率差(△N)を設けて屈
折率導波型レーザ素子では、この“しみ出し”量
に呼応して△Nが決定される。活性層に隣接して
中間層を導入することにより、活性層を中心とし
て積層方向のレーザ光電界強度分布を変化させ、
基板への“しみ出し”量を制御し△Nを変化させ
ることが可能になる。一方、活性層に於いては発
振に伴う注入キヤリアの消費とキヤリアの横方向
拡散に基いて、注入キヤリアは時間的に振動し、
これに呼応して発振領域と非発振領域との間の屈
折率差も時間的に△nの振動数で振動する。通常
の屈折率導波型レーザ素子では△nは△Nに比べ
て充分小さいために振動効果は観測されないが、
中間層を導入しその層厚及び屈折率を制御し基板
への光の“しみ出し”を少なくして△Nを小さく
することにより屈折率導波型レーザ素子に於いて
も自己発振現象が見い出されるようになり単軸モ
ードのスペクトル幅が拡大する。
<Example> In the present invention, an intermediate layer with a refractive index of n 2 is inserted between a first weir layer with a refractive index of n 1 and an active layer with a refractive index of n 3 , and the layer thickness and refractive index of this intermediate layer are By controlling the reactive current in the active layer and the effective refractive index difference between the oscillation region and the non-oscillation region, noise due to returned light can be reduced even in index-guided laser devices. The laser element structure has been established. The intermediate layer is provided adjacent to the active layer on the substrate side thereof, and has two meanings in suppressing noise due to returned light. The first is by introducing an intermediate layer between the weir layer and the active layer.
The distance between the internal current confinement portion and the active layer increases, and the reactive current that does not contribute to oscillation and flows into the non-oscillation region increases. As a result, it becomes possible to cause the self-oscillation phenomenon seen in the narrow stripe width laser device described above also in the refractive index waveguide type laser device in which the internal current confinement structure is formed. As a result of experiments, it has been verified that the expansion of the oscillation spectrum width due to the increase in reactive current occurs when the sum of the layer thicknesses of the first weir layer and the intermediate layer outside the groove is 0.3 μm or more. The second method is to control the amount of laser light generated in the active layer seeping into the substrate by providing an intermediate layer, thereby making it possible to cause a self-oscillation phenomenon. In index-guided laser elements, this "seepage" is created by creating an effective refractive index difference (△N) between the oscillation region and the non-oscillation region by utilizing the seepage effect of laser light into the substrate. ΔN is determined in response to the amount. By introducing an intermediate layer adjacent to the active layer, the laser beam electric field intensity distribution in the stacking direction centered on the active layer is changed,
It becomes possible to control the amount of "seepage" into the substrate and change ΔN. On the other hand, in the active layer, the injected carriers oscillate temporally due to consumption of the injected carriers and lateral diffusion of the carriers due to oscillation.
Correspondingly, the refractive index difference between the oscillating region and the non-oscillating region also oscillates temporally at a frequency of Δn. In a normal index-guided laser element, △n is sufficiently small compared to △N, so no vibration effect is observed.
Self-oscillation phenomenon was also discovered in index-guided laser devices by introducing an intermediate layer and controlling its layer thickness and refractive index to reduce ΔN by reducing the "seepage" of light into the substrate. The spectral width of the single-axis mode expands.

以下、第5図に示す本発明の1実施例の半導体
レーザ素子に従つて詳説する。
Hereinafter, a semiconductor laser device according to an embodiment of the present invention shown in FIG. 5 will be explained in detail.

第5図の半導体レーザ素子はP型基板に用いた
GaAs―GaAlAs系のダブルヘテロ接合型半導体
レーザ素子を示す。
The semiconductor laser device shown in Figure 5 was used on a P-type substrate.
This figure shows a GaAs—GaAlAs double heterojunction semiconductor laser device.

1×1018cm-3のキヤリア濃度を有するZnドープ
P―GaAs基板11上に液相エピタキシヤル成長
法を用いて5×1018cm-3のキヤリア濃度を有する
Teドープn―GaAs電流阻止層12を0.8μmの厚
さに成長させた後、電流阻止層12表面からスト
ライプ状にP―GaAs基板11まで貫通する溝1
7を形成する。この溝17が電流阻止層12の除
去された電流通路となる。溝17のストライプ幅
は3μmである。再度液相エピタキシヤル成長法に
より、この上にレーザ動作用多層結晶構造として
ZnドープP―Ga0.7Al0.3Asから成る屈折率n1の第
1堰層13を溝部外の層厚0.2μmで表面平坦に成
長させ、更に順次ZnドープP―Ga1-XAlX(0<X
<1)から成る屈折率n2の中間層20を層厚
0.3μmで、アンドープGa0.95Al0.05Asから成る屈
折率n3の活性層14を層厚0.1μmで、Teドープn
―Ga0.5Al0.5Asから成る屈折率n4の第2堰層15
を層厚1μmで、Teドープn―GaAsから成るキヤ
ツプ層16を層厚3μmで、第1堰層13上に積層
する。各層の屈折率はn3>n2>n1>n4に設定され
る。次に基板11の裏面及びキヤツプ層16上に
それぞれAu―Znから成るP側電極18,Au―
Ge―Niから成るn側電極19を形成する。共振
器端面は劈開法により形成し、共振長250μm,素
子幅300μmのダブルヘテロ接合型半導体レーザ素
子が構成される。
A Zn-doped P-GaAs substrate 11 having a carrier concentration of 5×10 18 cm -3 is grown using a liquid phase epitaxial growth method on a Zn -doped P-GaAs substrate 11 having a carrier concentration of 1×10 18 cm -3 .
After growing the Te-doped n-GaAs current blocking layer 12 to a thickness of 0.8 μm, grooves 1 penetrate from the surface of the current blocking layer 12 to the P-GaAs substrate 11 in a stripe pattern.
form 7. This groove 17 becomes a current path from which the current blocking layer 12 is removed. The stripe width of the groove 17 is 3 μm. By using the liquid phase epitaxial growth method again, a multilayer crystal structure for laser operation was formed on top of this.
A first weir layer 13 made of Zn-doped P--Ga 0.7 Al 0.3 As and having a refractive index n 1 is grown with a layer thickness of 0.2 μm outside the groove to have a flat surface, and then Zn-doped P-- Ga 1-X Al <X
<1) with a layer thickness of the intermediate layer 20 with a refractive index n 2
The active layer 14 is made of undoped Ga 0.95 Al 0.05 As and has a refractive index n 3 with a thickness of 0.1 μm and a Te doped n
-Second weir layer 15 with refractive index n 4 made of Ga 0.5 Al 0.5 As
A cap layer 16 made of Te-doped n-GaAs is laminated to a thickness of 3 μm on the first weir layer 13. The refractive index of each layer is set to n 3 > n 2 > n 1 > n 4 . Next, a P-side electrode 18 made of Au--Zn and an Au--
An n-side electrode 19 made of Ge--Ni is formed. The cavity end faces are formed by the cleavage method, and a double heterojunction semiconductor laser device with a resonance length of 250 μm and a device width of 300 μm is constructed.

P側電極18及びn側電極19を介して直流電
圧を印加すると、溝17を電流通路としてストラ
イプ状に電流が注入され、活性層14よりレーザ
発振が開始される。
When a DC voltage is applied through the P-side electrode 18 and the N-side electrode 19, current is injected in a stripe pattern using the groove 17 as a current path, and laser oscillation is started from the active layer 14.

中間層20の層厚を0.3μmに固定し、その屈折
率n2を変化させた複数のレーザ素子を試作してそ
の発振スペクトルを調べたところ、n2が活性層1
4の屈折率n3に近い場合には、活性層14で発生
するレーザ光の基板1への“しみ出し”がまだ充
分大きく、前述した自己発振現象に基く発振スペ
クトル幅の拡大は観測されなかつた。n2が減少す
るにつれて“しみ出し”効果は弱まり、n2<1/3 (n1+2n3)の領域において自己発振現象が観測さ
れた。第6図はこれを説明する特性図であり、横
軸は中間層20のGa1-XAlXAsの混晶比x、縦軸
は屈折率を示す。図中の斜線の領域がn21/3 (n1+2n3)を満足する部分である。第7図は従来
の屈折率導波型半導体レーザ素子(破線)と上記
実施例に示す中間層20を備えた屈折率導波型半
導体レーザ素子(実線)の電流−光出力特性及び
3mW出力時の発振スペクトル特性を示す特性図
である。中間層20を備えた屈折率導波型半導体
レーザ素子では、非発振領域への無効電流の流入
が増加するため発振閾値電流は増大するが、レー
ザ発振領域と非発振領域との間で注入キヤリアの
振動が生じ、その結果単軸モードスペクトル軸
SW1が1Å程度と広くなつていることが確認され
た。一方、中間層20のない従来のレーザ素子で
は単軸モードスペクトル幅SW2は0.001Å程度で
ある。
When we investigated the oscillation spectra of several laser devices in which the thickness of the intermediate layer 20 was fixed at 0.3 μm and the refractive index n 2 was varied, we found that n 2 was the same as that of the active layer 1.
When the refractive index n3 of 4 is close to n3 , the "seepage" of the laser light generated in the active layer 14 into the substrate 1 is still sufficiently large, and the expansion of the oscillation spectrum width due to the self-oscillation phenomenon described above is not observed. Ta. As n 2 decreased, the "seepage" effect weakened, and a self-oscillation phenomenon was observed in the region of n 2 <1/3 (n 1 +2n 3 ). FIG. 6 is a characteristic diagram explaining this, in which the horizontal axis shows the mixed crystal ratio x of Ga 1-X Al X As of the intermediate layer 20, and the vertical axis shows the refractive index. The shaded area in the figure is the part that satisfies n 2 1/3 (n 1 +2n 3 ). FIG. 7 shows the current-light output characteristics and optical output characteristics of a conventional index-guided semiconductor laser device (dashed line) and a refractive index-guided semiconductor laser device equipped with the intermediate layer 20 shown in the above embodiment (solid line).
FIG. 3 is a characteristic diagram showing oscillation spectrum characteristics at 3 mW output. In the index-guided semiconductor laser device equipped with the intermediate layer 20, the oscillation threshold current increases because the inflow of reactive current into the non-oscillation region increases, but the injection carrier between the lasing region and the non-oscillation region increases. oscillations occur, resulting in a uniaxial mode spectrum axis
It was confirmed that SW 1 is about 1 Å wide. On the other hand, in a conventional laser device without the intermediate layer 20, the uniaxial mode spectrum width SW 2 is about 0.001 Å.

第8図は中間層をもつ屈折率導波型半導体レー
ザ素子の接合に平行方向におけるビームウエスト
位置を測定した結果を示す説明図である。ビーム
ウエスト位置は共振器端面に一致していることが
確認された。
FIG. 8 is an explanatory diagram showing the results of measuring the beam waist position in a direction parallel to the junction of a refractive index waveguide semiconductor laser device having an intermediate layer. It was confirmed that the beam waist position coincided with the resonator end face.

以上、GaAs―GaAlAs系のレーザ素子を実施
例として本発明を説明したが、他の材料からなる
半導体レーザ素子にも本発明を適用し得ることは
可能である。また、本発明は第1堰層若しくは中
間層の層厚または中間層の屈折率を限定するもの
であるが、上記実施例中に用いた各層の層厚また
は組成の値に適用範囲を制限するものではない。
Although the present invention has been described above using a GaAs--GaAlAs-based laser element as an example, it is possible to apply the present invention to semiconductor laser elements made of other materials. Further, although the present invention limits the layer thickness of the first weir layer or the intermediate layer or the refractive index of the intermediate layer, the scope of application is limited to the layer thickness or composition value of each layer used in the above examples. It's not a thing.

<発明の効果> 本発明によれば、内部電流狭窄部と活性層間の
距離が離間されるため、無効電流が増大しまた発
振領域と非発振領域との間に実効的な屈折率差が
形成された状態で自己発振現象が生起される。こ
の時、内部電流狭窄部と活性層との間に設けた中
間層に層厚分布がないため、屈折率差の大きさが
適切となつて自己発振現象の制御が容易となり、
また場所的な成長速度の不均一さが解消されて層
厚の制御を成長時間等により簡便に行なうことが
可能となる。更に、第1堰層と中間層がストライ
プ内外を問わず同一導電型であるため、リモート
接合による発光効率の悪化を防ぐことが可能とな
る。これにより単軸モードのスペクトル幅を拡大
することとなり、再入射光の影響が除去される。
従つて、電流対光出力特性の直線性が良好で雑音
の少ない半導体レーザ素子を得ることができる。
<Effects of the Invention> According to the present invention, since the distance between the internal current confinement portion and the active layer is increased, the reactive current increases and an effective refractive index difference is formed between the oscillation region and the non-oscillation region. In this state, a self-oscillation phenomenon occurs. At this time, since there is no layer thickness distribution in the intermediate layer provided between the internal current confinement part and the active layer, the magnitude of the refractive index difference becomes appropriate, making it easy to control the self-oscillation phenomenon.
In addition, local non-uniformity in growth rate is eliminated, and layer thickness can be easily controlled by controlling growth time and the like. Furthermore, since the first dam layer and the intermediate layer have the same conductivity type regardless of whether they are inside or outside the stripe, it is possible to prevent deterioration of luminous efficiency due to remote bonding. This expands the spectral width of the uniaxial mode and eliminates the influence of re-incident light.
Therefore, it is possible to obtain a semiconductor laser device with good linearity of current versus light output characteristics and low noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザ素子の注入電流対
光出力特性図である。第2図は従来の半導体レー
ザ素子の動作温度対S/N比の特性図である。第
3図及び第4図は従来の半導体レーザ素子を示す
構成図である。第5図は本発明の1実施例を示す
半導体レーザ素子の構成図である。第6図は
Ga1-XAlXAsの混晶比xと屈折率の関係を説明す
る説明図である。第7図は第5図に示す半導体レ
ーザ素子と従来の半導体レーザ素子の注入電流対
光出力特性及び発振スペクトルを示す説明図であ
る。第8図は第5図に示す半導体レーザ素子の接
合に平行方向のレーザビーム幅を示す説明図であ
る。 11…基板、12…電流阻止層、13…第1堰
層、14…活性層、15…第2堰層、16…キヤ
ツプ層、17…溝、18…P側電極、19…n側
電極、20…中間層。
FIG. 1 is a diagram showing the injection current versus light output characteristic of a conventional semiconductor laser device. FIG. 2 is a characteristic diagram of operating temperature versus S/N ratio of a conventional semiconductor laser device. FIGS. 3 and 4 are configuration diagrams showing a conventional semiconductor laser device. FIG. 5 is a configuration diagram of a semiconductor laser device showing one embodiment of the present invention. Figure 6 is
FIG. 2 is an explanatory diagram illustrating the relationship between the mixed crystal ratio x and the refractive index of Ga 1-X Al X As. FIG. 7 is an explanatory diagram showing the injection current vs. optical output characteristics and oscillation spectra of the semiconductor laser device shown in FIG. 5 and the conventional semiconductor laser device. FIG. 8 is an explanatory diagram showing the laser beam width in a direction parallel to the junction of the semiconductor laser device shown in FIG. 5. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Current blocking layer, 13... First weir layer, 14... Active layer, 15... Second weir layer, 16... Cap layer, 17... Groove, 18... P side electrode, 19... N side electrode, 20...middle class.

Claims (1)

【特許請求の範囲】 1 第1導電型基板と、 該第1導電型基板上に形成され、該基板に達す
るストライプ状の溝を有した第2導電型電流阻止
層と、 前記溝から前記電流阻止層上に延在され、上面
がほぼ平坦な第1導電型Ga1-x1AlX1As(0X1
1)第1堰層と、 該第1堰層上に形成され、上面がほぼ平坦な第
1導電型Ga1-XAlXAs(0X<1)中間層と、 該中間層上に形成されたGa1-X2AlX2As(0X2
<1)活性層と、 該活性層上に形成されたGa1-X3AlX3As(0X3
<1)第2堰層と、を備え、 前記第1堰層と中間層の層厚の和を0.3μm以上
に設定し、 前記第1堰層.中間層.活性層.及び第2堰層
の屈折率をそれぞれn1.n2.n3.及びn4とするとき、 各層の屈折率が n3>n2>n1n4 n21/3(n1+2n3) なる関係を満足してなることを特徴とする半導体
レーザ素子。
[Scope of Claims] 1: a first conductivity type substrate; a second conductivity type current blocking layer formed on the first conductivity type substrate and having a striped groove reaching the substrate; A first conductivity type Ga 1-x1 Al X1 As (0x 1 <
1) a first weir layer; a first conductivity type Ga 1-X Al X As (0X<1) intermediate layer formed on the first weir layer and having a substantially flat upper surface; Ga 1-X2 Al X2 As(0X 2
<1) Active layer and Ga 1-X3 Al X3 As (0X 3
<1) A second weir layer, wherein the sum of the layer thicknesses of the first weir layer and the intermediate layer is set to 0.3 μm or more, and the first weir layer. Middle class. Active layer. and the refractive index of the second weir layer is n 1 .n 2 .n 3 . and n 4 respectively, then the refractive index of each layer is n 3 > n 2 > n 1 n 4 n 2 1/3 (n 1 + 2n 3 ) A semiconductor laser device characterized by satisfying the following relationship.
JP2121383A 1983-02-09 1983-02-09 Semiconductor laser element Granted JPS59147479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121383A JPS59147479A (en) 1983-02-09 1983-02-09 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121383A JPS59147479A (en) 1983-02-09 1983-02-09 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS59147479A JPS59147479A (en) 1984-08-23
JPH0252868B2 true JPH0252868B2 (en) 1990-11-14

Family

ID=12048715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121383A Granted JPS59147479A (en) 1983-02-09 1983-02-09 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59147479A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789286A (en) * 1980-11-25 1982-06-03 Sharp Corp Semiconductor laser element
JPS5792885A (en) * 1980-12-01 1982-06-09 Sharp Corp Semiconductor laser element
JPS57153489A (en) * 1981-03-17 1982-09-22 Sharp Corp Manufacture of semiconductor laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789286A (en) * 1980-11-25 1982-06-03 Sharp Corp Semiconductor laser element
JPS5792885A (en) * 1980-12-01 1982-06-09 Sharp Corp Semiconductor laser element
JPS57153489A (en) * 1981-03-17 1982-09-22 Sharp Corp Manufacture of semiconductor laser element

Also Published As

Publication number Publication date
JPS59147479A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
US5974068A (en) Semiconductor laser and a method for producing the same
JP2004342719A (en) Semiconductor laser apparatus and its manufacturing method
JPH10178232A (en) Semiconductor laser and its manufacture
JPH0252868B2 (en)
US4937836A (en) Semiconductor laser device and production method therefor
JPH09237933A (en) Semiconductor laser and manufacturing method thereof
JPS59172287A (en) Semiconductor laser element
JP2723921B2 (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JPH0422033B2 (en)
JP2821150B2 (en) Semiconductor laser device
JP3503715B2 (en) Semiconductor laser device
JP4114223B2 (en) Operation method of self-oscillation type semiconductor laser
JPS59198786A (en) Distributed feedback type semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
US4860299A (en) Semiconductor laser device
JPH0728094B2 (en) Semiconductor laser device
JP3319692B2 (en) Semiconductor laser device
JPH04280490A (en) Semiconductor laser equipment
JPH0410705Y2 (en)
JPH098414A (en) Semiconductor laser device and manufacture thereof
JPH10144993A (en) Semiconductor laser
JPH0673388B2 (en) Single-axis mode semiconductor laser
JPS6234473Y2 (en)
JP2001094193A (en) Semiconductor laser with modulator and manufacturing method therefor