JPH05875B2 - - Google Patents

Info

Publication number
JPH05875B2
JPH05875B2 JP57197935A JP19793582A JPH05875B2 JP H05875 B2 JPH05875 B2 JP H05875B2 JP 57197935 A JP57197935 A JP 57197935A JP 19793582 A JP19793582 A JP 19793582A JP H05875 B2 JPH05875 B2 JP H05875B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
stripe
cavity
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57197935A
Other languages
Japanese (ja)
Other versions
JPS5987888A (en
Inventor
Haruhisa Takiguchi
Kaneki Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19793582A priority Critical patent/JPS5987888A/en
Publication of JPS5987888A publication Critical patent/JPS5987888A/en
Publication of JPH05875B2 publication Critical patent/JPH05875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface

Description

【発明の詳細な説明】 <技術分野> 本発明は、戻り光による干渉雑音を低減した半
導体レーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a semiconductor laser device in which interference noise due to returned light is reduced.

<従来技術> 従来、半導体レーザ装置をデイスク情報処理装
置の光源として使用した場合、ビデオデイスク、
オーデイオデイスク等の光学系との結合に於いて
デイスク面からの反射による出力レーザ光の戻り
光が半導体レーザ素子へ再入射されることがあり
出力光に対する再入射光の干渉により第1図に実
線で示す如く注入電流と光出力の間の直線性が低
下し、また第2図に実線1で示す如く出力光の
雑音が増加するため、実用に供することができな
くなることがある。この問題を解決する手段とし
て、電流注入幅即ちストライプ幅を通常の10〜
15μmに比べて活性層中のキヤリア拡散長程度即
ち2〜4μm程度に狭くし、歪の発生あるいは戻り
光雑音の増加を回避することが試行されている。
このような半導体レーザでは、利得分布によりレ
ーザの光分布が決定されるが、共振器体積の小さ
いことから自然放出光のレーザモードの関与が大
きくなると共に注入電流密度が大きいため利得の
スペクトル幅が拡大され、多軸モードにより発振
してこの多軸モード発振により再入射光の影響が
低減される。
<Prior art> Conventionally, when a semiconductor laser device is used as a light source for a disk information processing device,
When coupled with an optical system such as an audio disk, the return light of the output laser beam due to reflection from the disk surface may be re-injected into the semiconductor laser element. The linearity between the injected current and the optical output decreases as shown by , and the noise of the output light increases as shown by the solid line 1 in FIG. 2, so that it may become impossible to put it into practical use. As a means of solving this problem, the current injection width, that is, the stripe width, was
Attempts have been made to narrow the distance from 15 μm to about the carrier diffusion length in the active layer, that is, about 2 to 4 μm, in order to avoid the occurrence of distortion or increase in return optical noise.
In such a semiconductor laser, the optical distribution of the laser is determined by the gain distribution, but since the cavity volume is small, the participation of the spontaneous emission laser mode becomes large, and the injection current density is large, so the gain spectral width is The beam is enlarged and oscillated in a multi-axis mode, and the influence of re-incident light is reduced by this multi-axis mode oscillation.

しかしながら、利得導波機構の半導体レーザ素
子は、注入電流あるいは経時変化等によつて近視
野像が変化するため、光学系との結合が不安定に
なりかつ非点収差が大きいため、レンズ等の光学
系との結合効率が低下するといつた欠点を生じ
る。
However, the near-field image of semiconductor laser elements with a gain waveguide mechanism changes due to injection current or changes over time, making the coupling with the optical system unstable and causing large astigmatism. This results in disadvantages such as reduced coupling efficiency with the optical system.

<発明の目的> 本発明は、従来の半導体レーザ素子に於ける上
述の欠点を根本的に解決するものであり、屈折率
導波機構を有しかつ縦マルチモード発振すること
によつて雑音の増加を防止するとともに、利得導
波機構の半導体レーザ素子と光学系との結合状態
を良好にすることができる新規有用な半導体レー
ザ素子を提供することを目的とするものである。
<Objective of the Invention> The present invention fundamentally solves the above-mentioned drawbacks of conventional semiconductor laser devices, and eliminates noise by having a refractive index waveguide mechanism and longitudinal multimode oscillation. It is an object of the present invention to provide a new and useful semiconductor laser device that can prevent the increase in the amount of light and improve the coupling state between the semiconductor laser device of the gain waveguide mechanism and the optical system.

<実施例> 第3図は本発明の一実施例を示す半導体レーザ
素子の共振器長方向の断面構成図である。
<Example> FIG. 3 is a cross-sectional configuration diagram in the resonator length direction of a semiconductor laser device showing an example of the present invention.

p−GaAs基板1上に電流通路を制御するため
のn−GaAsから成る電流閉じ込め層2、p−
GaAlAsから成るp型クラツド層3、p又はn−
GaAlAs(又はGaAs)からなる活性層4、n−
GaAlAsから成るn型クラツド層5、n−GaAs
から成るキヤツプ層6が順次液相エピタキシヤル
成長法により積層されている。尚、図中7,8は
共振器の各々の端面である。電流閉じ込め層2の
層厚は0.8μm程度とし、GaAs基板1に堆積され
た後、後述する如くストライプ状の溝を表面より
GaAs基板1に達する迄深さ約1μm程度エツチン
グ加工して電流通路を形成している。GaAs基板
1にはAu−Znから成るP側電極、キヤツプ層6
にはAu−Ge−Ni−Auから成るn側電極を蒸着
形成する。電流閉じ込め層2が介在している領域
は逆極性に接合されるため電流が流れず、電流閉
じ込め層2が除去されたストライプ状の溝部のみ
が電流通路となる。
A current confinement layer 2 made of n-GaAs for controlling the current path on a p-GaAs substrate 1, a p-
p-type cladding layer 3 made of GaAlAs, p or n-
Active layer 4 made of GaAlAs (or GaAs), n-
n-type cladding layer 5 made of GaAlAs, n-GaAs
A cap layer 6 consisting of the following is sequentially laminated by a liquid phase epitaxial growth method. Note that 7 and 8 in the figure are respective end faces of the resonator. The thickness of the current confinement layer 2 is approximately 0.8 μm, and after being deposited on the GaAs substrate 1, striped grooves are formed from the surface as described later.
Etching is performed to a depth of approximately 1 μm until reaching the GaAs substrate 1 to form a current path. The GaAs substrate 1 has a P-side electrode made of Au-Zn and a cap layer 6.
An n-side electrode made of Au-Ge-Ni-Au is formed by vapor deposition. Since the region where the current confinement layer 2 is interposed is connected with opposite polarity, no current flows, and only the striped groove portion from which the current confinement layer 2 is removed serves as a current path.

第4図は第3図のA−A断面図であり、共振器
端部の断面構造を示す。また第5図は第3図のB
−B断面図であり、共振器内部の断面構造を示
す。
FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, showing the cross-sectional structure of the end portion of the resonator. Also, Figure 5 is B of Figure 3.
-B is a cross-sectional view showing the cross-sectional structure inside the resonator.

共振器端部では電流閉じ込め層2に形成される
ストライプ溝の幅W1は6μmであり幅W1のストラ
イプ溝の長さは20μmとする。このストライプ溝
の影響を受けて共振器端面の活性層4はストライ
プ溝直上で平凸形状あるいは三日月形状となる。
一方、共振器内部では電流閉じ込め層2に形成さ
れるストライプ溝の幅W2は4μmであり長さは
200μmに設定されている。尚、ストライプ溝の中
心線は共振器の端面と内部で合致している。この
部分の活性層4は平坦化され、ストライプ溝の形
状の影響を受けない。
At the end of the resonator, the width W 1 of the stripe groove formed in the current confinement layer 2 is 6 μm, and the length of the stripe groove with the width W 1 is 20 μm. Under the influence of the stripe grooves, the active layer 4 on the end face of the resonator assumes a plano-convex shape or a crescent shape directly above the stripe grooves.
On the other hand, inside the resonator, the width W 2 of the stripe groove formed in the current confinement layer 2 is 4 μm, and the length is
It is set to 200μm. Note that the center line of the stripe groove matches the end face of the resonator internally. The active layer 4 in this portion is flattened and is not affected by the shape of the stripe groove.

第6図はGaAs基板1に電流閉じ込め層2を成
長させ、1回のフオトエツチング工程でストライ
プ溝を形成した形状を示す斜視図である。
FIG. 6 is a perspective view showing a shape in which a current confinement layer 2 is grown on a GaAs substrate 1 and striped grooves are formed in one photo-etching process.

第6図に示す状態でp型クラツド層3をエピタ
キシヤル成長させると、p型クラツド層3はスト
ライプ幅W2の領域では上面が平坦になり、スト
ライプ幅W1の領域では上面に窪みが形成される。
これはストライプ幅W1の領域の方が溝幅が広い
ため、この溝部分を埋めるに要するp−GaAlAs
が多くなることに起因する。従つてこのp型クラ
ツド層3上に成長される活性層4はP型クラツド
層3の上面形状により第4図及び第5図の如くと
なる。このような構造とすることにより、共振器
端面では活性層4がストライプ溝内に凸状に落と
し込んで形成されるので、横方向の屈折率差が大
きく光ビームは1μm以下の非常に小さな径のスポ
ツトに集光されているが、共振器内部では横方向
の屈折率差が小さくなるため光は横方向に3〜
4μm広がる。
When the p-type cladding layer 3 is epitaxially grown in the state shown in FIG. 6, the upper surface of the p-type cladding layer 3 becomes flat in the region of stripe width W 2 , and a depression is formed on the upper surface in the region of stripe width W 1 . be done.
This is because the groove width is wider in the stripe width W 1 area, so the p-GaAlAs required to fill this groove part is
This is due to an increase in Therefore, the active layer 4 grown on the p-type cladding layer 3 has a shape as shown in FIGS. 4 and 5, depending on the top surface shape of the p-type cladding layer 3. With this structure, the active layer 4 is formed convexly into the stripe groove at the cavity end face, so the difference in refractive index in the lateral direction is large, and the light beam has a very small diameter of 1 μm or less. Although the light is focused on a spot, the difference in refractive index in the lateral direction becomes small inside the resonator, so the light is
Spreads 4μm.

この素子において、p型クラツド層3、活性層
4、n型クラツド層5の各混晶比x,y,zを例
えば、 x=0.50(p型クラツド層) y=0.15(活性層) z=0.45(n型クラツド層) の如く非対称としかつp型クラツド層3の混晶比
を大きく設定する。これによつて光は基板側に漏
れにくくなり、従つて横方向屈折率差が充分小さ
くなり、通常の電極ストライプレーザと同様に利
得によつて導波されるので縦マルチモード発振す
る。しかし、共振器端面では、活性層の厚さが横
方向で変化しているため屈折率で導波され、従つ
てビームウエイスト端面で一致し、非点収差が現
われない。
In this device, the respective mixed crystal ratios x, y, and z of the p-type cladding layer 3, active layer 4, and n-type cladding layer 5 are as follows: x=0.50 (p-type cladding layer) y=0.15 (active layer) z= 0.45 (n-type cladding layer), and the mixed crystal ratio of the p-type cladding layer 3 is set to be asymmetric. This makes it difficult for light to leak to the substrate side, so that the difference in refractive index in the lateral direction becomes sufficiently small, and as in a normal electrode stripe laser, the light is guided by the gain, resulting in longitudinal multimode oscillation. However, at the resonator end face, since the thickness of the active layer changes in the lateral direction, the waves are guided by the refractive index, and therefore the beam waists coincide at the end face, and no astigmatism appears.

第7図は第3図に示す半導体レーザ素子の電流
光出力特性を示す特性図である。第8図は第3図
に示す半導体レーザ素子のスペクトル図である。
第3図に示す半導体レーザは、直流出力15mWま
で縦マルチモードで発振し、しかも非点収差は
5μm以下であつた。
FIG. 7 is a characteristic diagram showing the current-light output characteristics of the semiconductor laser device shown in FIG. 3. FIG. 8 is a spectrum diagram of the semiconductor laser device shown in FIG. 3.
The semiconductor laser shown in Figure 3 oscillates in longitudinal multimode up to a DC output of 15 mW, and has no astigmatism.
It was less than 5 μm.

<発明の効果> 以上詳述した如く、本発明によれば、縦マルチ
モード発振となつて、レーザ端面への戻り光によ
る影響が小さく直線性の良好な注入電流対光出力
特性が得られ、しかも、非点収差が小さく光学系
との結合効率の良いまた近視野像が注入電流、経
時変化等で変化せず安定な出力光を得ることがで
きる。
<Effects of the Invention> As detailed above, according to the present invention, longitudinal multi-mode oscillation is achieved, and injection current versus light output characteristics with good linearity are obtained with less influence by light returning to the laser end face. Furthermore, it is possible to obtain stable output light with small astigmatism, high coupling efficiency with the optical system, and a near-field image that does not change due to injection current, changes over time, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザ素子の注入電流対
光出力特性図である。実線は再入射光が存在する
場合、破線は再入射光がない場合の特性曲線であ
る。第2図は従来の半導体レーザ素子の雑音特性
図である。曲線1は再入射光が存在する場合、
曲線2は再入射光がない場合の特性曲線である。
第3図は本発明の一実施例を示す半導体レーザ素
子の構成断面図である。第4図は第3図のA−A
断面図である。第5図は第3図のB−B断面図で
ある。第6図は第3図に示す半導体レーザ素子の
基板構成を示す要部詳細斜視図である。第7図は
第3図に示す半導体レーザ素子の電流対光出力特
性を示す特性図である。第8図は第3図に示す半
導体レーザ素子のスペクトル図である。 1……GaAs基板、2……電流閉じ込め層、3
……p型クラツド層、4……活性層、5……n型
クラツド層、6……キヤツプ層、7,8……共振
器端面。
FIG. 1 is a diagram showing the injection current versus light output characteristic of a conventional semiconductor laser device. The solid line is the characteristic curve when there is re-incident light, and the broken line is the characteristic curve when there is no re-incident light. FIG. 2 is a noise characteristic diagram of a conventional semiconductor laser device. Curve 1 is when there is re-incoming light,
Curve 2 is a characteristic curve when there is no re-incident light.
FIG. 3 is a cross-sectional view of the structure of a semiconductor laser device showing an embodiment of the present invention. Figure 4 is A-A of Figure 3.
FIG. FIG. 5 is a sectional view taken along line BB in FIG. 3. FIG. 6 is a detailed perspective view of essential parts showing the substrate structure of the semiconductor laser device shown in FIG. 3. FIG. FIG. 7 is a characteristic diagram showing the current versus optical output characteristics of the semiconductor laser device shown in FIG. 3. FIG. 8 is a spectrum diagram of the semiconductor laser device shown in FIG. 3. 1...GaAs substrate, 2...Current confinement layer, 3
...p-type cladding layer, 4...active layer, 5...n-type cladding layer, 6...cap layer, 7, 8...resonator end face.

Claims (1)

【特許請求の範囲】[Claims] 1 共振器端面近くでストライプ幅が広く、共振
器内方でストライプ幅が狭くなる電流挟窄用内部
ストライプ溝を有し、該ストライプ溝上に堆積さ
れたレーザ動作用結晶層の活性層を、共振器内方
では平坦に、共振器端面近くでは前記ストライプ
溝内に凸状に落とし込んで形成して、共振器端面
での横方向の屈折率差を共振器内方より大きくし
てなることを特徴とする半導体レーザ素子。
1 It has an internal stripe groove for current pinching in which the stripe width is wide near the cavity end face and narrower in the inside of the cavity, and the active layer of the crystal layer for laser operation deposited on the stripe groove is It is formed flat inside the cavity and convexly into the stripe groove near the cavity end face, so that the lateral refractive index difference at the cavity end face is larger than that inside the cavity. A semiconductor laser device.
JP19793582A 1982-11-10 1982-11-10 Semiconductor laser element Granted JPS5987888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19793582A JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19793582A JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS5987888A JPS5987888A (en) 1984-05-21
JPH05875B2 true JPH05875B2 (en) 1993-01-06

Family

ID=16382733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19793582A Granted JPS5987888A (en) 1982-11-10 1982-11-10 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS5987888A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302732B1 (en) * 1987-08-04 1993-10-13 Sharp Kabushiki Kaisha A semiconductor laser device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536932A (en) * 1978-09-06 1980-03-14 Toshiba Corp Manufacturing of light emitting element
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS5640293A (en) * 1979-09-11 1981-04-16 Nec Corp Semiconductor laser
JPS59175182A (en) * 1983-03-23 1984-10-03 Sharp Corp Semiconductor laser element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536932A (en) * 1978-09-06 1980-03-14 Toshiba Corp Manufacturing of light emitting element
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS5640293A (en) * 1979-09-11 1981-04-16 Nec Corp Semiconductor laser
JPS59175182A (en) * 1983-03-23 1984-10-03 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPS5987888A (en) 1984-05-21

Similar Documents

Publication Publication Date Title
JPS60150682A (en) Semiconductor laser element
JPH10163563A (en) Semiconductor laser
JPH05875B2 (en)
JPS622716B2 (en)
JPS61236189A (en) Semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JPS5990982A (en) Semiconductor laser element
JPH0422033B2 (en)
JPS641952B2 (en)
JPS59172287A (en) Semiconductor laser element
JP4024319B2 (en) Semiconductor light emitting device
JPS6342867B2 (en)
JPS60123082A (en) Semiconductor laser element
JPH0671122B2 (en) Semiconductor laser device
JPH0256836B2 (en)
JPS59104172A (en) Semiconductor laser element
JPH0147029B2 (en)
JPH0195583A (en) Buried-type semiconductor laser device
JPH02174178A (en) Semiconductor laser element
JPH02113586A (en) Semiconductor laser element
JPS62141795A (en) Semiconductor laser
JPH08307009A (en) Semiconductor laser element
JPS59200482A (en) Semiconductor laser device
JPS6010795A (en) Semiconductor laser element
JPS6353716B2 (en)