JPH01132189A - Semiconductor laser element and manufacture thereof - Google Patents

Semiconductor laser element and manufacture thereof

Info

Publication number
JPH01132189A
JPH01132189A JP28932787A JP28932787A JPH01132189A JP H01132189 A JPH01132189 A JP H01132189A JP 28932787 A JP28932787 A JP 28932787A JP 28932787 A JP28932787 A JP 28932787A JP H01132189 A JPH01132189 A JP H01132189A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
mask
cladding layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28932787A
Other languages
Japanese (ja)
Inventor
Shigeo Yamashita
茂雄 山下
Yuichi Ono
小野 佑一
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28932787A priority Critical patent/JPH01132189A/en
Publication of JPH01132189A publication Critical patent/JPH01132189A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser element which is operated stably up to a high output in transverse fundamental mode by a method wherein a current constriction layer is provided at both ends of a stripe-like mesa-shaped clad layer and at least a part near one reflection face is made transparent or the like. CONSTITUTION:At least a double heterostructure composed of a first semiconductor clad layer 2, a second semiconductor active layer 3 and a third semiconductor clad layer 4 which have been laminated one after another on a semiconductor substrate 1 is contained; the third semiconductor clad layer 4 has a stripe-like mesa shape along an axial direction of a resonator in which a beam is guided; at least its part near a reflection face on one side is made transparent; a fourth semiconductor current- constriction layer 11 is formed in a part other than said stripe-like mesa shape. For example, a first semiconductor clad layer 2, a second semiconductor active layer 3 of a quantum well type, a third semiconductor clad layer 4 are formed on a semiconductor substrate 1; after that, an impurity is diffused in a neighboring region including a part used as an end face of a semiconductor laser element; the active layer 3 of the quantum well type is made a mixed crystal, and is made transparent with reference to a laser oscillation wavelength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高光出力で安定に動作する半導体レーザ素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that operates stably with high optical output.

〔従来の技術〕[Conventional technology]

半導体レーザ?高出力動作させた場合、信頼性を低下さ
せる要因の1つに、端面劣化の問題がある。これは1通
常半導体レーザの端面部にできる表面準位等で光吸収が
起こり、これが端面部の温度上昇をまねき、バンドギャ
ップが縮まってさらに吸収が大きくなるといった悪循環
を引き起こすからである。この問題は端面にAtzO3
等のコーティング処理をすることである程度改善される
が。
Semiconductor laser? When operating at high output, one of the factors that reduces reliability is the problem of end face deterioration. This is because (1) light absorption normally occurs in surface states formed at the end face of a semiconductor laser, which causes a rise in temperature at the end face, which causes a vicious cycle in which the band gap narrows and further absorption increases. This problem is caused by AtzO3 on the end face.
However, it can be improved to some extent by applying coating treatments such as

さらに高出力動作で高い信頼性を得るためには端面を透
明化する必妥がろる。この解決法の1つは。
Furthermore, in order to obtain high reliability with high output operation, it is necessary to make the end face transparent. One solution to this is.

[アプライド フィジックス レター 、34巻10号
、637項〜639項、  (Appt 1edphy
sics 、I、etter 、  Vol、 34.
 &10  pp637〜639  (1979))j
に述べられている。この半導体レーザは、端面部を除く
活性層にznを拡散し、不純物準位による発振波長の長
波長化を利用して、非拡散端面部を透明化し、高出力化
をはかったものである。
[Applied Physics Letters, Vol. 34, No. 10, Paragraphs 637-639, (Appt 1edphy
sics, I, etter, Vol, 34.
&10 pp637-639 (1979))j
It is stated in In this semiconductor laser, Zn is diffused into the active layer except for the end facets, and the non-diffused end facets are made transparent by making the oscillation wavelength longer due to the impurity level, thereby achieving high output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は1発振モードの基本モード安定化に関し
ては配慮されておらず1元ディスクやレーザビームプリ
ンタ等、半導体レーザを用いた装置へ応用する場合に、
動作が不安定である等の問題があった。
The above conventional technology does not consider stabilizing the fundamental mode of the single oscillation mode, and when applied to devices using semiconductor lasers such as single-source disks and laser beam printers,
There were problems such as unstable operation.

本発明の目的は、上記のような従来技術の問題点を解決
し、横基本モードで高出力まで安定に動作する半導体レ
ーザ素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art as described above and to provide a semiconductor laser device that stably operates in a transverse fundamental mode up to a high output.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的を達成するために1本発明では、第■導成型の
半導体基板上に、第■導電型の第1半導体クラッド層、
ウェル層、バリア層からなる量子井戸型の第2半導体活
性層、第■導電型の第3半導体を少なくとも形成した後
1表面に誘電体膜を形成し、この膜をマスクとして少な
くとも一方の反射面近傍に不純物拡散あるいはイオン打
込等を行って反射面近傍の量子井戸型活性層を混晶化し
In order to achieve the above object, in the present invention, a first semiconductor cladding layer of a 1st conductivity type is formed on a semiconductor substrate of a 1st conductivity type,
After forming at least a quantum well type second semiconductor active layer consisting of a well layer and a barrier layer, and a third conductivity type third semiconductor, a dielectric film is formed on one surface, and using this film as a mask, at least one reflective surface is formed. The quantum well type active layer near the reflective surface is made into a mixed crystal by diffusing impurities or implanting ions in the vicinity.

その後表面に共振器軸に沿ってストライプ状エツチング
マスクを形成して、前記誘電体マスク、及び第3半導体
クラッド層をエツチングする。次に。
Thereafter, a striped etching mask is formed on the surface along the resonator axis, and the dielectric mask and the third semiconductor cladding layer are etched. next.

該誘電体マスクを用いて、マスク部以外の部分に。Use the dielectric mask to cover areas other than the mask part.

選択的に第1導嘱型の電流狭窄層、あるいは高抵抗の電
流狭窄層を少なくとも設けた構造とする。
The structure is selectively provided with at least a first conduction type current confinement layer or a high resistance current confinement layer.

〔作用〕[Effect]

本発明の構造において、半導体レーザの端面近傍は、量
子井戸型活性層が不純物拡散、あるいはイオン打込みに
よって混晶化され、平均組成の半纏体層となる。このと
き、その平均組成の半導体層のバンドギャップがレーザ
の発掘波長に相当するエネルギエリ大きくなるように設
計しておくと、端面付近を透明化できる。これにより、
高出力動作時における端面劣化の間[−著しく改善でき
ることは周知のとおりである。また、共振器軸方向に沿
ったエツチングマスクによって、前記誘電体マスクおよ
び、第3半導体クラッド層をエツチングすることにエリ
、リッジ型の光導波路を形成することが可能になり、安
定な横基本モード発振が得られる。さらに、前記ストラ
イプ状にエツチングした誘電体マスクを選択成長用マス
クに用いることにより、電流狭窄層が自己整合的に形成
される。この自己整合方式は1作製精度の向上、および
プロセスの簡単化を同時に可能にする。また、本構造の
半導体レーザでは、端面近傍部には電流狭窄層が形成さ
れるため、端面近傍に流れる無効な電流を防ぐことが可
能で、低しきい電流値化や高信頼化の効果がさらに生ず
る。
In the structure of the present invention, near the end face of the semiconductor laser, the quantum well type active layer is made into a mixed crystal by impurity diffusion or ion implantation, and becomes a semi-solid layer with an average composition. At this time, if the semiconductor layer is designed so that the band gap of the average composition is large in energy corresponding to the excavation wavelength of the laser, the vicinity of the end face can be made transparent. This results in
It is well known that end face deterioration during high power operation can be significantly improved. Furthermore, by etching the dielectric mask and the third semiconductor cladding layer by using an etching mask along the cavity axis direction, it becomes possible to form a ridge-type optical waveguide, resulting in a stable transverse fundamental mode. Oscillation is obtained. Further, by using the dielectric mask etched into stripes as a mask for selective growth, the current confinement layer is formed in a self-aligned manner. This self-alignment method simultaneously improves manufacturing accuracy and simplifies the process. In addition, in the semiconductor laser with this structure, a current confinement layer is formed near the end facet, so it is possible to prevent invalid current from flowing near the end facet, resulting in lower threshold current values and higher reliability. More will occur.

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

実施例1 本発明の実施例1の高出力半導体レーザ素子を第1図(
a)〜゛第1図(C)および7g2図を用いて説明する
Example 1 A high-power semiconductor laser device according to Example 1 of the present invention is shown in FIG.
a) to ゛This will be explained using FIG. 1(C) and FIG. 7g2.

まず、第1図(a)に示すように、n形GaAs基板1
((100)面、3i ドープ、n〜lX10”cm−
”)上に、 Qrgano Metalic vapo
r phaseEpitaxy (OMVPE )法1
1CLツ1n −Gao、ss Ato、45AS  
クラッド層2(Se)”−プ。
First, as shown in FIG. 1(a), an n-type GaAs substrate 1
((100) plane, 3i doped, n~lX10"cm-
”) on top, Qrgano Metallic vapo
r phase Epitaxy (OMVPE) method 1
1CL Tsu1n-Gao, ss Ato, 45AS
Cladding layer 2 (Se)''-p.

n 〜l X 10” cm−” #厚さ約2 pm 
) 、 G a A sウェル層80人e G ao、
y Ato、s A S バリア層120人を交互に5
回重ねた多重量子井戸型活性層3 e  pG aO,
ss At6,45 A Sクラッド層4(Znドープ
、  p〜6 ×101?cm−” 、厚さ約1.2μ
m)。
n ~ l x 10"cm-"#thickness approx. 2 pm
), Ga As well layer 80 people e Gao,
y Ato, s A S Barrier layer 120 people alternately 5
Multiple quantum well type active layer 3 e pG aO,
ss At6,45 A S cladding layer 4 (Zn doped, p~6 x 101?cm-", thickness about 1.2μ
m).

p −Q a A S界面層5 (Znドープ、p〜i
x10 ” cm−” 、厚さ約0.1μm)1に形成
し、この上に、SiNxの拡散マスク6t−形成した。
p-QaAS interface layer 5 (Zn doped, p~i
x10 ''cm-'', thickness approximately 0.1 μm) 1, and a SiNx diffusion mask 6t- was formed thereon.

つぎに、半導体レーザの端面近傍となる部分7に開口を
設け5kinを熱拡散して、多重量子井戸型活性層3の
端面部8を混晶化した。つぎに、第1図(b)に示すよ
うに、レーザの共振器軸方向に沿ってホトレジストのス
トライプ状マスク9を設け、まず。
Next, an opening was made in a portion 7 near the end face of the semiconductor laser, and 5kin was thermally diffused to make the end face portion 8 of the multi-quantum well type active layer 3 into a mixed crystal. Next, as shown in FIG. 1(b), a striped photoresist mask 9 is provided along the laser cavity axis direction.

前記8 r N x拡散マスク6をストライプ状にエツ
チングし、さらに、  p  G a A s界面層5
.およびpG ao、HAto、4s A SI彌4を
エツチングして。
The 8rNx diffusion mask 6 is etched into stripes, and the pGaAs interface layer 5 is etched.
.. and etching pGao, HAto, 4s ASI 4.

幅約5μmの光導波用リッジ10を形成した。つぎに、
第1図(C)に示すように、前記ホトレジストマスク9
を除去した後、ストライプ状8 t N xマスク6を
用いて、n−GaAs電流狭窄層11(Seドープ、 
 n−w4 X l O” cm−” 、厚さリッジの
外側領域で約0.7μm)を、SiN、マスク6以外の
部分に選択的に形成した。その後、第2図に示すように
、5iNxマスク6を除去した後。
An optical waveguide ridge 10 having a width of about 5 μm was formed. next,
As shown in FIG. 1(C), the photoresist mask 9
After removing the n-GaAs current confinement layer 11 (Se-doped,
n-w4XlO"cm-", thickness of about 0.7 μm in the outer region of the ridge) was selectively formed on the SiN and the portions other than the mask 6. Then, as shown in FIG. 2, after removing the 5iNx mask 6.

全面にpGao、ss kla、as As  埋込層
12(Znnドープ  p〜I X 10” crn−
’ 、  厚さ約1μm)、p−GaASキャップ層1
3(Znドープ*  p〜I X 10”(yB−”、
厚さ約1μm)を形成し、p側電極14.n側電極15
を形成した後。
pGao, ss kla, as As buried layer 12 (Znn doped p~I X 10" crn-
', thickness approximately 1 μm), p-GaAS cap layer 1
3(Zn-doped*p~IX10"(yB-",
1 μm thick), and the p-side electrode 14. n-side electrode 15
After forming.

へき開、スクライビングを行って、レーザチップ化した
。本実施例では、半導体レーザの端面近傍の量子井戸型
活性層8をZn拡散によって混晶化することにより、平
均的な組成のG a 644 A to、16 A S
とすることができる。本実施例の半導体レーザ素子は1
発振波長約840nmであり、端面部はレーザの発振波
長相当エネルギーに比べて犬となっている。これにより
端面部でのバンド間吸収を著しく低減することができた
。また、共振器軸に沿って設けた。リッジ状導波路構造
10によって、高出力まで横基本モードで安定に発振す
るレーザ素子が得られた。また、Zn拡散に用いたsi
N。
Cleavage and scribing were performed to create a laser chip. In this example, the quantum well type active layer 8 near the end facet of the semiconductor laser is made into a mixed crystal by Zn diffusion, so that the average composition of Ga 644 A to, 16 A S
It can be done. The semiconductor laser device of this example is 1
The oscillation wavelength is about 840 nm, and the end facet has a smaller energy than the oscillation wavelength of the laser. This made it possible to significantly reduce interband absorption at the end face. Moreover, it was provided along the resonator axis. By using the ridge-shaped waveguide structure 10, a laser device that stably oscillates in the transverse fundamental mode up to high output was obtained. In addition, the Si used for Zn diffusion
N.

マスク6を、リッジ10の形成、および、を流狭窄層1
1の選択形成に用いることにより、自己整合的な素子作
製プロセスが可能になり1作製精度の向上、および素子
作製プロセスの簡略化が、著しくはかれた。また1本実
施例の半導体レーザでは、端面近傍部にも電流狭窄層が
形成されるため。
The mask 6 is used to form the ridge 10 and to form the flow constriction layer 1.
By using it for the selective formation of 1, a self-aligned device manufacturing process becomes possible, and the 1 manufacturing precision is improved and the device manufacturing process is significantly simplified. Further, in the semiconductor laser of this embodiment, a current confinement layer is also formed in the vicinity of the end facet.

ここに流れる無効直流も低減でき1発振しきい値の低減
や信頼性の同上にも役立った。
The reactive direct current flowing here was also reduced, which helped lower the single-oscillation threshold and improve reliability.

本実施例の半導体レーザ素子は、波長的840nm、l
、きい電流値約30mAで発振し、100mW以上まで
安定な横基本モード発振が得られた。
The semiconductor laser device of this example has a wavelength of 840 nm, l
, oscillation occurred at a threshold current value of approximately 30 mA, and stable transverse fundamental mode oscillation was obtained up to 100 mW or more.

また、端面までリッジによる光導波路が形成されている
ため、非点収差も5μm以下と小さくできた。
Furthermore, since the optical waveguide is formed by a ridge up to the end face, astigmatism can be reduced to 5 μm or less.

本発明の実施例1において、拡散マスクの材料として、
リンガラス(PSG)や5jOzを用いた場合にも、同
様の構造を作製できることが判った。得られた特性は実
施例1と同様であった。また、量子井戸型活性層の混晶
化を行う手段として。
In Example 1 of the present invention, as the material of the diffusion mask,
It has been found that a similar structure can be produced also when phosphorus glass (PSG) or 5jOz is used. The properties obtained were similar to those in Example 1. Also, as a means of mixed crystallization of a quantum well type active layer.

Zn拡散ではなく、イオン打込法とアニールとの組合せ
も可能であった。
Instead of Zn diffusion, a combination of ion implantation and annealing was also possible.

なお、イオン打込用のマスクとしては誘電体膜とホトレ
ジストの重ね膜等を用いた。
Note that a layered film of a dielectric film and a photoresist was used as a mask for ion implantation.

実施例2 本発明の実施例1において、WJ1図(b)に示す光導
波用リッジのエツチング形成の際、エツチングを途中ま
で行った後、さらに共振器軸方向における中央部分に、
エツチングを阻止するようなマスク(ホトレジスト等)
を設け、再度エツチングを行った。これにより、端面近
傍は深いリッジを。
Example 2 In Example 1 of the present invention, when forming the optical waveguide ridge shown in WJ1 diagram (b) by etching, after the etching was completed halfway, further etching was performed on the central portion in the axial direction of the resonator.
Mask that prevents etching (photoresist, etc.)
, and etching was performed again. This creates a deep ridge near the end face.

中央部は浅いリッジを形成し、共振器軸方向に異なる深
さのリッジとした。以降は実施例1と同様のプロセスと
した。本実施例では、100mWまで横基本モードで安
定に発振し、かつ、10mW程度までは、相対雑音強度
10” Hz以下の低ノイズで動作する。高出力低雑音
半導体レーザが得られた。
A shallow ridge was formed in the center, and the ridges had different depths in the axial direction of the resonator. The subsequent process was the same as in Example 1. In this example, the semiconductor laser stably oscillates in the transverse fundamental mode up to 100 mW, and operates with low noise with a relative noise intensity of 10'' Hz or less up to about 10 mW. A high-output, low-noise semiconductor laser was obtained.

なお、短波長化に対しては、ウェル層ftGaAtAS
とすることが有効となるが、この場合も、バリア層との
混晶化によってできる平均組成が、レーザの発振波長に
対して透明になるような値に設計すれば、同様の端面劣
化改善効果が得られる。
Note that for shorter wavelengths, the well layer ftGaAtAS
However, in this case as well, if the average composition created by mixed crystal formation with the barrier layer is designed to a value that is transparent to the laser oscillation wavelength, the same end face deterioration improvement effect can be achieved. is obtained.

また、共振器反射面の形成法として、ウェットエツチン
グ法やドライエツチング法を用いることも可能である。
Furthermore, wet etching or dry etching can also be used as a method for forming the resonator reflecting surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、横モードを安定化させる光導波用リッ
ジを作りつけることができるため、安定な横基本モード
発掘が得られる。また、端面は量子井戸型活性層の混晶
化によって透明化されるため、端面劣化の問題を著しく
改善できる。また。
According to the present invention, it is possible to create an optical waveguide ridge that stabilizes the transverse mode, so that a stable transverse fundamental mode can be found. Further, since the end face is made transparent by mixed crystal formation of the quantum well type active layer, the problem of end face deterioration can be significantly improved. Also.

端面近傍には電流が流れない構造となり、無効電流の低
減、信頼性の向上がはかれる。さらに、端面部透明化1
元導波用リッジの形成、電流狭窄層の選択的形成を自己
整合的に行えるため、素子作製梢匪の向上、素子作製プ
ロセスの簡略化を著しく進めることが可能になる。なお
1本発明の実施例では、QaAtAs系の半導体レーザ
素子について述べたが、その他の材料系1例えば、 I
nGaAZP糸可視レーザにも応用でき、その技術的効
果は著しく大である。
The structure prevents current from flowing near the end face, reducing reactive current and improving reliability. Furthermore, end face transparentization 1
Since the formation of the original waveguide ridge and the selective formation of the current confinement layer can be performed in a self-aligned manner, it becomes possible to significantly improve the device manufacturing efficiency and simplify the device manufacturing process. Note that in the embodiments of the present invention, a QaAtAs-based semiconductor laser device has been described, but other material systems 1, such as I
It can also be applied to an nGaAZP thread visible laser, and its technical effects are extremely large.

ザ素子作製工程を示す模式図、第2図は本発明の実施例
1の高出力半導体レーザの分解図である。
FIG. 2 is an exploded view of a high-power semiconductor laser according to Example 1 of the present invention.

3・・・多重量子井戸型活性層、6・・・SiN!マス
ク。
3...Multi-quantum well type active layer, 6...SiN! mask.

8・・・混晶化した活性層、9・・・リッジ形成用エツ
チングマスク、10・・・光導波用リッジ、11・・・
n −鷺 1 図 ¥:J 2 日 4P−θ用慴箭 14 Pfθ・1静 32り&JtLt−浸會1
8... Mixed crystal active layer, 9... Etching mask for ridge formation, 10... Ridge for optical waveguide, 11...
n - Heron 1 Figure ¥: J 2 Day 4P-θ use 14 Pfθ・1 stillness 32ri & JtLt-immersion 1

Claims (1)

【特許請求の範囲】 1、半導体基板上に順次積層された第1半導体クラッド
層、第2半導体活性層、第3半導体クラッド層のダブル
ヘテロ構造を少なくとも有し、上記第3半導体クラッド
層は光が導波される共振器軸方向に沿つてストライプ状
メサ形状を有し、少なくとも一方の反射面近傍は透明化
してあり、かつ、上記ストライプ状メサ形状以外の部分
に、第4半導体電流狭窄層が形成されていることを特徴
とする半導体レーザ素子。 2、上記第4半導体電流狭窄層は上記メサ形状第3半導
体クラッド層の反射面近傍上にも形成されている特許請
求の範囲第1項記載の半導体レーザ素子。 3、第1の導電型の半導体基板上に順次第1導電型の第
1半導体クラッド層、ウェル層、バリア層からなる量子
井戸型第2半導体活性層、第II導電型の第3半導体クラ
ッド層を少なくとも形成し、さらにこの上に誘電体膜を
形成し該誘電体膜をマスクとして半導体レーザ素子の少
なくとも一方の端面となる部分を含む近傍領域に不純物
拡散あるいは不純物イオン打込等を行つて、前記量子井
戸型第2半導体活性層を混晶化してレーザ発振波長に対
し透明化し、さらに、上記誘電体膜を含む結晶表面上に
ストライプ状エッチングマスクを形成し、上記誘電体膜
をストライプ状にエッチングした後、上記第3半導体ク
ラッド層をエッチングしてストライプ状光導波リツジを
形成し、つぎに、上記誘電体膜をマスクとして、該マス
ク以外の部分に第 I 導電型の第4半導体電流狭窄層、
あるいは高抵抗の第4半導体電流狭窄層を少なくとも形
成したことを特徴とする半導体レーザ素子の製造方法。
[Claims] 1. It has at least a double heterostructure of a first semiconductor cladding layer, a second semiconductor active layer, and a third semiconductor cladding layer that are sequentially laminated on a semiconductor substrate, and the third semiconductor cladding layer has an optical has a striped mesa shape along the resonator axis direction in which the wave is guided, the vicinity of at least one reflecting surface is transparent, and a fourth semiconductor current confinement layer is provided in a portion other than the striped mesa shape. What is claimed is: 1. A semiconductor laser device comprising: 2. The semiconductor laser device according to claim 1, wherein the fourth semiconductor current confinement layer is also formed near the reflective surface of the mesa-shaped third semiconductor cladding layer. 3. A quantum well type second semiconductor active layer consisting of a first conductivity type first semiconductor cladding layer, a well layer, and a barrier layer, and a second conductivity type third semiconductor cladding layer on a first conductivity type semiconductor substrate. furthermore, forming a dielectric film thereon, and using the dielectric film as a mask to perform impurity diffusion or impurity ion implantation into a nearby region including a portion that will become at least one end face of the semiconductor laser element, The quantum well type second semiconductor active layer is made into a mixed crystal to make it transparent to the laser oscillation wavelength, and further, a striped etching mask is formed on the crystal surface including the dielectric film to form the dielectric film into a stripe shape. After etching, the third semiconductor cladding layer is etched to form a striped optical waveguide ridge, and then, using the dielectric film as a mask, a fourth semiconductor current confinement of conductivity type I is formed in a portion other than the mask. layer,
Alternatively, a method for manufacturing a semiconductor laser device, characterized in that at least a fourth semiconductor current confinement layer having high resistance is formed.
JP28932787A 1987-11-18 1987-11-18 Semiconductor laser element and manufacture thereof Pending JPH01132189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28932787A JPH01132189A (en) 1987-11-18 1987-11-18 Semiconductor laser element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28932787A JPH01132189A (en) 1987-11-18 1987-11-18 Semiconductor laser element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01132189A true JPH01132189A (en) 1989-05-24

Family

ID=17741758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28932787A Pending JPH01132189A (en) 1987-11-18 1987-11-18 Semiconductor laser element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01132189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208388A (en) * 1990-01-09 1991-09-11 Nec Corp Semiconductor laser, manufacture thereof and diffusion of impurity
JPH05152671A (en) * 1991-07-16 1993-06-18 Mitsubishi Electric Corp Manufacture of semiconductor laser
JP2013509696A (en) * 2009-10-30 2013-03-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Edge-emitting semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208388A (en) * 1990-01-09 1991-09-11 Nec Corp Semiconductor laser, manufacture thereof and diffusion of impurity
JPH05152671A (en) * 1991-07-16 1993-06-18 Mitsubishi Electric Corp Manufacture of semiconductor laser
JP2013509696A (en) * 2009-10-30 2013-03-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Edge-emitting semiconductor laser
US9136671B2 (en) 2009-10-30 2015-09-15 Osram Opto Semiconductors Gmbh Edge emitting semiconductor laser
US9559494B2 (en) 2009-10-30 2017-01-31 Osram Opto Semiconductors Gmbh Edge emitting semiconductor laser

Similar Documents

Publication Publication Date Title
US4329660A (en) Semiconductor light emitting device
US4366568A (en) Semiconductor laser
US5646953A (en) Semiconductor laser device
JPS5940592A (en) Semiconductor laser element
US4377865A (en) Semiconductor laser
JPH0518473B2 (en)
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPH0426558B2 (en)
JPS58197787A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS61236189A (en) Semiconductor laser element
JPS58225681A (en) Semiconductor laser element
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH06283801A (en) Semiconductor laser
JPH0256836B2 (en)
JPS60132381A (en) Semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JP2912775B2 (en) Semiconductor laser device
JPS6234473Y2 (en)
JPS6343909B2 (en)
JPH01161885A (en) Semiconductor laser
JP2001257421A (en) Semiconductor laser element and its manufacturing method
JPS6139758B2 (en)
JPS625354B2 (en)