JPH03295289A - Integrated optical semiconductor device and driving method thereof - Google Patents

Integrated optical semiconductor device and driving method thereof

Info

Publication number
JPH03295289A
JPH03295289A JP9809590A JP9809590A JPH03295289A JP H03295289 A JPH03295289 A JP H03295289A JP 9809590 A JP9809590 A JP 9809590A JP 9809590 A JP9809590 A JP 9809590A JP H03295289 A JPH03295289 A JP H03295289A
Authority
JP
Japan
Prior art keywords
semiconductor device
optical semiconductor
integrated optical
wavelength
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9809590A
Other languages
Japanese (ja)
Other versions
JP2751558B2 (en
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2098095A priority Critical patent/JP2751558B2/en
Publication of JPH03295289A publication Critical patent/JPH03295289A/en
Application granted granted Critical
Publication of JP2751558B2 publication Critical patent/JP2751558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Abstract

PURPOSE:To enable an optical semiconductor device to be improved in FM modulation efficiency and optical output by a method wherein a DFB laser of low reflection and high reflection end face structure is divided into two parts in a direction of a resonator. CONSTITUTION:An InGaAsP guide layer 3 correspondent to the emitted light 1.3mum in wavelength, an active layer 4 of multi-quantum well structure, and a clad layer 5 are successively grown on a substrate 1 where a diffraction grating 2 has been formed. A buried layer is made to grow through a conventional process, then split electrodes 6 are provided, the substrate 1 is cut into unit elements, and a low reflection film 9 and a high reflection film 10 are provided to the end faces of the unit element respectively. The end faces are set to 0% and 95% in reflectivity respectively. Therefore, an integrated type optical semiconductor device which is high in optical output, variable in wavelength, high in efficiency, and flat in FM response property can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、集積型光半導体装置およびその駆動方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated optical semiconductor device and a method for driving the same.

(従来の技術と解決すべき課題) 光通信技術は近年急速な進展を示し、数Gb/sの高速
で、1100kを超す長距離、犬賽量のシステムが報告
されるようになってきた。その中で、分布帰還型半導体
レーザ(DFB−LD)や分布ブラッグ反射型半導体レ
ーザ(DBR−LD)は直接検波系のみならず、例えば
FSKコヒーレントシステム等へノ応用上でもキープハ
イスとして用いられている。単体のDFBレーサを例え
ばFSKコヒーレントシステムの送信光源に用いる場合
、低周波領域では熱効果により変調電流増加で発信周波
数が長波長に周波数偏移するレッドシフトFMとなる。
(Conventional Technologies and Issues to be Solved) Optical communication technology has shown rapid progress in recent years, and systems with high speeds of several Gb/s, long distances exceeding 1100K, and long distances have been reported. Among these, distributed feedback semiconductor lasers (DFB-LD) and distributed Bragg reflection semiconductor lasers (DBR-LD) are used not only for direct detection systems but also for applications such as FSK coherent systems as a high-speed maintenance device. . When a single DFB laser is used, for example, as a transmission light source in an FSK coherent system, red-shifted FM occurs in which the transmission frequency shifts to longer wavelengths due to an increase in modulation current due to thermal effects in the low frequency region.

高周波領域ではキャリア効果によって変調電流増加で短
波長に周波数偏移するブルーシフl−FMとなりその交
点となるデイツプ周波数が数百kHzで発生する。そこ
で位相が反転することから伝送上の波形劣化が生ずると
いう問題がある。そのような位相反転を除去する目的で
小滝氏らは1989年発行のエレクトロニクスレターズ
誌(Electronics Letters)、第2
5巻、990ページから991ページに報告しているよ
うな3電極構造のλ/4シフトDFBレーザを開発した
。そのような素子を用いて、注入電流の分配比を調節す
ることにより、20mW光出力時に19人の波長可変範
囲、900kHz以下のスペクトル線幅、および位相反
転のないFM応答特性を実現した。しかしながら、同素
子ではGHzレベルでのFM変調効率は0.5GHz/
mA程度であり、高速のFSX変調にはより高いFM変
調効率が望まれていた。さらに光出力も局発光源として
は大きければ大きいほど望ましい。
In the high frequency region, the modulation current increases due to the carrier effect, resulting in blue shift l-FM, which shifts the frequency to a shorter wavelength, and a dip frequency, which is the intersection point, occurs at several hundred kHz. There is a problem in that the phase is reversed, resulting in waveform deterioration during transmission. For the purpose of eliminating such phase reversal, Mr. Kotaki et al.
We have developed a λ/4 shift DFB laser with a three-electrode structure as reported in Volume 5, pages 990 to 991. By using such a device and adjusting the distribution ratio of the injected current, we achieved a wavelength tuning range of 19 people, a spectral linewidth of 900 kHz or less, and FM response characteristics without phase reversal at 20 mW optical output. However, with the same element, the FM modulation efficiency at the GHz level is only 0.5GHz/
mA, and higher FM modulation efficiency was desired for high-speed FSX modulation. Furthermore, the larger the optical output is, the more desirable it is for a local light source.

本発明の目的は上述の観点に立って、FM変調効率が高
く、かつ光出力の大きな集積型単一波長半導体レーザ素
子を提供することにある。
In view of the above, an object of the present invention is to provide an integrated single wavelength semiconductor laser device with high FM modulation efficiency and large optical output.

(課題を解決するための手段) 本発明の集積型光半導体装置は半導体基板上に活性層、
導波層、回折格子を少なくとも有する集積型光半導体装
置において、対向する2つの端面の反射率が異なり、レ
ーザ光共振方向に2つの独立した電極が形成されている
ことを特徴とする。
(Means for Solving the Problems) An integrated optical semiconductor device of the present invention includes an active layer on a semiconductor substrate,
An integrated optical semiconductor device having at least a waveguide layer and a diffraction grating is characterized in that two opposing end faces have different reflectances and two independent electrodes are formed in the laser beam resonance direction.

本発明の駆動方法は前記2つの電極の内、低反射端面側
の電極に直流電流を印加し、高反射端面側電極に直流電
流と変調電流とを印加することを特徴とする。
The driving method of the present invention is characterized in that, of the two electrodes, a DC current is applied to the electrode on the low reflection end face side, and a DC current and a modulation current are applied to the high reflection end face side electrode.

(作用) 本発明の集積素子の動作原理を以下に示す。第1図(a
)にその素子の断面構造図を示すように低反射、高反射
端面構造のDFBレーザが2つの領域に分割され、それ
ぞれに独立した電極が形成されている。第1図(b)、
(C)にそれぞれ光の電界分布およびキャリア密度分布
を模式的に示す。均一に電流を注入してレーザ発振させ
ると高反射端面側で光密度が強くなるためにキャリアが
多く消費され、空間的ホールバーニングの効果により、
そこでキャリア密度が減少する。その様子を図中に破線
で示す。本発明のように電極分割構造として高反射端面
側により多くの電流を流してホールバーニングを抑制す
ることにより、実線で示した様に平坦なキャリア密度分
布にすることができる。共振器全体でのキャリア密度の
平均値はホールバーニングによって不均一になった場合
の方か高いのでブラッグ波長は、キャリア密度が均一な
場合と比べて短くなる。高反射端面側に流す電流を調整
することによってホールバーニングの程度、したがって
発振波長、スペクトル線幅等を制御することができる。
(Operation) The operating principle of the integrated device of the present invention is shown below. Figure 1 (a
) shows a cross-sectional structural diagram of the device, a DFB laser with a low-reflection and high-reflection end face structure is divided into two regions, and independent electrodes are formed in each region. Figure 1(b),
(C) schematically shows the electric field distribution and carrier density distribution of light, respectively. When a current is uniformly injected to cause laser oscillation, the optical density becomes stronger on the high-reflection end facet side, which consumes more carriers, and due to the effect of spatial hole burning,
There, the carrier density decreases. This situation is shown by the broken line in the figure. As in the present invention, a flat carrier density distribution can be achieved as shown by the solid line by suppressing hole burning by flowing more current to the high reflection end face side using a divided electrode structure. Since the average value of the carrier density in the entire resonator is higher when the carrier density becomes non-uniform due to hole burning, the Bragg wavelength becomes shorter than when the carrier density is uniform. By adjusting the current flowing to the high reflection end face, the degree of hole burning, and therefore the oscillation wavelength, spectral linewidth, etc., can be controlled.

さらに高反射端面側に変調電流を加えることによりレッ
ドシフトのFM応答特性を実現できる。この動作原理は
小滝氏らによる3電極構造のDFBレーザと同様である
が、本発明の素子では3電極構造素子を中央部で分割し
、反射鏡を形成した構造になっているので、同じ周波数
変化を生じさせるための変調電流値が半分、すなわちF
M変調効率が2倍になることが期待される。FM応答特
性は第2図に示すように熱効果とキャリア効果の重ねあ
わせとなる力ξ高周波領域でのキャリア効果によるFM
変調効率が高くなることにより、従来例と比べてより広
い変調周波数範囲で平坦なFM応答特性が得られる。さ
らに低反射、高反射端面構造であることを反映して大幅
な光出力の改善が期待できる。
Furthermore, by applying a modulation current to the high-reflection end face side, red-shifted FM response characteristics can be achieved. This operating principle is similar to the three-electrode structure DFB laser by Mr. Kotaki et al., but in the device of the present invention, the three-electrode structure element is divided in the center to form a reflecting mirror, so the same frequency The modulation current value to cause the change is half, that is, F
It is expected that the M modulation efficiency will double. As shown in Figure 2, the FM response characteristics are a combination of thermal effects and carrier effects.
By increasing the modulation efficiency, a flat FM response characteristic can be obtained over a wider modulation frequency range than in the conventional example. Furthermore, due to the low-reflection and high-reflection end face structure, a significant improvement in optical output can be expected.

(実施例) 以下に実施例の図面を参照して本発明をより詳細に説明
する。第1図(a)は本発明の一実施例である集積型光
半導体装置の断面模式図である。このような素子を得る
には、回折格子2を形成した基板1上に発光波長1.3
pm相当のInGaAsPガイド層3、多重量子井戸(
MQW)構造の活性層4、クラット層5を順次成長する
。回折格子2は周期240OA、ガイド層3は厚す0.
21Jm、 MQW活性層4は70A厚のInGaAs
層4層、100A厚の1.3pm組成InGaAsPバ
リア層よりなる。通常のプロセスで埋め込み成長を行な
った後、分割電極6を形成し、個々の素子に切り出して
、両端面に低反射膜、高反射膜を形成した。端面反射率
はそれぞれ0%、95%とした。結合係数20cm ’
、素子全長1mm、低反射端面側領域長600μm、分
離溝8を25pm、高反射端面領域長375μmとして
特性を評価した。そのような素子において50mW光出
力時に20人の波長可変範囲、IMHz以下のスペクト
ル線幅動作を得た。FM変調効率は注入電流条件によっ
て異なるが、注入電流密度の比を低反射、高反射側で1
:0.8とした場合に1.3GHz/mAと高い値が得
られ、変調周波数1kHzがら15GHzの範囲にわた
って変動量2dB以内と極めて平坦なFM応答特性が得
られた。
(Example) The present invention will be described in more detail below with reference to drawings of examples. FIG. 1(a) is a schematic cross-sectional view of an integrated optical semiconductor device that is an embodiment of the present invention. To obtain such an element, a light emitting wavelength of 1.3 is placed on the substrate 1 on which the diffraction grating 2 is formed.
InGaAsP guide layer 3 equivalent to pm, multiple quantum well (
An active layer 4 and a crat layer 5 having a MQW) structure are sequentially grown. The diffraction grating 2 has a period of 240OA, and the guide layer 3 has a thickness of 0.
21Jm, MQW active layer 4 is 70A thick InGaAs
It consists of four layers, a 100A thick InGaAsP barrier layer with a composition of 1.3 pm. After performing buried growth using a normal process, divided electrodes 6 were formed and cut into individual elements, and a low reflection film and a high reflection film were formed on both end faces. The end face reflectance was 0% and 95%, respectively. Coupling coefficient 20cm'
The characteristics were evaluated with the overall element length of 1 mm, the length of the low reflection end face side region of 600 μm, the separation groove 8 of 25 pm, and the length of the high reflection end face region of 375 μm. In such a device, we obtained a wavelength tunable range of 20 people and a spectral linewidth operation below IMHz at 50 mW optical output. The FM modulation efficiency varies depending on the injection current conditions, but the ratio of injection current density is 1 on the low reflection side and the high reflection side.
:0.8, a high value of 1.3 GHz/mA was obtained, and an extremely flat FM response characteristic with a variation within 2 dB over the modulation frequency range of 1 kHz to 15 GHz was obtained.

なお実施例においてはInPを基板とする波長1pm帯
の素子について述べたが、用いる材料系はこれに限るも
のでなく、GaAs系等、他の材料を用いてなんら差し
支えない。
In the embodiment, an element with a wavelength of 1 pm using InP as a substrate has been described, but the material system used is not limited to this, and other materials such as GaAs system may be used without any problem.

(発明の効果) 本発明の特徴は低反射、高反射端面構造DFBレーザを
共振器方向に2分割したことであり、それによって高光
出力での波長可変動作、高効率かつ平坦なFM応答特性
を実現できた。Gb/sレベルのFSKコヒーレントシ
ステムに特に有効に用いられる。
(Effects of the Invention) The feature of the present invention is that the DFB laser with a low-reflection and high-reflection edge structure is divided into two parts in the cavity direction, thereby achieving wavelength tunable operation with high optical output, high efficiency, and flat FM response characteristics. I was able to make it happen. It is particularly effectively used in FSK coherent systems at the Gb/s level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例である集積素子の断面
図、第1図(b)、(C)はそれぞれ共振器方向の光強
度分布、キャリア密度分布を示す模式図、第2図はFM
応答特性の一例を示す図である。 に基板、2:回折格子、3:導波層、4:活性層、5:
クランド層、6.7:電極、8:分離溝、9:低反射膜
、1o:高反射膜。
FIG. 1(a) is a cross-sectional view of an integrated device that is an embodiment of the present invention, and FIGS. 1(b) and 1(C) are schematic diagrams showing the light intensity distribution and carrier density distribution in the cavity direction, respectively. Figure 2 is FM
FIG. 3 is a diagram showing an example of response characteristics. substrate, 2: diffraction grating, 3: waveguide layer, 4: active layer, 5:
Land layer, 6.7: Electrode, 8: Separation groove, 9: Low reflection film, 1o: High reflection film.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に活性層、導波層、回折格子を少な
くとも有する集積型光半導体装置において、対向する2
つの端面の反射率が異なり、レーザ光共振方向に2つの
独立した電極が形成されていることを特徴とする集積型
光半導体装置。
(1) In an integrated optical semiconductor device having at least an active layer, a waveguide layer, and a diffraction grating on a semiconductor substrate, two opposing
An integrated optical semiconductor device characterized in that two end faces have different reflectances and two independent electrodes are formed in the laser beam resonance direction.
(2)請求項1の集積型光半導体装置の2つの電極の内
、低反射端面側電極に直流電流を印加し、高反射端面側
電極に直流電流と変調電流とを印加することを特徴とす
る集積型光半導体装置の駆動方法。
(2) Of the two electrodes of the integrated optical semiconductor device according to claim 1, a DC current is applied to the low reflection end face side electrode, and a DC current and a modulation current are applied to the high reflection end face side electrode. A method for driving an integrated optical semiconductor device.
JP2098095A 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof Expired - Fee Related JP2751558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098095A JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098095A JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH03295289A true JPH03295289A (en) 1991-12-26
JP2751558B2 JP2751558B2 (en) 1998-05-18

Family

ID=14210784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098095A Expired - Fee Related JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Country Status (1)

Country Link
JP (1) JP2751558B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685382A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Semiconductor laser
JPH06204607A (en) * 1993-01-08 1994-07-22 Nec Corp Distributed feedback type semiconductor laser
US5550855A (en) * 1993-07-23 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Optical modulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290789A (en) * 1985-06-19 1986-12-20 Nippon Telegr & Teleph Corp <Ntt> Multiple electrode distributed feedback type semiconductor laser and usage thereof
JPH01231388A (en) * 1988-03-11 1989-09-14 Kokusai Denshin Denwa Co Ltd <Kdd> Distributed feedback type semiconductor laser device and current injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290789A (en) * 1985-06-19 1986-12-20 Nippon Telegr & Teleph Corp <Ntt> Multiple electrode distributed feedback type semiconductor laser and usage thereof
JPH01231388A (en) * 1988-03-11 1989-09-14 Kokusai Denshin Denwa Co Ltd <Kdd> Distributed feedback type semiconductor laser device and current injection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685382A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Semiconductor laser
JP3298667B2 (en) * 1992-08-31 2002-07-02 富士通株式会社 Manufacturing method of semiconductor laser
JPH06204607A (en) * 1993-01-08 1994-07-22 Nec Corp Distributed feedback type semiconductor laser
US5550855A (en) * 1993-07-23 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Optical modulator

Also Published As

Publication number Publication date
JP2751558B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US5568311A (en) Wavelength tunable semiconductor laser device
Shim et al. Lasing characteristics of 1.5 mu m GaInAsP-InP SCH-BIG-DR lasers
JPH0715000A (en) Constitution of integrated monolithic laser modulator of multiple quantum well structure
JPH06204610A (en) Semiconductor laser and manufacture thereof
EP0480697A2 (en) Tunable semiconductor laser
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2001036192A (en) Distribution feedback type semiconductor laser and manufacture thereof
CA2068443C (en) Gain-coupled distributed-feedback semiconductor laser
EP1258955A1 (en) Integrated tunable laser
JPS6322637B2 (en)
JPH01319986A (en) Semiconductor laser device
US6825505B2 (en) Phase-shifted distributed feedback type semiconductor laser diode capable of improving wavelength chirping and external reflection return light characteristics
JP2950302B2 (en) Semiconductor laser
JPH08274404A (en) Multi-quantum well laser diode
JPH03295289A (en) Integrated optical semiconductor device and driving method thereof
JP3166836B2 (en) Semiconductor laser
Okai et al. Complex-coupled/spl lambda//4-shifted DFB lasers with a flat FM response
WO2021148120A1 (en) Single-mode dfb laser
JPS6362917B2 (en)
WO2021148121A1 (en) Dfb laser with angled central waveguide section
JP3765117B2 (en) External cavity semiconductor laser
JP2776381B2 (en) Semiconductor laser device
JPH04226094A (en) Semiconductor laser element
JPH0673388B2 (en) Single-axis mode semiconductor laser
JPH04349682A (en) Coupling mode type semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees