JP2924433B2 - Semiconductor laser and method of manufacturing the same - Google Patents

Semiconductor laser and method of manufacturing the same

Info

Publication number
JP2924433B2
JP2924433B2 JP8492492A JP8492492A JP2924433B2 JP 2924433 B2 JP2924433 B2 JP 2924433B2 JP 8492492 A JP8492492 A JP 8492492A JP 8492492 A JP8492492 A JP 8492492A JP 2924433 B2 JP2924433 B2 JP 2924433B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
phase shift
manufacturing
shift region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8492492A
Other languages
Japanese (ja)
Other versions
JPH05251816A (en
Inventor
光弘 北村
裕幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8492492A priority Critical patent/JP2924433B2/en
Publication of JPH05251816A publication Critical patent/JPH05251816A/en
Application granted granted Critical
Publication of JP2924433B2 publication Critical patent/JP2924433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光通信に用いられる分布
帰還型の半導体レーザ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed feedback semiconductor laser used for optical communication and a method of manufacturing the same.

【0002】[0002]

【従来の技術】コヒーレント光伝送方式は、直接検波方
式に比べて受信感度が高くとれることから長距離の伝送
方式として注目されている。その中でも実現性の高いF
SK方式においては、半導体レーザを直接変調して、発
振周波数を変化させる。そこでは周波数揺らぎが少な
い、すなわち発振スペクトル線幅が狭いことと同時に周
波数変調(FM)の変調効率が高く、平坦なFM応答特
性を有する単一波長光源が要求される。コヒーレント伝
送用の光源として分布帰還型半導体レーザ(以下DFB
−LDと略す)が用いられ、これまでにいくつかの伝送
実験結果が報告されている。中でも量子井戸構造の活性
層を有するDFB−LD(以下MQW−DFB−LDと
略す)は線幅増大係数の低減効果を反映して、狭スペク
トル線幅動作することからコヒーレント伝送用光源とし
て特に有望視されている。
2. Description of the Related Art The coherent optical transmission system has attracted attention as a long-distance transmission system because it has higher receiving sensitivity than the direct detection system. Among them, F which is highly feasible
In the SK method, a semiconductor laser is directly modulated to change an oscillation frequency. There is a demand for a single-wavelength light source that has a small frequency fluctuation, that is, a narrow oscillation spectrum line width, a high frequency modulation (FM) modulation efficiency, and a flat FM response characteristic. Distributed feedback semiconductor laser (DFB) as a light source for coherent transmission
−LD), and some transmission experiment results have been reported so far. Among them, a DFB-LD having an active layer having a quantum well structure (hereinafter abbreviated as MQW-DFB-LD) is particularly promising as a light source for coherent transmission because it operates in a narrow spectral linewidth reflecting the effect of reducing the linewidth enhancement coefficient. Have been watched.

【0003】[0003]

【発明が解決しようとする課題】長距離、大容量のコヒ
ーレント伝送用光源として、本願の発明者らがλ/4シ
フトMQW−DFB−LDを実際に試作、評価を行った
結果、多数の素子は線幅、FM応答特性とも良好な結果
を示したが、一部の素子ではFM変調効率が低いという
問題が認められた。FM応答の良好な素子では、低域の
ディップ周波数が1−50kHzであり、1MHzから
2GHzの周波数範囲において200−300MHz/
mA程度の高いFM変調効率を示したが、一部の素子で
はFM変調効率が100−150MHz/mA程度以下
と低いものや、1GHz付近の高周波領域からFM変調
効率が急激に低減するものがあり、例えば2.5Gb/
sのシステムに適用する場合、所望の周波数変位量を得
るのが容易ではなかった。
As a long-distance, large-capacity light source for coherent transmission, the inventors of the present invention actually manufactured and evaluated a λ / 4 shift MQW-DFB-LD, and as a result, found that a large number of devices were obtained. Showed good results in both line width and FM response characteristics, but it was recognized that some devices had low FM modulation efficiency. In a device having a good FM response, the low frequency dip frequency is 1 to 50 kHz, and 200 to 300 MHz / in a frequency range of 1 MHz to 2 GHz.
Although a high FM modulation efficiency of about mA was shown, some elements have a low FM modulation efficiency of about 100-150 MHz / mA or less, and some have a sharp decrease in FM modulation efficiency from a high frequency region near 1 GHz. For example, 2.5 Gb /
s, it was not easy to obtain a desired frequency displacement.

【0004】本発明の目的は上記の観点にたって、広い
周波数範囲で、高いFM変調効率を有するDFB−LD
を安定に実現するための半導体レーザ構造及びその製造
方法を提供することにある。
In view of the above, it is an object of the present invention to provide a DFB-LD having a high FM modulation efficiency over a wide frequency range.
To provide a semiconductor laser structure for stably realizing the above and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに本発明が提供する半導体レーザ及びその製造方法は
以下の通りである。 (1)発光再結合する活性層に隣接して、位相シフト領
域を有する回折格子が形成された分布帰還型の半導体レ
ーザにおいて、前記活性層がウェル層、バリア層および
ガイド層からなる量子井戸構造を有し、前記位相シフト
領域付近において他の領域よりもガイド層とバリア層の
伝導帯下端が高いことを特徴とする半導体レーザ。 (2)位相シフト領域を有する回折格子が形成された半
導体基板上にストライプ状の絶縁膜を形成し、該ストラ
イプ状絶縁膜のあいだの挟まれた領域に気相成長法によ
り選択的に活性層などの半導体層を成長する工程を含む
半導体レーザの製造方法において、前記絶縁膜が前記位
相シフト領域付近において、他の領域よりも幅を狭く形
成することを特徴とする半導体レーザの製造方法。
Means for Solving the Problems A semiconductor laser provided by the present invention to solve the above-mentioned problems and a method of manufacturing the same are as follows. (1) The phase shift region is located adjacent to the active layer that undergoes radiative recombination.
Feedback type semiconductor laser with a diffraction grating
The active layer is a well layer, a barrier layer and
A quantum well structure comprising a guide layer, wherein the phase shift
In the vicinity of the region, the guide layer and the barrier layer
A semiconductor laser having a high conduction band lower end. (2) The half where the diffraction grating having the phase shift region is formed
Forming a striped insulating film on a conductive substrate;
In the region sandwiched between the insulating films by vapor phase epitaxy
Selectively growing a semiconductor layer such as an active layer
In the method for manufacturing a semiconductor laser, the insulating film may
In the vicinity of the phase shift area, the width is narrower than in other areas.
A method for manufacturing a semiconductor laser, comprising:

【0006】[0006]

【作用】MQW−DFB−LDのFM応答特性に関して
評価、解析を進めた結果、本願の発明者らは以下の知見
を得た。 (1)FM応答の周波数特性を評価した結果、図2に示
すようなκL依存性が認められた。これは以下の2つの
効果によると考えている。ひとつは、κLの大きな素子
ほど光の電界が素子中央の位相シフト位置に集中し、共
振器内部の光子密度が高くなるため非線形利得の効果に
よって低周波域でのFM変調効率が高くなること。2つ
めは、軸方向ホールバーニングの効果によって、等価的
な位相シフト量が変動し、それにともなってしきい値利
得も変化するため波長の変動量、すなわちFM変調効率
がさらに高くなる。そのような現象は、注入電流の変動
が生じた場合、定状状態に落ちつくまでには共振器内部
の電界分布とキャリア密度分布が全体として平衡するだ
けの時間が必要であり、それは通常のキャリアライフタ
イムよりも長い応答時間で、そのため高周波域でFM変
調効率が低下する。 (2)図3に示すように、FM変調効率がMQW活性層
及び両わきのガイド層を含む活性導波路厚の増加にとも
なって増大するという実験結果を得た。これはガイド層
にオーバーフローしたキャリアの量が増えるため、そこ
での屈折率変化量が大きくなり、同時に素子全体でみた
ときの利得変化量が相対的に小さくなるためと考えられ
る。
The present inventors obtained the following findings as a result of evaluating and analyzing the FM response characteristics of MQW-DFB-LD. (1) As a result of evaluating the frequency characteristics of the FM response, κL dependence as shown in FIG. 2 was recognized. This is thought to be due to the following two effects. One is that the larger the element of κL, the more the electric field of light concentrates on the phase shift position at the center of the element, and the higher the photon density inside the resonator, the higher the FM modulation efficiency in the low frequency region due to the effect of the nonlinear gain. Second, the equivalent phase shift amount fluctuates due to the effect of axial hole burning, and the threshold gain also changes accordingly, so that the wavelength fluctuation amount, that is, the FM modulation efficiency is further increased. In such a phenomenon, when the fluctuation of the injection current occurs, it takes time for the electric field distribution inside the resonator and the carrier density distribution to be balanced as a whole, before the steady state is settled. Since the response time is longer than the lifetime, the FM modulation efficiency is reduced in a high frequency range. (2) As shown in FIG. 3, an experimental result was obtained in which the FM modulation efficiency increased with an increase in the thickness of the active waveguide including the MQW active layer and the guide layers on both sides. It is considered that this is because the amount of carriers overflowing to the guide layer increases, so that the amount of change in the refractive index there increases, and at the same time, the amount of change in the gain as viewed from the entire device becomes relatively small.

【0007】以上のことからガイド層を厚く、かつκL
を小さく設定することにより、FM変調効率が高く、同
時に周波数応答が平坦なFM変調特性を実現することが
可能になると考えられる。しかし、κLの値を小さくし
過ぎるとしきい値利得が増大するため、しきい値電流、
したがって動作電流の増加を招いてしまう。
[0007] From the above, the thickness of the guide layer and the κL
Is considered to be small, it is possible to realize FM modulation characteristics with high FM modulation efficiency and at the same time flat frequency response. However, if the value of κL is too small, the threshold gain increases, so that the threshold current,
Therefore, the operating current increases.

【0008】そこで本発明の主旨はしきい値利得を余り
高くせずに軸方向ホールバーニングの効果を低減して、
平坦なFM応答特性を実現することにある。そのために
は光の電界が集中する位相シフト領域付近において、電
界とキャリアの相互作用を低減してやれば良い。上述の
(2)の知見からガイド層へのキャリア漏れがFM応答
特性に大きな影響を及ぼしていることがわかり、FM変
調効率を大きくするにはキャリア漏れ量をある程度生じ
させておくことが重要である。そこで、電界の集中する
部分でガイド層のエネルギーギャップを高くすることに
よって、そのキャリア漏れ量を低減してやれば、回折格
子との光の給合がある程度大きくても、軸方向ホールバ
ーニングの影響を抑制し、したがって、しきい値利得を
余り上昇させずにFM変調効率が高く、かつ平坦な周波
数応答を有するFM変調特性を実現することができる。
Therefore, the gist of the present invention is to reduce the effect of axial hole burning without increasing the threshold gain too much.
An object is to realize a flat FM response characteristic. For that purpose, the interaction between the electric field and the carrier may be reduced near the phase shift region where the electric field of light is concentrated. From the knowledge of the above (2), it can be seen that carrier leakage to the guide layer has a great effect on the FM response characteristics, and it is important to generate a certain amount of carrier leakage in order to increase the FM modulation efficiency. is there. Therefore, the energy gap of the guide layer should be increased in the area where the electric field is concentrated.
Therefore, if the amount of carrier leakage is reduced, the effect of axial hole burning is suppressed even if the supply of light to the diffraction grating is large to a certain extent. And a FM modulation characteristic having a flat frequency response can be realized.

【0009】[0009]

【実施例】以下実施例を示す図面を用いて本発明をより
詳細に説明する。図1は本発明の一実施例であるDFB
−LDの製造工程を示すための平面図、及び素子断面図
である。このようなDFB−LDを作製するにはまず、
回折格子(周期2400Å)を表面に形成した(10
0)面方位を有するp−InP基板1上にCVD法によ
り厚さ約2000ÅのSiO2 膜を形成し、図1(a)
に示すように広い部分の幅8μm、狭い部分の幅6μm
の平行なストライプ状に間隔2μmでパターニングし、
SiO2 のマスク2を形成する。ここでマスク2の長手
方向は回折格子の繰り返し方向と同じ方向とし、狭い部
分は長さ100μm、くりかえし900μmとした。位
相シフト領域はマスクの幅の狭い部分の中央に位置する
ようにした。このような基板1上にMOVPE法によ
り、マスク2の幅の広い領域に挟まれる部分で、発光波
長1.3μm組成のp−InGaAsPガイド層3を厚
さ1500Å、ノンドープInPスペーサ層4を厚さ5
00Å、両わきのガイド層を含むMQW活性導波路層
5、n−InPクラッド層6を厚さ3000Å成長する
(図1(b))。成長後の回折格子深さは約250Å、
結合係数としては約30cm-1とした。MQW活性導波
路層5は70Å厚のInGaAsウェル層を厚さ100
Åのバリア層(1.3μm組成InGaAsP)で挟
み、さらにその両わきを1500Å厚のガイド層(1.
3μm組成InGaAsP)で挟んだ構造とした。さら
にマスク2の一部をストライプ状にエッチングし、MQ
W活性導波路層5をおおうように幅6μmの領域にn−
InPクラッド層7を厚さ2μm、n−InGaAsP
コンタクト層8(1.3μm組成InGaAsP)を厚
さ0.5μm成長した(図1(c))。このとき、素子
中央の位相シフト領域ではMQWウェル層の両わきのガ
イド層厚は約1300Å、液晶組成として1.25μm
相当となり、レーザ発振させた場合にその部分でのキャ
リア漏れ量が相対的に少なく、軸方向ホールバーニング
が抑制された構造となった。以上のように成長したレー
ザウェハに全面にSiO2 膜9を形成し、MQW活性層
上面のコンタクト層8の部分のみ窓明けした後、成長層
側、基板側両方に、電極を形成して、所望のMQW−D
FB−LDを得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the drawings showing embodiments. FIG. 1 shows a DFB according to an embodiment of the present invention.
It is a top view for showing a manufacturing process of LD, and an element sectional view. To manufacture such a DFB-LD, first,
A diffraction grating (period 2400 °) was formed on the surface (10
0) A SiO 2 film having a thickness of about 2000 ° is formed on a p-InP substrate 1 having a plane orientation by a CVD method, and FIG.
As shown in the figure, the width of the wide part is 8 μm and the width of the narrow part is 6 μm
Is patterned in parallel stripes at intervals of 2 μm,
A SiO 2 mask 2 is formed. Here, the longitudinal direction of the mask 2 was the same direction as the repetition direction of the diffraction grating, and the narrow portion was 100 μm in length and 900 μm repeatedly. The phase shift region was located at the center of the narrow portion of the mask. The p-InGaAsP guide layer 3 having an emission wavelength of 1.3 μm is formed at a thickness of 1500 ° and the non-doped InP spacer layer 4 is formed at a portion sandwiched between the wide areas of the mask 2 by MOVPE on the substrate 1. 5
At 00 °, the MQW active waveguide layer 5 including the guide layers on both sides and the n-InP clad layer 6 are grown to a thickness of 3000 ° (FIG. 1B). The diffraction grating depth after growth is about 250mm,
The coupling coefficient was about 30 cm -1 . The MQW active waveguide layer 5 has a thickness of 70 .ANG.
バ リ ア barrier layer (1.3 μm-composition InGaAsP), and a guide layer (1.
3 μm composition InGaAsP). Further, a part of the mask 2 is etched in a stripe shape,
In the region of 6 μm in width covering the W active waveguide layer 5, n-
The InP cladding layer 7 is 2 μm thick, n-InGaAsP
A contact layer 8 (1.3 μm composition InGaAsP) was grown to a thickness of 0.5 μm (FIG. 1C). At this time, in the phase shift region at the center of the device, the guide layer thickness on both sides of the MQW well layer is about 1300 °, and the liquid crystal composition is 1.25 μm.
When laser oscillation was performed, the amount of carrier leakage in that portion was relatively small, and a structure in which axial hole burning was suppressed was obtained. After forming the SiO 2 film 9 on the entire surface of the laser wafer grown as described above and opening only the portion of the contact layer 8 on the upper surface of the MQW active layer, electrodes are formed on both the growth layer side and the substrate side. MQW-D
Obtain FB-LD.

【0010】このように作製したMQW−DFB−LD
を位相シフト領域が素子中央に位置するように長さ90
0μmに切り出し、両端面にARコート膜を形成して、
特性を評価したところ、1.55μm帯の発振波長で、
発振しきい値電流25mA、微分効率0.2W/A、最
大出力50mW以上、30mW光出力時におけるスペク
トル線幅0.5−1MHz程度の良好な性能の素子が再
現性よく得られた。またFM変調特性を評価したとこ
ろ、MQWウェル層を挟むガイド層が十分厚いことから
300MHz/mA程度の比較的高いFM変調効率を得
る得るとともに、電界の集中する位相シフト部分で、ガ
イド層に漏れだしたキャリアの量が少ないため、軸方向
ホールバーニングの効果も低減され、3dB帯域5GH
zと非常に平坦な周波数応答のFM変調特性が得られ
た。
[0010] The MQW-DFB-LD thus produced
Is set to a length of 90 so that the phase shift region is located at the center of the device.
Cut to 0 μm, and form AR coating films on both end faces,
When the characteristics were evaluated, at an oscillation wavelength of 1.55 μm band,
A device with good performance with an oscillation threshold current of 25 mA, a differential efficiency of 0.2 W / A, a maximum output of 50 mW or more, and a spectral line width of about 0.5-1 MHz at a light output of 30 mW was obtained with good reproducibility. In addition, when the FM modulation characteristics were evaluated, a relatively high FM modulation efficiency of about 300 MHz / mA was obtained because the guide layer sandwiching the MQW well layer was sufficiently thick, and leakage to the guide layer occurred in the phase shift portion where the electric field was concentrated. However, since the amount of carriers is small, the effect of axial hole burning is also reduced, and the 3 dB band 5 GHz
An FM modulation characteristic having a very flat frequency response with z was obtained.

【0011】なお本発明の実施例においてはInPを基
板とした波長1.2−1.6μm帯の素子を示したが、
もちろん用いる材料系はこれに限るものではなく、Ga
AlAs系など、他の材料系を用いて何等差し支えな
い。また実施例において選択的なMOVPEの技術を用
いて、選択成長用マスクの幅を変化することにより自動
的に成長層の組成、膜厚の異なる半導体層を成長させた
が、通常の方法で全面に成長した後、部分的にエッチン
グを行い、そこに異なる組成、厚さの半導体層を成長す
る方法を用いても何等差し支えない。
In the embodiment of the present invention, an element having a wavelength band of 1.2 to 1.6 μm using InP as a substrate is shown.
Of course, the material system used is not limited to this.
Other materials such as AlAs may be used. In the embodiment, the semiconductor layer having a different composition and thickness is grown automatically by changing the width of the mask for selective growth by using the selective MOVPE technique. It is possible to use a method of partially etching the semiconductor layer and growing a semiconductor layer having a different composition and thickness there.

【0012】[0012]

【発明の効果】以上述べたように本発明のDFB−LD
においてはMQWウェル層を挟むガイド層のエネルギー
ギャップを高くすることにより、高いFM変調効率を得
るとともに電界の集中する部分での漏れたキャリアの量
を低減することにより、軸方向ホールバー二ングが抑制
された平坦な周波数応答特性を有するFM変調特性を実
現できた。このような単一波長LDはGb/sのFSK
コヒーレント伝送方式に適用する上で有用である。
As described above, the DFB-LD of the present invention
The energy of the guide layer sandwiching the MQW well layer
An FM having a flat frequency response characteristic in which axial hole burning is suppressed by increasing the gap to obtain high FM modulation efficiency and reducing the amount of leaked carriers in a portion where an electric field is concentrated. Modulation characteristics were realized. Such a single wavelength LD has a Gb / s FSK.
This is useful when applied to a coherent transmission system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるMQW−DFB−LD
の作製工程を示すための平面図(a)、及び断面図
(b),(c)である。
FIG. 1 shows an MQW-DFB-LD according to an embodiment of the present invention.
(A) and cross-sectional views (b) and (c) for showing a manufacturing process of (a).

【図2】κLの異なる素子のFM応答特性を示す図であ
り、κLが大きいほど、低周波域でのFM変調効率が高
く、また高周波域での低下量が大きいことを示してい
る。
FIG. 2 is a diagram showing FM response characteristics of elements having different κL, and shows that as κL is larger, FM modulation efficiency in a low frequency range is higher and a decrease amount in a higher frequency range is larger.

【図3】変調周波数2GHzにおけるFM変調効率の活
性導波路層依存性を示す図であり、MQWウェル層数は
いずれも3であり、活性導波路層厚のほとんどを両わき
のガイド層が占めている。活性導波路層厚が大きいほど
FM変調効率が高いことを示している。
FIG. 3 is a diagram showing the dependence of the FM modulation efficiency on the active waveguide layer at a modulation frequency of 2 GHz. The number of MQW well layers is 3, and the guide layers on both sides occupy most of the active waveguide layer thickness. ing. This shows that the FM modulation efficiency increases as the thickness of the active waveguide layer increases.

【符号の説明】[Explanation of symbols]

1 基板 2 マスク 3 ガイド層 4 スペーサ層 5 MQW活性導波路層 6 n−InP層 7 クラッド層 8 コンタクト層 9 絶縁膜 10,11 電極 Reference Signs List 1 substrate 2 mask 3 guide layer 4 spacer layer 5 MQW active waveguide layer 6 n-InP layer 7 clad layer 8 contact layer 9 insulating film 10, 11 electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発光再結合する活性層に隣接して、位相
シフト領域を有する回折格子が形成された分布帰還型の
半導体レーザにおいて、前記活性層がウェル層、バリア
層およびガイド層からなる量子井戸構造を有し、前記位
相シフト領域付近において他の領域よりもガイド層とバ
リア層の伝導帯下端が高いことを特徴とする半導体レー
ザ。
1. A adjacent to the active layer emitting recombination, a phase
Distributed feedback type with diffraction grating with shift region
In the semiconductor laser, the active layer is a well layer, a barrier,
Having a quantum well structure comprising a layer and a guide layer,
The guide layer and the barrier layer are closer to the phase shift region than to the other regions.
A semiconductor laser characterized by having a high conduction band lower end of a rear layer.
The.
【請求項2】 位相シフト領域を有する回折格子が形成
された半導体基板上にストライプ状の絶縁膜を形成し、
該ストライプ状絶縁膜のあいだの挟まれた領域に気相成
長法により選択的に活性層などの半導体層を成長する工
程を含む半導体レーザの製造方法において、前記絶縁膜
が前記位相シフト領域付近において、他の領域よりも幅
を狭く形成することを特徴とする半導体レーザの製造方
法。
2. A diffraction grating having a phase shift region is formed.
Forming a striped insulating film on the semiconductor substrate,
Vapor phase formation occurs in the region sandwiched between the stripe-shaped insulating films.
A method for selectively growing semiconductor layers such as active layers by the long method
The method of manufacturing a semiconductor laser, comprising:
Is wider than the other regions in the vicinity of the phase shift region.
Method for manufacturing semiconductor laser characterized by narrowing the width
Law.
JP8492492A 1992-03-06 1992-03-06 Semiconductor laser and method of manufacturing the same Expired - Lifetime JP2924433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8492492A JP2924433B2 (en) 1992-03-06 1992-03-06 Semiconductor laser and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8492492A JP2924433B2 (en) 1992-03-06 1992-03-06 Semiconductor laser and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05251816A JPH05251816A (en) 1993-09-28
JP2924433B2 true JP2924433B2 (en) 1999-07-26

Family

ID=13844251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8492492A Expired - Lifetime JP2924433B2 (en) 1992-03-06 1992-03-06 Semiconductor laser and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2924433B2 (en)

Also Published As

Publication number Publication date
JPH05251816A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
JPH07326820A (en) Variable wavelength semiconductor laser device
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP2004179274A (en) Optical semiconductor device
JP4026334B2 (en) Semiconductor laser, distributed feedback semiconductor laser, and wavelength tunable semiconductor laser
US5394429A (en) Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
US4794608A (en) Semiconductor laser device
US5912475A (en) Optical semiconductor device with InP
US20020018503A1 (en) Semiconductor device and manufacturing method thereof
JPH07249829A (en) Distributed feedback semiconductor laser
US5469459A (en) Laser diode element with excellent intermodulation distortion characteristic
JPH01319986A (en) Semiconductor laser device
JP2003234541A (en) Distributed feedback semiconductor laser element
JP2924433B2 (en) Semiconductor laser and method of manufacturing the same
US6228671B1 (en) Process for production of semiconductor laser grating
Okai et al. Complex-coupled/spl lambda//4-shifted DFB lasers with a flat FM response
WO2021209114A1 (en) Optical device
JP2751558B2 (en) Integrated optical semiconductor device and driving method thereof
JPH08274406A (en) Distributed feedback semiconductor laser and its manufacture
JP2770722B2 (en) Manufacturing method of tunable semiconductor laser
JP2630035B2 (en) Tunable semiconductor laser
JP2913922B2 (en) Quantum well distributed feedback semiconductor laser
CA2210008C (en) Laser diode element with excellent intermodulation distortion characteristic
JP2776381B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406