JPH07249829A - Distributed feedback semiconductor laser - Google Patents

Distributed feedback semiconductor laser

Info

Publication number
JPH07249829A
JPH07249829A JP3944294A JP3944294A JPH07249829A JP H07249829 A JPH07249829 A JP H07249829A JP 3944294 A JP3944294 A JP 3944294A JP 3944294 A JP3944294 A JP 3944294A JP H07249829 A JPH07249829 A JP H07249829A
Authority
JP
Japan
Prior art keywords
quantum well
layer
semiconductor laser
distributed feedback
feedback semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3944294A
Other languages
Japanese (ja)
Inventor
Kazuhisa Uomi
和久 魚見
Tomonobu Tsuchiya
朋信 土屋
Makoto Okai
誠 岡井
Atsushi Nakamura
厚 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3944294A priority Critical patent/JPH07249829A/en
Priority to KR1019950000942A priority patent/KR100357787B1/en
Priority to US08/380,571 priority patent/US5572616A/en
Publication of JPH07249829A publication Critical patent/JPH07249829A/en
Priority to US08/713,867 priority patent/US5666455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a distributed feedback semiconductor laser which is operated stably over a wide temperature range by a method wherein an active layer is formed of at least two quantum well layers and the quantum-level light-emitting wavelength of the quantum-well layer on one side is made different from the quantum-level light- emitting wavelength of the quantum-well layer on the other side. CONSTITUTION:A p-InP clad layer 2 is grown on a p-InP substrate 1, and a diffraction grating 3 is then formed. After that, a p-InGaAsP light guide layer 4, an InGaAsP-based strain multiple quantum-well active layer 5 and an n-InP clad layer 6 are grown. At this time, the difference in a quantum-level light-emitting wavelength between a maximum-film-thickness quantum-well layer 15a and a minimum-film-thickness quantum-well layer 15e out of strain quantum-well layers 15a to 15e for the InGaASP- based strain multiple quantum-well layer 5 is set at 30nm. Then, when the film thickness, the mixed-crystal composition strain amount or the strain amount of the individual quantum-well layers 15a to 15e is changed, the quantum-level light-emitting wavelength of the individual quantum-well layers 15a to 15e can be changed. Consequently, the distributed feedback semiconductor laser can be operated stably over a wide temperature range, e.g. from -40 to +85 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分布帰還型半導体レー
ザに係り、特に広い温度範囲、例えば−40℃〜+85
℃で安定に動作する光通信用分布帰還型半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed feedback semiconductor laser, and particularly to a wide temperature range, for example, -40 ° C to +85.
The present invention relates to a distributed feedback semiconductor laser for optical communication, which operates stably at ℃.

【0002】[0002]

【従来の技術】来たるべく加入者系光通信システムの構
築に向けて、光伝送装置の低消費電力化、小型化、低価
格化は極めて重要である。この実現のためには広い環境
温度範囲、例えば−40℃〜+85℃において、温度制
御を不要とする半導体レーザの開発が不可欠である。特
に単一縦モードで発振する分布帰還型(DFB)レーザ
の広温度範囲動作が待望されている。これに対して、活
性層に圧縮歪MQW(多重量子井戸)構造を導入した
1.3μm帯DFBレーザの高温低電流動作が、第54
回応用物理学会学術講演会講演予稿集27p−H−12
(1993年9月)に示されている。
2. Description of the Related Art In order to construct a subscriber optical communication system, it is extremely important to reduce the power consumption, size, and price of an optical transmission device. In order to realize this, it is essential to develop a semiconductor laser that does not require temperature control in a wide environmental temperature range, for example, -40 ° C to + 85 ° C. In particular, a wide temperature range operation of a distributed feedback (DFB) laser that oscillates in a single longitudinal mode is desired. On the other hand, the high temperature low current operation of the 1.3 μm band DFB laser in which the compressive strain MQW (multiple quantum well) structure is introduced into the active layer is
Proceedings of the 27th JSAP Academic Lecture Meeting 27p-H-12
(September 1993).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、+5℃〜+80℃の範囲の動作に限られて
おり、これは下記の問題に起因している。
However, in the above-mentioned conventional technique, the operation is limited to the range of + 5 ° C to + 80 ° C, which is caused by the following problems.

【0004】一般にDFBレーザの発振波長λLDは、
媒質の屈折率n、回折格子の周期Λを用いて次式で表さ
れる。
Generally, the oscillation wavelength λLD of a DFB laser is
It is expressed by the following equation using the refractive index n of the medium and the period Λ of the diffraction grating.

【0005】[0005]

【数1】 λLD=2nΛ ……(1) 一方、量子井戸活性層の光学利得のピーク波長λgは量
子井戸膜厚、量子井戸組成等の量子井戸構造により、決
まる。従って、DFBレーザの発振波長λLDと光学利
得のピーク波長λgの間には、いわゆる次式で表される
離調波長ΔGが存在する。
ΛLD = 2nΛ (1) On the other hand, the peak wavelength λg of the optical gain of the quantum well active layer is determined by the quantum well structure such as the quantum well film thickness and the quantum well composition. Therefore, a detuning wavelength ΔG represented by the following equation exists between the oscillation wavelength λLD of the DFB laser and the peak wavelength λg of the optical gain.

【0006】[0006]

【数2】 ΔG=λLD−λg ……(2) そこで、一般に、ΔGが動作温度においてほぼ0になる
ように設定している。しかしながら、1.3μm帯、
1.55μm帯等の長波長帯半導体レーザにおいては、
レーザ発振波長λLDの温度依存性dλLD/dTは約
0.1nm/℃、光学利得ピーク波長λgの温度依存性
dλg/dTは約0.4nm/℃と異なることから、離
調波長ΔGの温度依存性dΔG/dTは約−0.3nm
/℃と有限の値を取る。従って、広い環境温度範囲、例
えば−40℃〜+85℃の125℃を考えると、ΔGは
動作温度範囲において40nm近く変化することにな
る。
## EQU00002 ## .DELTA.G = .lambda.LD-.lambda.g (2) Therefore, generally, .DELTA.G is set to be substantially zero at the operating temperature. However, 1.3 μm band,
In the long wavelength band semiconductor laser such as 1.55 μm band,
Since the temperature dependence dλLD / dT of the laser oscillation wavelength λLD is about 0.1 nm / ° C and the temperature dependence dλg / dT of the optical gain peak wavelength λg is about 0.4 nm / ° C, the detuning wavelength ΔG depends on the temperature. Property dΔG / dT is about -0.3 nm
Take a finite value with / ° C. Therefore, when considering a wide environmental temperature range, for example, 125 ° C. of −40 ° C. to + 85 ° C., ΔG changes near 40 nm in the operating temperature range.

【0007】以上の点を、1.3μm帯DFBレーザを
例に取り、図式的にまとめたのが、図2であり、これを
用いて従来技術の問題点を説明する。まず、図2(a)
では、室温(25℃)において、ΔGが0になるように
設定した場合であるが、85℃でのΔGが−18nmと
なり、レーザ発振波長と光学利得ピーク波長がずれるの
で、85℃でのしきい電流が大幅に増大してしまう。こ
れにより、85℃動作時の効率も低く、初期特性のみで
なく、動作電流の増大により、素子の信頼性の劣化を招
く。そこで、85℃動作時にΔGが0になるように設定
した場合が、図2(b)である。この場合、85℃での
しきい電流の劣化は無いが、一方−40℃でのΔGが+
38nmとなり、光学利得のバンド幅から離れてしま
い、DFB動作が困難となり、いわゆるFP(Fabr
y−Perot)モードからなるマルチ縦モード発振と
なってしまう。
FIG. 2 is a schematic diagram summarizing the above points by taking a 1.3 μm band DFB laser as an example, and the problems of the prior art will be described using this. First, FIG. 2 (a)
Then, at room temperature (25 ° C.), when ΔG is set to 0, ΔG at 85 ° C. becomes −18 nm, and the laser oscillation wavelength and the optical gain peak wavelength deviate from each other. The threshold current increases significantly. As a result, the efficiency at the time of operation at 85 ° C. is low, and not only the initial characteristics but also the operating current increases, leading to deterioration in the reliability of the element. Therefore, FIG. 2B shows a case in which ΔG is set to 0 at 85 ° C. operation. In this case, there is no deterioration of the threshold current at 85 ° C, while ΔG at -40 ° C is +
38 nm, which is far from the optical gain bandwidth, making DFB operation difficult, so-called FP (Fabr
This results in multi-longitudinal mode oscillation including the y-Perot) mode.

【0008】以上のように、従来のDFBレーザでは、
歪量子井戸構造により低しきい化を図ったとしてして
も、−40℃〜+85℃の広い環境温度範囲での動作を
実現することができなかった。
As described above, in the conventional DFB laser,
Even if the strained quantum well structure is used to reduce the threshold, the operation in a wide environmental temperature range of −40 ° C. to + 85 ° C. cannot be realized.

【0009】本発明の目的は、広い温度範囲、例えば−
40℃〜+85℃で安定に動作する光通信用分布帰還型
半導体レーザを提供することにある。
The object of the present invention is to provide a wide temperature range, for example:
An object of the present invention is to provide a distributed feedback semiconductor laser for optical communication, which operates stably at 40 ° C to + 85 ° C.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では多重量子井戸活性層の少なくとも1層の
量子井戸層の量子準位発光波長が他の量子井戸層の量子
準位発光波長と異なること、少なくとも1層の量子井戸
層の量子井戸膜厚が他の量子井戸層の量子井戸膜厚と異
なること、少なくとも1層の量子井戸層を形成する混晶
組成が他の量子井戸層を形成する混晶組成と異なるこ
と、歪量子井戸層から形成されている多重量子井戸構造
の少なくとも1層の歪量子井戸層の歪量が他の歪量子井
戸層の歪量と異なることのいずれかにより、達成され
る。特に、量子井戸層、歪量子井戸層の量子準位発光波
長の最大値と最小値の差が15〜45nmであること、
量子井戸層、歪量子井戸層の最大量子井戸膜厚のと最小
量子井戸膜厚の差が1.0〜3.5nmであること、量
子井戸層、歪量子井戸層の最大量子井戸膜厚が6nm、
最小量子井戸膜厚が4nmであること、量子準位発光波
長が、正孔の注入側が電子の注入側よりも長波長である
こと、井戸数が4〜8であること、半導体基板がp型I
nP基板で、かつ上記活性層がメサストライプ状に形成
され、該メサストライプ状の活性領域の側面がp/n/
p型の電流ブロック層で埋め込まれていること、室温で
の離調波長ΔGの値が−10〜+10nm、かつκL
(κ:共振器の軸方向での屈折率の摂動による光の結合
定数をκ、L:共振器長)の値が0.8〜1.5である
こと、量子井戸層、歪量子井戸層がInGaAsP層、
あるいはInGaAlAs層であることにより、達成さ
れる。
In order to achieve the above object, according to the present invention, the quantum level emission wavelength of at least one quantum well layer of a multiple quantum well active layer is the quantum level emission of another quantum well layer. Different from the wavelength, the quantum well film thickness of at least one quantum well layer is different from the quantum well film thickness of other quantum well layers, and the mixed crystal composition forming at least one quantum well layer is different from that of other quantum well layers. That the strain amount of at least one strain quantum well layer of the multiple quantum well structure formed from the strain quantum well layer is different from that of another strain quantum well layer. It is achieved by either. In particular, the difference between the maximum value and the minimum value of the quantum level emission wavelength of the quantum well layer and the strained quantum well layer is 15 to 45 nm,
The difference between the maximum quantum well thickness and the minimum quantum well thickness of the quantum well layer and the strained quantum well layer is 1.0 to 3.5 nm, and the maximum quantum well thickness of the quantum well layer and the strained quantum well layer is 6 nm,
The minimum quantum well film thickness is 4 nm, the quantum level emission wavelength is longer on the hole injection side than on the electron injection side, the number of wells is 4 to 8, and the semiconductor substrate is p-type. I
In the nP substrate, the active layer is formed in a mesa stripe shape, and the side surface of the mesa stripe active region is p / n /
Embedded with a p-type current blocking layer, the detuning wavelength ΔG at room temperature has a value of −10 to +10 nm, and κL
The value of (κ: the coupling constant of light due to the perturbation of the refractive index in the axial direction of the resonator, κ, L: the resonator length) is 0.8 to 1.5, the quantum well layer, and the strained quantum well layer. Is the InGaAsP layer,
Alternatively, it is achieved by using an InGaAlAs layer.

【0011】[0011]

【作用】以下、本発明の作用について図3を用いて説明
する。同図(a)は各量子井戸層間で量子準位発光波長
を変化させるために、各量子井戸層の量子井戸膜厚を変
化させた例である。量子井戸→→の順に量子井戸
膜厚が厚くなっており、それに伴い、量子準位発光波長
は同図(b)に示すように量子井戸→→の順に長
波長となっている。25℃においては、同図(b)に示
すように量子井戸からの発光強度が最も強い。一方、
85℃においては、量子井戸、、からの発光はそ
れぞれ長波長シフトするが、高温では、フェルミ・ディ
ラック分布がぼけるので、高エネルギー側、すなわち短
波長側の量子井戸からの発光が増大し、量子井戸から
の発光が最も強くなる。その結果、図3(b)に示すよ
うに25℃から85℃に温度を上げたときの発光ピーク
波長、すなわち光学利得ピーク波長λgの温度依存性は
極めて小さくなる。この時の光学利得ピーク波長λgの
温度依存性dλg/dTは約0.1〜0.2nm/℃と
(従来:0.4nm/℃)小さくなり、その結果、離調
波長ΔGの温度依存性dΔG/dTは約0.0〜−0.
1nm/℃と、従来に比べて1/3以下に抑制すること
ができた。これにより、図3(c)に示したように、例
えば、室温(25℃)において、ΔGが0になるように
設定した場合でも、85℃、−40℃でのΔGはそれぞ
れ−6nm、+6nmと極めて小さくなり、離調波長Δ
Gの温度依存性によるDFBレーザの特性の悪化を小さ
く抑えることができ、その結果広い温度範囲、例えば−
40℃〜+85℃で安定に動作する光通信用分布帰還型
半導体レーザを実現することができた。各量子井戸層の
混晶組成歪量の変化、歪量の変化により、各量子井戸層
間の量子準位発光波長を変化させても、全く同様に離調
波長ΔGの温度依存性dΔG/dTを小さく抑制でき
る。
The operation of the present invention will be described below with reference to FIG. FIG. 10A shows an example in which the quantum well film thickness of each quantum well layer is changed in order to change the quantum level emission wavelength between the quantum well layers. The quantum well film thickness increases in the order of quantum well →→, and accordingly, the quantum level emission wavelength becomes a long wavelength in the order of quantum well →→ as shown in FIG. At 25 ° C., the emission intensity from the quantum well is strongest as shown in FIG. on the other hand,
At 85 ° C., the light emission from the quantum well shifts to the long wavelength, but at high temperature, the Fermi-Dirac distribution is blurred, so the light emission from the quantum well on the high energy side, that is, the short wavelength side increases, The light emitted from the well is the strongest. As a result, as shown in FIG. 3B, the temperature dependence of the emission peak wavelength, that is, the optical gain peak wavelength λg when the temperature is raised from 25 ° C. to 85 ° C. becomes extremely small. At this time, the temperature dependence dλg / dT of the optical gain peak wavelength λg is as small as about 0.1 to 0.2 nm / ° C (conventional: 0.4 nm / ° C), and as a result, the temperature dependence of the detuning wavelength ΔG. dΔG / dT is about 0.0 to −0.
It could be suppressed to 1 nm / ° C., which is 1/3 or less of the conventional value. As a result, as shown in FIG. 3C, for example, even when ΔG is set to 0 at room temperature (25 ° C.), ΔG at 85 ° C. and −40 ° C. is −6 nm and +6 nm, respectively. Becomes extremely small, and the detuning wavelength Δ
The deterioration of the characteristics of the DFB laser due to the temperature dependence of G can be suppressed to a small level, and as a result, a wide temperature range, for example, −
It was possible to realize a distributed feedback semiconductor laser for optical communication, which operates stably at 40 ° C to + 85 ° C. Even if the quantum level emission wavelength of each quantum well layer is changed by changing the mixed crystal composition strain amount of each quantum well layer and changing the strain amount, the temperature dependence dΔG / dT of the detuning wavelength ΔG is exactly the same. Can be suppressed small.

【0012】さらに、本発明において、特に量子井戸
層、歪量子井戸層の量子準位発光波長の最大値と最小値
の差を15〜45nmに設定すること、量子井戸層、歪
量子井戸層の最大量子井戸膜厚のと最小量子井戸膜厚の
差を1.0〜3.5nmに設定すること、量子井戸層、
歪量子井戸層の最大量子井戸膜厚を6nm、最小量子井
戸膜厚を4nmに設定することにより、離調波長ΔGの
温度依存性dΔG/dTは0〜−0.2nm/℃の範囲
に抑え込むことができる。又、正孔が注入される側の量
子井戸層の量子準位発光波長を、電子が注入される側よ
りも長波長にすると、高温において正孔の高エネルギー
側の量子井戸への注入効果が促進されるので、離調波長
ΔGの温度依存性dΔG/dT抑制作用が大きくなる。
さらに、井戸数を4〜8に設定すると、高温での発振が
容易になるため、dΔG/dT抑制効果は大きい。又、
半導体基板がp型InP基板を用いてp/n/p型の電
流ブロック層で埋め込むと電流狭窄効果は大きく、高温
での発振が容易になるため、dΔG/dT抑制効果は大
きくなる。さらに、室温での離調波長ΔGを−10〜+
10nmに設定し、κLの値を0.8〜1.5とし高温
での発振が容易に保つと、+85℃でのΔGは−15n
m以上になるので、特性悪化は生じることはない。
Further, in the present invention, particularly, the difference between the maximum and minimum quantum level emission wavelengths of the quantum well layer and the strained quantum well layer is set to 15 to 45 nm. The difference between the maximum quantum well film thickness and the minimum quantum well film thickness is set to 1.0 to 3.5 nm, the quantum well layer,
By setting the maximum quantum well film thickness of the strained quantum well layer to 6 nm and the minimum quantum well film thickness to 4 nm, the temperature dependence dΔG / dT of the detuning wavelength ΔG is suppressed within the range of 0 to -0.2 nm / ° C. be able to. Further, if the quantum level emission wavelength of the quantum well layer on the side where holes are injected is set to be longer than that on the side where electrons are injected, the effect of injecting holes into the quantum well on the high energy side at high temperature is improved. Since it is accelerated, the temperature dependence dΔG / dT suppressing effect of the detuning wavelength ΔG becomes large.
Further, if the number of wells is set to 4 to 8, oscillation at high temperature becomes easy, and therefore the effect of suppressing dΔG / dT is large. or,
When the semiconductor substrate is a p-type InP substrate and is embedded with a p / n / p-type current block layer, the current constriction effect is large, and oscillation at high temperature is facilitated, so that the dΔG / dT suppression effect is large. Furthermore, the detuning wavelength ΔG at room temperature is -10 to +
If the value of κL is set to 0.8 to 1.5 and oscillation at high temperature is easily maintained by setting to 10 nm, ΔG at + 85 ° C. is −15 n.
Since it becomes m or more, deterioration of characteristics does not occur.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1、図4を用い
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】(実施例1)図1は本発明をp型基板上
1.3μm帯分布帰還型半導体レーザに適用したもので
ある。同図(a),(b)に示すように、有機金属気相
成長法により、p−InP基板1上にp-InPクラッド
層2(キャリア濃度〜1×1018cm-3、厚さ〜2μm)
を成長した後、回折格子3を形成した。その後、有機金
属気相成長法により、p−InGaAsP光ガイド層
4、InGaAsP系歪多重量子井戸活性層5、n-InP
クラッド層6(キャリア濃度〜1×1018cm-3、厚さ
〜0.4μm)を成長する。この時、InGaAsP系歪多
重量子井戸活性層5の歪量子井戸層15a〜15eの歪
量は約1.0%とし、図1(c)の伝導帯のバンドダイ
アグラムに示したように、歪量子井戸層の層数は5であ
り、歪量子井戸膜厚はp−InGaAsP光ガイド層4
に近い側から、それぞれ、6.0nm、5.5nm、
5.0nm、4.5nm、4.0nmであり、InGa
AsP障壁層16の膜厚は7nmである。この時、最大
膜厚量子井戸層15aと最小膜厚量子井戸層15eから
の量子準位発光波長の差は30nmである。回折格子3
のκLは0.8〜1.5となるように、深さは15〜3
0nmに設定した。又、離調波長ΔGが室温において−
10〜+10nmとなるように、回折格子3の周期は約
202nmに設定した。
Example 1 FIG. 1 shows the present invention applied to a 1.3 μm band distributed feedback semiconductor laser on a p-type substrate. As shown in FIGS. 3A and 3B, the p-InP clad layer 2 (carrier concentration ~ 1 × 10 18 cm -3 , thickness ~) is formed on the p-InP substrate 1 by metalorganic vapor phase epitaxy. 2 μm)
After growing, the diffraction grating 3 was formed. Then, the p-InGaAsP optical guide layer 4, the InGaAsP strained multiple quantum well active layer 5, and the n-InP are formed by metal organic chemical vapor deposition.
Cladding layer 6 (carrier concentration ~1 × 10 18 cm- 3, thickness ~0.4Myuemu) is grown. At this time, the strain quantity of the strained quantum well layers 15a to 15e of the InGaAsP-based strained multiple quantum well active layer 5 is set to about 1.0%, and as shown in the conduction band diagram of FIG. The number of well layers is 5, and the strained quantum well film thickness is p-InGaAsP optical guide layer 4.
From the side closer to 6.0 nm, 5.5 nm,
5.0 nm, 4.5 nm, 4.0 nm, InGa
The film thickness of the AsP barrier layer 16 is 7 nm. At this time, the difference in quantum level emission wavelength from the maximum film thickness quantum well layer 15a and the minimum film thickness quantum well layer 15e is 30 nm. Diffraction grating 3
Has a depth of 15-3.
It was set to 0 nm. Also, the detuning wavelength ΔG is −
The period of the diffraction grating 3 was set to about 202 nm so as to be 10 to +10 nm.

【0015】その後CVD法によりSiO2膜を被着しホ
トリソ工程を経た後、SiO2膜をマスクとしてウェット
エッチングにより図中に示されるような変曲点の無い滑
らかな側面を有するメサストライプを形成する。また活
性層幅は1.3〜1.8μm、メサ深さは2.5〜3.
7μmである。次に、SiO2膜を被着したまま、有機金
属気相成長法により、メサストライプの側面をp-InP
埋込層7(キャリア濃度〜1×1018cm-3、厚さ0.5
〜1μm)、n-InP埋込層8(キャリア濃度〜2×10
18cm-3、厚さ0.5〜1μm)、p-InP埋込層9(キ
ャリア濃度〜2×1018cm-3、厚さ1〜3μm)、n-
InP層10(キャリア濃度〜2×1018cm-3、厚さ〜
0.5μm)で埋め込んだ。以上のようにして埋め込んだ
構造においては、リ−ク電流の要因であるn-n接続の
無い理想的なブロック層構造となった。次に、SiO2
を除去した後、有機金属気相成長法によりn-InP平坦
化層11(キャリア濃度〜1.5×1018cm-3、厚さ
〜2μm)、n-InGaAs(P)キャップ層12(キャリ
ア濃度>5×1018cm-3、厚さ〜0.3μm)で平坦
に埋め込んだ。以上の有機金属気相成長法において、n
型不純物はSi(但し、キャップ層12のみSe)、p
型不純物はZnを用いた。その後SiO2膜13で電流狭
窄を行った後n電極14を形成、更に基板側を研磨して
ト−タル膜厚100μm程度にした後p電極17を蒸着
により形成し、素子化を行った。その後、共振器長15
0〜400μmに劈開し、前端面に反射率1%の低反射
率膜20、後端面に反射率80%の高反射率膜21を施
した。
After that, a SiO 2 film is deposited by the CVD method, and a photolithography process is performed. Then, by using the SiO 2 film as a mask, wet etching is performed to form a mesa stripe having smooth side surfaces without inflection points. To do. The active layer width is 1.3 to 1.8 μm, and the mesa depth is 2.5 to 3.
It is 7 μm. Next, the side surface of the mesa stripe is p-InP grown by metalorganic vapor phase epitaxy with the SiO 2 film deposited.
Buried layer 7 (carrier concentration ˜1 × 10 18 cm −3 , thickness 0.5)
˜1 μm), n-InP burying layer 8 (carrier concentration ˜2 × 10
18 cm- 3 , thickness 0.5-1 µm), p-InP buried layer 9 (carrier concentration ~ 2 x 10 18 cm- 3 , thickness 1-3 µm), n-
InP layer 10 (carrier concentration: 2 × 10 18 cm −3 , thickness:
Embedded at 0.5 μm). The structure embedded as described above has an ideal block layer structure without the nn connection which is a factor of the leak current. Next, after removing the SiO 2 film, an n-InP flattening layer 11 (carrier concentration: 1.5 × 10 18 cm −3 , thickness: 2 μm) and n-InGaAs (P ) A cap layer 12 (carrier concentration> 5 × 10 18 cm −3 , thickness ˜0.3 μm) was embedded flatly. In the above metal organic chemical vapor deposition method, n
The type impurities are Si (however, only the cap layer 12 is Se), p
Zn was used as the type impurity. After that, the n-electrode 14 was formed after current confinement was performed with the SiO 2 film 13, the substrate side was further polished to a total film thickness of about 100 μm, and the p-electrode 17 was formed by vapor deposition to form a device. Then, the resonator length 15
Cleavage to 0 to 400 μm was performed, and a low reflectance film 20 having a reflectance of 1% was applied to the front end face and a high reflectance film 21 having a reflectance of 80% was applied to the rear end face.

【0016】本実施例によるDFBレ−ザでは、発振波
長1.30μmにおいて、室温でのしきい電流は5〜1
0mA、スロ−プ効率は0.45〜0.60mW/mAが得
られ、室温においてのΔGは典型的に−10nmから+
10nmの範囲であった。又、85℃でのしきい電流は
15〜25mA、スロ−プ効率0.35〜0.45mW/m
Aの素子が高歩留りで得られ、600Mbit/sの変
調が十分に可能であった。さらに、−40℃においても
安定にDFB発振し、−40℃〜+85℃の温度範囲に
おいて、副モード抑圧比は35〜45dBを維持した。
又、−40℃〜+85℃の温度範囲におけるΔGの変化
量は約10nmと極めて小さかった。 (実施例2)図4は本発明をp型基板上1.55μm帯
分布帰還型半導体レーザに適用したものである。同図
(a),(b)に示すように、有機金属気相成長法によ
り、p−InP基板1上にp-InPクラッド層2(キャ
リア濃度〜1×1018cm-3、厚さ〜2μm)を成長し
た後、アンドープInGaAsP系歪多重量子井戸活性層
18、n-InGaAsP光ガイド層19(キャリア濃度
〜1×1018cm-3、厚さ〜0.2μm)を成長する。
この後、回折格子3を形成し、有機金属気相成長法によ
りn-InPクラッド層6(キャリア濃度〜1×1018
m-3、厚さ〜0.4μm)を成長する。この時、アンド
ープInGaAsP系歪多重量子井戸活性層18の歪量子
井戸層22a〜22dの量子井戸膜厚は5nmとした。
又、図4(c)の伝導帯のバンドダイアグラムに示した
ように、歪量子井戸層の層数は4であり、歪量子井戸層
の歪量はp-InPクラッド層2に近い側から、それぞ
れ、+1.5%、+1.43%、+1.36%、+1.
29%であり、この歪量の変化と共に伝導帯でのエネル
ギーが変化する。InGaAsP障壁層23の膜厚は1
0nmである。この時、最大膜厚量子井戸層22aと最
小膜厚量子井戸層22dからの量子準位発光波長の差は
25nmである。回折格子3のκLは0.8〜1.5と
なるように、深さは15〜30nmに設定した。又、離
調波長ΔGが室温において−10〜+10nmとなるよ
うに、回折格子3の周期は約201nmに設定した。
In the DFB laser according to this embodiment, the threshold current at room temperature is 5-1 at an oscillation wavelength of 1.30 μm.
0 mA, slop efficiency of 0.45 to 0.60 mW / mA is obtained, and ΔG at room temperature is typically from −10 nm to +
It was in the range of 10 nm. Also, the threshold current at 85 ° C is 15 to 25 mA, and the slop efficiency is 0.35 to 0.45 mW / m.
The element A was obtained with a high yield, and modulation of 600 Mbit / s was sufficiently possible. Further, the DFB oscillation was stable even at -40 ° C, and the sub mode suppression ratio was maintained at 35 to 45 dB in the temperature range of -40 ° C to + 85 ° C.
The amount of change in ΔG in the temperature range of −40 ° C. to + 85 ° C. was about 10 nm, which was extremely small. (Embodiment 2) FIG. 4 shows the present invention applied to a 1.55 μm band distributed feedback semiconductor laser on a p-type substrate. As shown in FIGS. 3A and 3B, the p-InP clad layer 2 (carrier concentration ~ 1 × 10 18 cm -3 , thickness ~) is formed on the p-InP substrate 1 by metalorganic vapor phase epitaxy. 2 μm), and then an undoped InGaAsP-based strained multiple quantum well active layer 18 and n-InGaAsP optical guide layer 19 (carrier concentration ˜1 × 10 18 cm −3 , thickness ˜0.2 μm) are grown.
After that, the diffraction grating 3 is formed, and the n-InP clad layer 6 (carrier concentration: 1 × 10 18 c) is formed by a metal organic chemical vapor deposition method.
m −3 , thickness ˜0.4 μm). At this time, the quantum well film thickness of the strained quantum well layers 22a to 22d of the undoped InGaAsP-based strained multiple quantum well active layer 18 was set to 5 nm.
Further, as shown in the band diagram of the conduction band in FIG. 4C, the number of strain quantum well layers is 4, and the strain amount of the strain quantum well layers is from the side close to the p-InP clad layer 2 + 1.5%, + 1.43%, + 1.36%, +1.
It is 29%, and the energy in the conduction band changes with the change of the strain amount. The thickness of the InGaAsP barrier layer 23 is 1
It is 0 nm. At this time, the difference in quantum level emission wavelength from the maximum film thickness quantum well layer 22a and the minimum film thickness quantum well layer 22d is 25 nm. The depth was set to 15 to 30 nm so that κL of the diffraction grating 3 was 0.8 to 1.5. The period of the diffraction grating 3 was set to about 201 nm so that the detuning wavelength ΔG would be −10 to +10 nm at room temperature.

【0017】その後、実施例1と同様のメサストライプ
を形成した後、有機金属気相成長法により、メサストラ
イプの側面をp-InP埋込層7(キャリア濃度〜1×1
18cm-3、厚さ0.5〜1μm)、n-InP埋込層8
(キャリア濃度〜2.5×101 8cm-3、厚さ0.5〜1
μm)、p-InP埋込層9(キャリア濃度〜2×1018
m-3、厚さ1〜3μm)、n-InP層10(キャリア濃度
〜2×1018cm-3、厚さ〜0.3μm)で埋め込んだ。
次に、SiO2膜を除去した後、有機金属気相成長法によ
りn-InP平坦化層11(キャリア濃度〜2.0×10
18cm-3、厚さ〜2μm)、n-InGaAs(P)キャッ
プ層12(キャリア濃度>7×1018cm-3、厚さ〜
0.3μm)で平坦に埋め込んだ。その後SiO2膜13
で電流狭窄を行った後n電極14を形成、更に基板側を
研磨してト−タル膜厚100μm程度にした後p電極1
7を蒸着により形成し素子化を行った。その後、共振器
長150〜350μmに劈開し、前端面に反射率1%の
低反射率膜20、後端面に反射率90%の高反射率膜2
1を施した。
Thereafter, after forming a mesa stripe similar to that in Example 1, the side surface of the mesa stripe is formed on the p-InP burying layer 7 (carrier concentration ˜1 × 1) by a metal organic chemical vapor deposition method.
0 18 cm −3 , thickness 0.5 to 1 μm), n-InP buried layer 8
(Carrier concentration ~2.5 × 10 1 8 cm- 3, 0.5~1 thickness
μm), p-InP buried layer 9 (carrier concentration up to 2 × 10 18 c
m −3 , thickness 1 to 3 μm), and n-InP layer 10 (carrier concentration to 2 × 10 18 cm −3 , thickness to 0.3 μm).
Next, after removing the SiO 2 film, the n-InP flattening layer 11 (carrier concentration of up to 2.0 × 10 6) is formed by metal organic chemical vapor deposition.
18 cm- 3 , thickness-2 μm), n-InGaAs (P) cap layer 12 (carrier concentration> 7 × 10 18 cm- 3 , thickness-
It was embedded flat with 0.3 μm). After that, the SiO 2 film 13
Then, the n-electrode 14 is formed, and the substrate side is further polished to a total film thickness of about 100 μm, and then the p-electrode 1 is formed.
7 was formed by vapor deposition to form a device. Then, the resonator is cleaved to a length of 150 to 350 μm, the front facet has a low reflectance film 20 with a reflectance of 1%, and the rear facet has a high reflectance film 2 with a reflectance of 90%.
1 was given.

【0018】本実施例によるDFBレ−ザでは、発振波
長1.55μmにおいて、室温でのしきい電流は5〜9m
A、スロ−プ効率は0.38〜0.55mW/mAが得ら
れ、室温においてのΔGは典型的に−10nmから+1
0nmの範囲であった。又、85℃でのしきい電流は1
3〜25mA、スロ−プ効率0.33〜0.40mW/mA
の素子が高歩留りで得られ、600Mbit/sの変調
が十分に可能であった。さらに、−40℃においても安
定にDFB発振し、−40℃〜+85℃の温度範囲にお
いて、副モード抑圧比は38〜45dBを維持した。
又、−40℃〜+85℃の温度範囲におけるΔGの変化
量は10nm以下と極めて小さかった。
In the DFB laser according to this embodiment, the threshold current at room temperature is 5 to 9 m at the oscillation wavelength of 1.55 μm.
A, the slop efficiency was 0.38 to 0.55 mW / mA, and ΔG at room temperature was typically -10 nm to +1.
It was in the range of 0 nm. The threshold current at 85 ° C is 1
3-25mA, Slope efficiency 0.33-0.40mW / mA
Was obtained with a high yield, and modulation of 600 Mbit / s was sufficiently possible. Furthermore, the DFB oscillation was stable even at −40 ° C., and the secondary mode suppression ratio was maintained at 38 to 45 dB in the temperature range of −40 ° C. to + 85 ° C.
The amount of change in ΔG in the temperature range of −40 ° C. to + 85 ° C. was 10 nm or less, which was extremely small.

【0019】以上の実施例では半導体レ−ザへの適用に
ついて説明したが、本発明は、他の波長帯の半導体レー
ザについても適用可能であることは自明である。又、n
型半導体基板状に形成したDFBレーザ、活性層をIn
GaAlAs系の量子井戸構造で形成したDFBレー
ザ、リッジ型等の他のストライプ構造を有したDFBレ
ーザについても、適用可能であることはいうまでもな
い。さらに、歪量子井戸層の歪量が+0.5%〜+1.
8%、あるいは−2.0%〜−0.7%の範囲内のDF
Bレーザ、井戸数が4〜8のDFBレーザでも、ほぼ同
様の効果が得られた。さらに、本実施例では、単体の半
導体レーザ素子への適用に行いて説明したが、光インタ
コネクト、波長多重通信などに使用する半導体レーザア
レイについても、適用可能であることはいうまでもな
い。
Although the application to the semiconductor laser has been described in the above embodiments, it is obvious that the present invention can be applied to the semiconductor laser of other wavelength bands. Also, n
Type DFB laser formed on a semiconductor substrate and an active layer of In
It goes without saying that the present invention is also applicable to a DFB laser formed with a GaAlAs-based quantum well structure and a DFB laser having another stripe structure such as a ridge type. Further, the strain amount of the strained quantum well layer is + 0.5% to +1.
DF within the range of 8% or -2.0% to -0.7%
Almost the same effect was obtained with the B laser and the DFB laser having 4 to 8 wells. Furthermore, although the present embodiment has been described by applying it to a single semiconductor laser device, it goes without saying that the present invention can also be applied to a semiconductor laser array used for optical interconnect, wavelength division multiplexing communication and the like.

【0020】[0020]

【発明の効果】本発明では、各量子井戸層の量子井戸層
膜厚、混晶組成歪量、あるいは歪量を変化させることに
より、各量子井戸層からの量子準位発光波長を変化させ
ることができるので、離調波長ΔGの温度依存性dΔG
/dTが極めて小さなDFBレーザを提供できる。従っ
て、広い温度範囲、例えば−40℃〜+85℃での光通
信用分布帰還型半導体レーザの安定動作に対して効果が
ある。さらに、井戸数、歪量、量子井戸膜厚等の構造を
適切に設定することにより、その離調波長ΔGの温度依
存性dΔG/dTの低減の度合いは大きく、尚一層のD
FBレーザの広範囲温度動作に対して効果がある。
According to the present invention, the quantum level emission wavelength from each quantum well layer is changed by changing the quantum well layer thickness, mixed crystal composition strain amount, or strain amount of each quantum well layer. Temperature dependence of detuning wavelength ΔG dΔG
It is possible to provide a DFB laser having an extremely small / dT. Therefore, it is effective for stable operation of the distributed feedback semiconductor laser for optical communication in a wide temperature range, for example, -40 ° C to + 85 ° C. Further, by appropriately setting the structure such as the number of wells, the amount of strain, and the quantum well film thickness, the degree of reduction in the temperature dependence dΔG / dT of the detuning wavelength ΔG is large, and further D
It is effective for wide temperature operation of the FB laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例を表す構造図、(b)は(a)
のA−A’線光軸方向断面図、(c)は量子井戸活性層の
伝導帯のバンドダイアグラム。
FIG. 1 (a) is a structural diagram showing an embodiment of the present invention, and (b) is (a).
Is a cross-sectional view taken along the line AA 'in the optical axis, and (c) is a band diagram of the conduction band of the quantum well active layer.

【図2】従来技術によるDFBレーザの離調波長の温度
依存性を示す図。
FIG. 2 is a diagram showing temperature dependence of a detuning wavelength of a DFB laser according to a conventional technique.

【図3】本発明の手段と作用を示す図。FIG. 3 is a diagram showing means and actions of the present invention.

【図4】(a)は本発明の実施例を表す構造図、(b)は(a)
のA−A’線光軸方向断面図、(c)は量子井戸活性層の
伝導帯のバンドダイアグラム。
FIG. 4 (a) is a structural diagram showing an embodiment of the present invention, and FIG. 4 (b) is (a).
Is a cross-sectional view taken along the line AA 'in the optical axis, and (c) is a band diagram of the conduction band of the quantum well active layer.

【符号の説明】[Explanation of symbols]

1…p-InP基板、2…p-InPクラッド層、3…回折
格子、4、19…光ガイド層、5、18…歪量子井戸活
性層、6…n-InPクラッド層、7…p-InP埋込層、
8…n-InP埋込層、9…p-InP層、11…n-InP
平坦化層、12…n-InGaAsPキャップ層、13…S
iO2膜、14…n電極、17…p電極、16、23…障
壁層、15a〜15e、22a〜22d…歪量子井戸
層。
1 ... p-InP substrate, 2 ... p-InP cladding layer, 3 ... Diffraction grating, 4, 19 ... Optical guide layer, 5, 18 ... Strained quantum well active layer, 6 ... n-InP cladding layer, 7 ... p- InP buried layer,
8 ... n-InP buried layer, 9 ... p-InP layer, 11 ... n-InP
Flattening layer, 12 ... n-InGaAsP cap layer, 13 ... S
iO 2 film, 14 ... N electrode, 17 ... P electrode, 16, 23 ... Barrier layer, 15a-15e, 22a-22d ... Strained quantum well layer.

フロントページの続き (72)発明者 中村 厚 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内Front page continuation (72) Inventor Atsushi Nakamura 5-20-1 Kamisuihonmachi, Kodaira-shi, Tokyo Hitachi, Ltd. Semiconductor Business Division

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に、少なくとも光を発生する
活性層、光を閉じ込めるクラッド層と共振器の軸方向に
屈折率の摂動を有する分布帰還型半導体レーザにおい
て、上記活性層が少なくとも2層の量子井戸層を有し、
少なくとも1層の量子井戸層の量子準位発光波長が他の
量子井戸層の量子準位発光波長と異なることを特徴とす
る分布帰還型半導体レーザ。
1. A distributed feedback semiconductor laser having at least an active layer for generating light, a clad layer for confining light, and a refractive index perturbation in the axial direction of a resonator on a semiconductor substrate, wherein at least two active layers are provided. Having a quantum well layer of
A distributed feedback semiconductor laser, wherein the quantum level emission wavelength of at least one quantum well layer is different from the quantum level emission wavelengths of other quantum well layers.
【請求項2】半導体基板上に、少なくとも光を発生する
活性層、光を閉じ込めるクラッド層と共振器の軸方向に
屈折率の摂動を有する分布帰還型半導体レーザにおい
て、上記活性層が少なくとも2層の量子井戸層を有し、
少なくとも1層の量子井戸層の量子井戸膜厚が他の量子
井戸層の量子井戸膜厚と異なることを特徴とする分布帰
還型半導体レーザ。
2. A distributed feedback semiconductor laser having at least an active layer for generating light, a clad layer for confining light, and a refractive index perturbation in the axial direction of a resonator on a semiconductor substrate, wherein at least two active layers are provided. Having a quantum well layer of
A distributed feedback semiconductor laser, wherein the quantum well film thickness of at least one quantum well layer is different from the quantum well film thickness of other quantum well layers.
【請求項3】半導体基板上に、少なくとも光を発生する
活性層、光を閉じ込めるクラッド層と共振器の軸方向に
屈折率の摂動を有する分布帰還型半導体レーザにおい
て、上記活性層が少なくとも2層の量子井戸層を有し、
少なくとも1層の量子井戸層を形成する混晶組成が他の
量子井戸層を形成する混晶組成と異なることを特徴とす
る分布帰還型半導体レーザ。
3. A distributed feedback semiconductor laser having at least an active layer for generating light, a clad layer for confining light, and a refractive index perturbation in the axial direction of a resonator on a semiconductor substrate, wherein at least two active layers are provided. Having a quantum well layer of
A distributed feedback semiconductor laser, wherein a mixed crystal composition forming at least one quantum well layer is different from a mixed crystal composition forming another quantum well layer.
【請求項4】請求項1〜3のいずれかに記載の分布帰還
型半導体レーザにおいて、上記量子井戸層の格子定数が
上記半導体基板の格子定数と異なる歪量子井戸層を有
し、歪量子井戸層の歪量が+0.5%〜+1.8%、あ
るいは−2.0%〜−0.7%であることを特徴とする
分布帰還型半導体レーザ。
4. The distributed feedback semiconductor laser according to claim 1, further comprising a strained quantum well layer in which the lattice constant of the quantum well layer is different from the lattice constant of the semiconductor substrate. A distributed feedback semiconductor laser having a layer strain amount of + 0.5% to + 1.8% or -2.0% to -0.7%.
【請求項5】半導体基板上に、少なくとも光を発生する
活性層、光を閉じ込めるクラッド層と共振器の軸方向に
屈折率の摂動を有する分布帰還型半導体レーザにおい
て、上記活性層が少なくとも2層の歪量子井戸層を有
し、少なくとも1層の歪量子井戸層の歪量が他の歪量子
井戸層の歪量と異なることを特徴とする分布帰還型半導
体レーザ。
5. A distributed feedback semiconductor laser having at least an active layer for generating light, a clad layer for confining light, and a perturbation of a refractive index in the axial direction of a resonator on a semiconductor substrate, wherein at least two active layers are provided. A distributed feedback semiconductor laser, characterized in that the strain amount of at least one strain quantum well layer is different from the strain amount of another strain quantum well layer.
【請求項6】請求項1〜5のいずれかに記載の分布帰還
型半導体レーザにおいて、上記量子井戸層、歪量子井戸
層の量子準位発光波長の最大値と最小値の差が15〜4
5nmであることを特徴とする分布帰還型半導体レー
ザ。
6. The distributed feedback semiconductor laser according to claim 1, wherein the difference between the maximum value and the minimum value of the quantum level emission wavelengths of the quantum well layer and the strained quantum well layer is 15 to 4.
A distributed feedback semiconductor laser having a thickness of 5 nm.
【請求項7】請求項1、2又は4に記載の分布帰還型半
導体レーザにおいて、上記量子井戸層、歪量子井戸層の
最大量子井戸膜厚のと最小量子井戸膜厚の差が1.0〜
3.5nmであることを特徴とする分布帰還型半導体レ
ーザ。
7. The distributed feedback semiconductor laser according to claim 1, 2 or 4, wherein the difference between the maximum quantum well film thickness and the minimum quantum well film thickness of the quantum well layer and the strained quantum well layer is 1.0. ~
A distributed feedback semiconductor laser having a wavelength of 3.5 nm.
【請求項8】請求項1、2又は4に記載の分布帰還型半
導体レーザにおいて、上記量子井戸層、歪量子井戸層の
最大量子井戸膜厚が6nm、最小量子井戸膜厚が4nm
であることを特徴とする分布帰還型半導体レーザ。
8. The distributed feedback semiconductor laser according to claim 1, 2 or 4, wherein the quantum well layer and the strained quantum well layer have a maximum quantum well film thickness of 6 nm and a minimum quantum well film thickness of 4 nm.
A distributed feedback semiconductor laser characterized by:
【請求項9】請求項1〜8のいずれかに記載の分布帰還
型半導体レーザにおいて、上記量子井戸層、歪量子井戸
層の量子準位発光波長が、正孔の注入側が電子の注入側
よりも長波長であることを特徴とする分布帰還型半導体
レーザ。
9. The distributed feedback semiconductor laser according to claim 1, wherein the quantum level emission wavelengths of the quantum well layer and the strained quantum well layer are such that the hole injection side is closer to the electron injection side. A distributed feedback semiconductor laser characterized by having a long wavelength.
【請求項10】請求項1〜9のいずれかに記載の分布帰
還型半導体レーザにおいて、上記量子井戸層、歪量子井
戸層の井戸数が4〜8であることを特徴とする分布帰還
型半導体レーザ。
10. The distributed feedback semiconductor laser according to claim 1, wherein the quantum well layer and the strained quantum well layer have 4 to 8 wells. laser.
【請求項11】請求項1〜10のいずれかに記載の分布
帰還型半導体レーザにおいて、上記半導体基板がp型I
nP基板で、かつ上記活性層がメサストライプ状に形成
され、該メサストライプ状の活性領域の側面がp/n/
p型の電流ブロック層で埋め込まれていることを特徴と
する分布帰還型半導体レーザ。
11. The distributed feedback semiconductor laser according to claim 1, wherein the semiconductor substrate is p-type I.
In the nP substrate, the active layer is formed in a mesa stripe shape, and the side surface of the mesa stripe active region is p / n /
A distributed feedback semiconductor laser, which is embedded with a p-type current blocking layer.
【請求項12】請求項1〜11のいずれかに記載の分布
帰還型半導体レーザにおいて、レーザ発振波長をλL
D、しきい電流の0.9倍の注入電流での光学利得ピー
ク波長をλg、共振器の軸方向での屈折率の摂動による
光の結合定数をκ,共振器長をLと定義したときに、室
温での(λLD−λg)の値が−10〜+10nm、か
つκLの値が0.8〜1.5であることを特徴とする分
布帰還型半導体レーザ。
12. The distributed feedback semiconductor laser according to claim 1, wherein the laser oscillation wavelength is λL.
D, where λg is the optical gain peak wavelength at an injection current 0.9 times the threshold current, κ is the coupling constant of light due to perturbation of the refractive index in the axial direction of the resonator, and L is the resonator length. In addition, a distributed feedback semiconductor laser having a (λLD-λg) value of -10 to +10 nm and a κL value of 0.8 to 1.5 at room temperature.
【請求項13】請求項1〜12のいずれかに記載の分布
帰還型半導体レーザにおいて、上記量子井戸層、歪量子
井戸層がInGaAsP層、あるいはInGaAlAs
層であり、かつレーザ発振波長が1.25〜1.60μ
mであることを特徴とする分布帰還型半導体レーザ。
13. The distributed feedback semiconductor laser according to claim 1, wherein the quantum well layer and the strained quantum well layer are InGaAsP layers or InGaAlAs.
Layer and laser oscillation wavelength is 1.25 to 1.60 μ
A distributed feedback semiconductor laser having a thickness of m.
JP3944294A 1994-01-31 1994-03-10 Distributed feedback semiconductor laser Pending JPH07249829A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3944294A JPH07249829A (en) 1994-03-10 1994-03-10 Distributed feedback semiconductor laser
KR1019950000942A KR100357787B1 (en) 1994-01-31 1995-01-20 Manufacturing method of waveguide fluorescent element
US08/380,571 US5572616A (en) 1994-01-31 1995-01-30 Waveguide device
US08/713,867 US5666455A (en) 1994-01-31 1996-09-13 Waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3944294A JPH07249829A (en) 1994-03-10 1994-03-10 Distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07249829A true JPH07249829A (en) 1995-09-26

Family

ID=12553137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3944294A Pending JPH07249829A (en) 1994-01-31 1994-03-10 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07249829A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129970A (en) * 1995-10-31 1997-05-16 Nec Corp Laser diode element
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser
FR2765734A1 (en) * 1997-07-04 1999-01-08 France Telecom Integrated modulation vertical laser structure for optical radio mixed network links
JP2006203100A (en) * 2005-01-24 2006-08-03 Opnext Japan Inc Semiconductor laser and light transmitter module
JP2007012691A (en) * 2005-06-28 2007-01-18 Sumitomo Electric Ind Ltd Semiconductor laser
US7317745B2 (en) 2004-09-14 2008-01-08 Samsung Electro-Mechanics Co., Ltd. Multi-wavelength laser diode
JP2008530814A (en) * 2005-02-18 2008-08-07 エルエス ケーブル リミテッド Quantum well laser diode with broadband gain
JP2008244235A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Quantum dot semiconductor device
JP2010165869A (en) * 2009-01-15 2010-07-29 Opnext Japan Inc Semiconductor laser element
US8306072B2 (en) 2010-07-20 2012-11-06 Sumitomo Electric Industries, Ltd. Semiconductor laser device
JP2016046276A (en) * 2014-08-19 2016-04-04 浜松ホトニクス株式会社 Wavelength sweeping type semiconductor laser element and gas concentration measuring apparatus
JP2017034034A (en) * 2015-07-30 2017-02-09 浜松ホトニクス株式会社 Distribution feedback lateral multimode semiconductor laser element
DE102017200061A1 (en) 2016-01-08 2017-07-13 Hamamatsu Photonics K.K. Semiconductor laser element with distributed feedback

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129970A (en) * 1995-10-31 1997-05-16 Nec Corp Laser diode element
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser
FR2765734A1 (en) * 1997-07-04 1999-01-08 France Telecom Integrated modulation vertical laser structure for optical radio mixed network links
US7317745B2 (en) 2004-09-14 2008-01-08 Samsung Electro-Mechanics Co., Ltd. Multi-wavelength laser diode
JP2006203100A (en) * 2005-01-24 2006-08-03 Opnext Japan Inc Semiconductor laser and light transmitter module
JP2008530814A (en) * 2005-02-18 2008-08-07 エルエス ケーブル リミテッド Quantum well laser diode with broadband gain
JP2007012691A (en) * 2005-06-28 2007-01-18 Sumitomo Electric Ind Ltd Semiconductor laser
JP4595711B2 (en) * 2005-06-28 2010-12-08 住友電気工業株式会社 Semiconductor laser
JP2008244235A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Quantum dot semiconductor device
JP2010165869A (en) * 2009-01-15 2010-07-29 Opnext Japan Inc Semiconductor laser element
US8306072B2 (en) 2010-07-20 2012-11-06 Sumitomo Electric Industries, Ltd. Semiconductor laser device
JP2016046276A (en) * 2014-08-19 2016-04-04 浜松ホトニクス株式会社 Wavelength sweeping type semiconductor laser element and gas concentration measuring apparatus
JP2017034034A (en) * 2015-07-30 2017-02-09 浜松ホトニクス株式会社 Distribution feedback lateral multimode semiconductor laser element
DE102017200061A1 (en) 2016-01-08 2017-07-13 Hamamatsu Photonics K.K. Semiconductor laser element with distributed feedback

Similar Documents

Publication Publication Date Title
US6426515B2 (en) Semiconductor light-emitting device
US5936994A (en) Two-section complex coupled distributed feedback semiconductor laser with enhanced wavelength tuning range
US20040179569A1 (en) Wavelength tunable DBR laser diode
JP2004179274A (en) Optical semiconductor device
JP2967737B2 (en) Optical semiconductor device and its manufacturing method
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JPH07249829A (en) Distributed feedback semiconductor laser
JP2000269587A (en) Optical semiconductor device and manufacture thereof
EP0753914B1 (en) Laser diode element with excellent intermodulation distortion characteristic
US20050123018A1 (en) Ridge type distributed feedback semiconductor laser
JP2003234541A (en) Distributed feedback semiconductor laser element
Hong et al. Enhanced wavelength tuning range in two-section complex-coupled DFB lasers by alternating gain and loss coupling
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
CN115280609A (en) Optical device
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
US6967770B2 (en) Semiconductor optical amplifier with reduced effects of gain saturation
JP2002057405A (en) Semiconductor laser device and its manufacturing method
JP3154244B2 (en) Semiconductor laser device and method of manufacturing the same
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JP2003060285A (en) Optical integrated device
JP2001358405A (en) Semiconductor laser device and its manufacturing method
JPH0722692A (en) Semiconductor laser
JP2010045066A (en) Semiconductor laser device
WO2006088293A1 (en) Quantum well laser diode having wide band gain