JP2008530814A - Quantum well laser diode with broadband gain - Google Patents

Quantum well laser diode with broadband gain Download PDF

Info

Publication number
JP2008530814A
JP2008530814A JP2007556067A JP2007556067A JP2008530814A JP 2008530814 A JP2008530814 A JP 2008530814A JP 2007556067 A JP2007556067 A JP 2007556067A JP 2007556067 A JP2007556067 A JP 2007556067A JP 2008530814 A JP2008530814 A JP 2008530814A
Authority
JP
Japan
Prior art keywords
quantum well
laser diode
active layer
diffraction grating
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007556067A
Other languages
Japanese (ja)
Inventor
グ、ボン−ゾ
キム、ヨン−カン
ホ、クァン−ス
ソン、ハン−ウク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Cable and Systems Ltd
Original Assignee
LS Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Cable Ltd filed Critical LS Cable Ltd
Publication of JP2008530814A publication Critical patent/JP2008530814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3438Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on In(Al)P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

本発明は、注入された電流を光に変換する、多重量子井戸構造を備えた活性層と、当該活性層を挟んで形成される化合物半導体のPN接合構造と、電流の注入のための電極とを含む量子井戸レーザーダイオードにおいて、当該活性層の多重量子井戸は、量子井戸の厚さが均一でない構造を有することを特徴とする量子井戸レーザーダイオードを提供する。
【選択図】図4
The present invention relates to an active layer having a multiple quantum well structure that converts injected current into light, a PN junction structure of a compound semiconductor formed with the active layer interposed therebetween, an electrode for current injection, In the quantum well laser diode, the multiple quantum well of the active layer has a structure in which the thickness of the quantum well is not uniform.
[Selection] Figure 4

Description

本発明は、レーザーダイオード(Laser Diode;LD)に関するものであって、より詳しくは、広帯域利得(Wideband Gain)を提供する多重量子井戸(Mutiple Quantum Well;MQW)構造を備えたレーザーダイオードに関する。   The present invention relates to a laser diode (LD), and more particularly, to a laser diode having a multiple quantum well (MQW) structure that provides a wideband gain.

半導体レーザーダイオードの中で、特に、非冷却型分布帰還型レーザーダイオード(Uncooled DFB LD)は、通常埋め立てられた活性層と平坦な表面を有するPBH(Planar Buried Heterostructure)構造から成る。   Among semiconductor laser diodes, in particular, an uncooled distributed feedback laser diode (Uncooled DFB LD) has a PBH (Planar Buried Heterostructure) structure having a normally buried active layer and a flat surface.

図1を参照すれば、一般的な分布帰還型レーザーダイオードは、ベースになるInP基板10と、注入された電流を光に変換させる活性層13と、光がよく拘束されるよう当該活性層13の両側に備えられるInGaAsP物質の光拘束層12、14と、シングルモード波長を作るように当該InP基板10と当該活性層13との間に備えられる回折格子11と、当該光拘束層14の上に行きながら順次備えられるp−InPクラッド層15、InGaAs層16、InP層17とを含む。   Referring to FIG. 1, a general distributed feedback laser diode includes a base InP substrate 10, an active layer 13 that converts injected current into light, and the active layer 13 so that light is well constrained. Optical constraining layers 12 and 14 of InGaAsP material provided on both sides of the substrate, a diffraction grating 11 provided between the InP substrate 10 and the active layer 13 so as to produce a single mode wavelength, and the optical constraining layer 14 The p-InP clad layer 15, the InGaAs layer 16, and the InP layer 17 are sequentially provided while going to the center.

特に、前記活性層13は、光が生成される部分であって、最近ではレーザーダイオードの性能を向上させるために量子井戸13aと障壁層13bが反復的に形成された多重量子井戸構造が備えられることが一般的である。   In particular, the active layer 13 is a portion where light is generated, and recently, in order to improve the performance of the laser diode, a multiple quantum well structure in which a quantum well 13a and a barrier layer 13b are repeatedly formed is provided. It is common.

従来のレーザーダイオードに備えられる多重量子井戸は、一様に量子井戸の厚さが互いに同一の構造を有するが、図2に示すように、それぞれの量子井戸の厚さが同一の場合、全ての量子井戸の伝導帯域に拘束される電子のエネルギー状態が類似であり、また価電子帯域にある正孔のエネルギー状態が全て類似な値を有するため、伝導帯域の電子が価電子帯域の正孔と結合して作り出すエネルギー(Eg)が全て類似な波長領域に存在するようになる(図3の利得プロファイルを参照)。   The multiple quantum wells provided in the conventional laser diode have a structure in which the thicknesses of the quantum wells are uniformly the same as each other, but as shown in FIG. Since the energy states of the electrons constrained by the conduction band of the quantum well are similar, and the energy states of the holes in the valence band all have similar values, the electrons in the conduction band are different from the holes in the valence band. All of the energy (Eg) produced by combining exists in a similar wavelength region (see the gain profile in FIG. 3).

一方、レーザーダイオードの動作を見れば、順方向電圧を印加する初期にはレーザーダイオードがLEDのように作動することになるが、これは低電圧領域で活性層のキャリアが反転分布(Population inversion)になるほど十分ではなく自然放出(Spontaneous emission)が優勢だからである。電圧が増加するにつれて活性層内で反転分布が起き、誘導放出(Stimulated emission)が優勢になる閾値電圧(Threshold voltage)地点においては、レーザーダイオード内における光の損失と光増幅による利得とがバランスを取るようになり、閾値電流(Threshold current)が流れるときにLED動作からレーザー発振への変化が起きるようになる。閾値電流以上の注入電流からは誘導放出によりレーザーダイオードから干渉性(Coherent)の光が出るようになり、このときに、波長スペクトルはファブリ−ペロー(Fabry−Perot)モードを満足する共振条件と、多重量子井戸構造によって決められる利得スペクトルプロファイルによって多重モード(Multiple mode)の波長を含むようになる。   On the other hand, in the operation of the laser diode, the laser diode operates like an LED in the initial period of applying the forward voltage. This is because the carriers in the active layer are inversion distribution (Population inversion) in the low voltage region. This is because the spontaneous emission is dominant. As the voltage increases, an inversion distribution occurs in the active layer, and at the threshold voltage point where stimulated emission becomes dominant, the loss of light in the laser diode and the gain due to optical amplification balance. Thus, when a threshold current flows, a change from LED operation to laser oscillation occurs. Coherent light is emitted from the laser diode by stimulated emission from an injection current that is equal to or higher than the threshold current, and at this time, the resonance condition that the wavelength spectrum satisfies the Fabry-Perot mode, The gain spectrum profile determined by the multiple quantum well structure includes multiple mode wavelengths.

分布帰還型レーザーダイオード(DFB LD)は、ファブリ−ペローレーザーダイオードの活性層の近くに回折格子を備えた構造を有するものであって、回折格子のピッチ(Pitch)に応じて反射指数(Reflective index)が変わるようになり、利得スペクトルで回折格子の周期に合う特定のブラッグ波長(Bragg wavelength)のみを選択的に出力する。すなわち、数個のファブリ−ペローモードの中で一つのモードのみを選択的に取ってシングルモード波長スペクトル(DFBモード)を可能にさせる。   A distributed feedback laser diode (DFB LD) has a structure having a diffraction grating near the active layer of a Fabry-Perot laser diode, and has a reflection index (Reflective index) according to the pitch of the diffraction grating. ) Is changed, and only a specific Bragg wavelength (Bragg wavelength) matching the period of the diffraction grating in the gain spectrum is selectively output. That is, only one mode is selectively selected from several Fabry-Perot modes to enable a single mode wavelength spectrum (DFB mode).

一般に、DFBモードと利得ピーク(ファブリ−ペローモード)の温度係数は、それぞれ約0.1nm/℃と0.4nm/℃の値を有する。このような温度係数の差により温度変化に応じたDFBモードの動作範囲がたびたび制約を受ける。通常、利得ピークは温度が変わるときDFBモードより3倍〜5倍速く動くため、もしDFBモードと利得ピークが一致すれば、より低い、またはより高い温度でDFBモードが利得ピークから分離され、ひどい場合、DFBモードと利得ピークが結合できないため、ファブリ−ペローモードが発振するようになる。DFBモードの温度動作範囲は結合係数の関数であり、結合係数が増加するにつれて増加する。大きい結合係数は閾値電流密度を低く維持しDFBモードの動作温度範囲を広くする長所があるが、非線形的な電流−光出力特性を示すかキンク(Kink)特性を示すため、結合係数を大きくすることができない。従って、−40〜85℃程度の温度範囲でDFB発振が可能な非冷却分布帰還型レーザーダイオードを製作するため、従来には結合係数を適当な値で維持した状態で利得ピークとDFBモード発振波長間の間隔、すなわち離調(Detuning)を適当に調節してDFBモード発振の温度範囲を調節する方式が用いられた。   In general, the temperature coefficients of the DFB mode and the gain peak (Fabry-Perot mode) have values of about 0.1 nm / ° C. and 0.4 nm / ° C., respectively. Due to the difference in temperature coefficient, the operation range of the DFB mode corresponding to the temperature change is often restricted. Normally, the gain peak moves 3 to 5 times faster than the DFB mode when the temperature changes, so if the DFB mode and the gain peak match, the DFB mode is separated from the gain peak at a lower or higher temperature and is terrible. In this case, since the DFB mode and the gain peak cannot be coupled, the Fabry-Perot mode oscillates. The temperature operating range of the DFB mode is a function of the coupling coefficient and increases as the coupling coefficient increases. A large coupling coefficient has the advantage of maintaining a low threshold current density and widening the operating temperature range of the DFB mode. However, the coupling coefficient is increased because it exhibits a nonlinear current-light output characteristic or a kink characteristic. I can't. Therefore, in order to manufacture an uncooled distributed feedback laser diode capable of DFB oscillation in the temperature range of about -40 to 85 ° C., conventionally, the gain peak and the DFB mode oscillation wavelength are maintained with the coupling coefficient maintained at an appropriate value. A method of adjusting the temperature range of the DFB mode oscillation by appropriately adjusting the interval, that is, detuning was used.

しかし、従来の非冷却型分布帰還型レーザーダイオードは多重量子井戸を成す量子井戸の厚さが全て均一な構造を有することから、−3dBにおける利得ピークの幅(利得ピークの1/2になる地点の幅)が狭いので全体温度範囲(−40〜85℃)を満足する値に対して離調地点を取っても離調値の許容範囲が小さくなる。また、半導体基板に多重量子井戸を生成させるときウエハー全体の利得ピーク均一度も厳格に管理しなければならないという問題がある。   However, since the conventional uncooled distributed feedback laser diode has a structure in which the thicknesses of the quantum wells forming the multiple quantum well are all uniform, the gain peak width at -3 dB (a point where the gain peak is ½) Therefore, even if a detuning point is taken with respect to a value satisfying the entire temperature range (−40 to 85 ° C.), the allowable range of the detuning value becomes small. In addition, there is a problem that the uniformity of the gain peak of the entire wafer must be strictly managed when generating multiple quantum wells on a semiconductor substrate.

本発明は、上述のような点を考慮して創案されたものであって、使用温度範囲をより広げるように広帯域利得を有する、多重量子井戸構造を備えたレーザーダイオードを提供することにその目的がある。   The present invention was devised in view of the above points, and an object of the present invention is to provide a laser diode having a multiple quantum well structure having a broadband gain so as to further widen the operating temperature range. There is.

上述のような目的を果たすため、本発明は、注入された電流を光に変換する、多重量子井戸構造を備えた活性層と、当該活性層を挟んで形成される化合物半導体のPN接合構造と、電流を注入するための電極とを含む量子井戸レーザーダイオードにおいて、当該活性層の多重量子井戸は、量子井戸の厚さが均一でない構造を有することを特徴とする。   In order to achieve the above-described object, the present invention provides an active layer having a multiple quantum well structure that converts injected current into light, and a PN junction structure of a compound semiconductor formed with the active layer interposed therebetween. In the quantum well laser diode including an electrode for injecting current, the multiple quantum well of the active layer has a structure in which the thickness of the quantum well is not uniform.

前記多重量子井戸は、量子井戸の厚さがそれぞれ異なるように構成してもよい。   The multiple quantum wells may be configured such that the quantum wells have different thicknesses.

代案として、前記多重量子井戸は、同じ厚さを有する量子井戸のグループを含み、当該グループごとに異なる厚さを有する構造から成り立たせてもよい。   As an alternative, the multiple quantum well may include a group of quantum wells having the same thickness, and a structure having a different thickness for each group.

本発明には、ベースになるInP基板と、当該基板と前記活性層との間に介在される、当該活性層で生成された光をシングルモード波長にする回折格子がさらに含まれる。   The present invention further includes a base InP substrate and a diffraction grating that is interposed between the substrate and the active layer and converts light generated in the active layer to a single mode wavelength.

前記回折格子としては、指数結合(Index coupled)型、利得結合(Gain coupled)型、損失結合(Loss coupled)型または複合結合(Complex coupled)型が採用されることが望ましい。   As the diffraction grating, it is preferable to employ an index coupled type, a gain coupled type, a loss coupled type, or a complex coupled type.

前記回折格子により作られるシングルモード波長は、可視光領域から赤外線領域までの範囲に含まれる。   The single mode wavelength produced by the diffraction grating is included in the range from the visible light region to the infrared region.

本発明に備えられる導波構造としては、隆起(Ridge)型または埋立ヘテロ構造(Buried Heterostructure)が採用されることが望ましい。   As the waveguide structure provided in the present invention, it is desirable to adopt a ridge type or buried heterostructure.

前記多重量子井戸またはその障壁層には、ストレイン(Strain)が印加されることが望ましい。   Preferably, a strain is applied to the multiple quantum well or its barrier layer.

以下、添付した図面を参照しながら本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は一般的及び辞書的な意味に限定して解釈されてはいけず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in this specification and claims should not be construed as limited to general and lexical meaning, and the inventor will best explain his invention. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the embodiment described in the present specification is only the most preferred embodiment of the present invention, and does not represent all the technical ideas of the present invention. It should be understood that there can be equivalents and variations.

図4は、本発明の望ましい実施例による量子井戸レーザーダイオードの構成を示す切開斜視図である。
図4を参照すれば、本発明の望ましい実施例による量子井戸レーザーダイオードは、化合物半導体のPN接合構造の間に備えられる多重量子井戸構造を備えた活性層102と、電流を注入するための電極101a、101bとを含み、当該多重量子井戸を成す量子井戸の厚さが均一でない構造を有する。このようなレーザーダイオードに備えられる導波構造としては、公知の隆起型あるいは埋立ヘテロ構造の採用が望ましい。
FIG. 4 is a cut perspective view illustrating a configuration of a quantum well laser diode according to a preferred embodiment of the present invention.
Referring to FIG. 4, a quantum well laser diode according to a preferred embodiment of the present invention includes an active layer 102 having a multiple quantum well structure provided between compound semiconductor PN junction structures, and an electrode for injecting current. 101a and 101b, and the quantum wells constituting the multiple quantum well have a non-uniform thickness. As the waveguide structure provided in such a laser diode, it is desirable to adopt a known raised type or buried heterostructure.

より具体的に、本発明の望ましい実施例によるレーザーダイオードは、InP基板100の上で活性層102が1〜1.5μm程度の幅を有するメサ(Mesa)模様にエッチングされて形成され、エッチングされた活性層102の両側にp−InP層とn−InP層の電流遮断層103が生成され、さらに活性層102の上側にp−InPクラッド層104が生成された構造を有する。ここで、電流遮断層103は、注入された電流が活性層102以外の領域に漏洩されるのを防ぐ作用をする。   More specifically, the laser diode according to the preferred embodiment of the present invention is formed by etching the active layer 102 on the InP substrate 100 into a mesa pattern having a width of about 1 to 1.5 μm. In addition, a current blocking layer 103 of a p-InP layer and an n-InP layer is generated on both sides of the active layer 102, and a p-InP cladding layer 104 is generated on the upper side of the active layer 102. Here, the current blocking layer 103 functions to prevent the injected current from leaking to a region other than the active layer 102.

望ましくは、前記InP基板100と活性層102との間にはシングルモード波長を作るための回折格子108が備えられることである。このような回折格子108は、公知されている指数結合型、利得結合型、損失結合型または複合結合型が用いられることが望ましい。同時に、当該回折格子108により作られるシングルモード波長は、可視光領域から赤外線領域までの範囲に含まれることが望ましい。   Preferably, a diffraction grating 108 for generating a single mode wavelength is provided between the InP substrate 100 and the active layer 102. As such a diffraction grating 108, a known exponential coupling type, gain coupling type, loss coupling type, or composite coupling type is preferably used. At the same time, it is desirable that the single mode wavelength generated by the diffraction grating 108 be included in the range from the visible light region to the infrared region.

本発明の望ましい実施例によるレーザーダイオードには、寄生静電容量の減少のために略U字状でp−InP層104と電流遮断層103をエッチングして形成されたU−チャンネル107が用意される。   A laser diode according to a preferred embodiment of the present invention is provided with a U-channel 107 formed by etching the p-InP layer 104 and the current blocking layer 103 in a substantially U shape to reduce parasitic capacitance. The

また、前記U−チャンネル107上には、InGaAs層105及び絶縁層106が蒸着された後、U−チャンネル107の内側部分の絶縁層106が選択的に除去され、その除去された部分には上記InP基板100下面のn型電極101aに対応するp型電極101bが所定のパターンに形成される。   In addition, after the InGaAs layer 105 and the insulating layer 106 are deposited on the U-channel 107, the insulating layer 106 inside the U-channel 107 is selectively removed. A p-type electrode 101b corresponding to the n-type electrode 101a on the lower surface of the InP substrate 100 is formed in a predetermined pattern.

上述のように、多層で構成された後、レーザーダイオードの長さに合わせてウエハー切断工程を経て形成されるファセット(Facet)の表側は無反射膜(図示しない)がコートされ、裏側は高反射膜109がコートされて光出力効率をより高めるようになる。   As described above, after being composed of multiple layers, the front side of the facet formed through the wafer cutting process according to the length of the laser diode is coated with a non-reflective film (not shown), and the back side is highly reflective. The film 109 is coated to further increase the light output efficiency.

特に、活性層102は、電極101a、101bを通じて注入される電流を光に変換させるものであって、多重量子井戸構造を備える。ここで、多重量子井戸構造は、厚さがそれぞれ異なる量子井戸を含んで構成される。代案として、多重量子井戸構造は、同じ厚さを有する量子井戸のグループを含み、各グループごとに異なる厚さを有するように構成してもよい。   In particular, the active layer 102 converts a current injected through the electrodes 101a and 101b into light, and has a multiple quantum well structure. Here, the multiple quantum well structure includes quantum wells having different thicknesses. Alternatively, the multiple quantum well structure may include groups of quantum wells having the same thickness, with each group having a different thickness.

前記多重量子井戸は、量子井戸と障壁層が反復的に形成された構造を有するが、レーザーダイオードの特性を調節するように各量子井戸や障壁層にはストレインが印加されてもよい。   The multiple quantum well has a structure in which a quantum well and a barrier layer are repeatedly formed. However, a strain may be applied to each quantum well or barrier layer so as to adjust the characteristics of the laser diode.

図5に示すように、量子井戸の厚さが互いに異なるように形成されれば、伝導帯域にある量子井戸のエネルギー状態が多様に分布し、同じく価電子帯域の正孔のエネルギー状態が全て異なる値を有するようになる。従って、伝導帯域の電子が価電子帯域の正孔と結合して作り出すエネルギー(Eg)が広い波長領域に渡って存在することになるので、図6に示すように、波長による利得プロファイルが、図3を参照して説明した従来技術に比べて相対的に広い利得幅を有するようになる。   As shown in FIG. 5, if the quantum wells are formed to have different thicknesses, the energy states of the quantum wells in the conduction band are distributed in various ways, and the energy states of the holes in the valence band are all different. Has a value. Therefore, energy (Eg) generated by combining electrons in the conduction band with holes in the valence band exists over a wide wavelength region. Therefore, as shown in FIG. As compared with the prior art described with reference to FIG. 3, the gain width is relatively wide.

一方、従来技術により量子井戸の厚さを均一にして非冷却型分布帰還型レーザーダイオードを製作する場合には、図7に示すような、利得ピーク及びブラッグ波長の変化特性が現れる。すなわち、常温T2で、利得ピーク(中央プロファイルを参照)とDFBモードブラッグ波長(A)を一致させたとき、低温T1(左側プロファイルを参照)や高温T3(右側プロファイルを参照)で利得ピークの移動速度がブラッグ波長(T1はB、T3はCを参照)の移動速度より速いので、低温T1や高温T3におけるブラッグ波長の利得値がDFB閾値利得値(基準線Iを参照)より小さくてDFB発振にならず、低温や高温の利得プロファイルのピーク地点におけるファブリ−ペロー波長が発振するようになる。   On the other hand, when an uncooled distributed feedback laser diode is manufactured with the quantum well thickness made uniform according to the prior art, gain peak and Bragg wavelength change characteristics appear as shown in FIG. That is, when the gain peak (refer to the center profile) and the DFB mode Bragg wavelength (A) are matched at room temperature T2, the gain peak shifts at low temperature T1 (refer to the left profile) or high temperature T3 (refer to the right profile). Since the speed is faster than the moving speed of the Bragg wavelength (see B for T1 and C for T3), the gain value of the Bragg wavelength at the low temperature T1 and the high temperature T3 is smaller than the DFB threshold gain value (see the reference line I) and DFB oscillation However, the Fabry-Perot wavelength at the peak point of the low-temperature or high-temperature gain profile oscillates.

一方、本発明によって多重量子井戸の厚さを図5のように形成すれば、利得幅が相対的に広いので非冷却型分布帰還レーザーダイオードを製作する場合には、図8に示すような、利得ピーク及びブラッグ波長の変化特性が現れる。すなわち、常温T2で利得ピーク(中央プロファイルを参照)とブラッグ波長(A)を一致させたとき、低温T1や高温T3における利得ピーク(T1は左側、T3は右側プロファイルを参照)の移動速度がブラッグ波長(T1はB、T3はCを参照)の移動速度より速いが、利得プロファイルの幅が広いので低温T1や高温T3におけるブラッグ波長の利得値がDFB閾値利得値(基準線Iを参照)より充分大きくてDFB発振が起きファブリ−ペロー波長が発振しない。   On the other hand, if the thickness of the multiple quantum well is formed as shown in FIG. 5 according to the present invention, the gain width is relatively wide. Therefore, when an uncooled distributed feedback laser diode is manufactured, as shown in FIG. Gain peak and Bragg wavelength change characteristics appear. That is, when the gain peak (refer to the central profile) and the Bragg wavelength (A) coincide with each other at room temperature T2, the moving speed of the gain peak at low temperature T1 or high temperature T3 (refer to the left profile for T1 and the right profile for T3) is Bragg. Faster than the moving speed of the wavelength (T1 for B, T3 for C), but the gain profile is wide, so the Bragg wavelength gain value at low temperature T1 or high temperature T3 is higher than the DFB threshold gain value (see reference line I) DFB oscillation occurs and the Fabry-Perot wavelength does not oscillate.

したがって、量子井戸を除いた全ての構成が同一の条件であれば、本発明で用いる多重量子井戸を用いる場合、従来技術に比べてより広い温度領域でDFBモード発振が可能である。   Therefore, if all the configurations except for the quantum well are the same, when the multiple quantum well used in the present invention is used, DFB mode oscillation is possible in a wider temperature region than in the conventional technique.

本発明において、量子井戸を製作する工程そのものは従来の半導体工程技術を用いることができる。   In the present invention, a conventional semiconductor process technology can be used for the process of manufacturing the quantum well.

以上のように、本発明は、限定された実施例と図面とによって説明されたが、本発明はこれによって限定されず、本発明が属する技術分野において通常の知識を持つ者により本発明の技術思想と特許請求範囲の均等範囲内で多様な修正及び変形が可能なのは言うまでもない。   As described above, the present invention has been described with reference to the limited embodiments and drawings. However, the present invention is not limited thereto, and the technology of the present invention can be obtained by those having ordinary knowledge in the technical field to which the present invention belongs. It goes without saying that various modifications and variations can be made within the scope of the idea and the scope of claims.

本発明による分布帰還レーザーダイオードは、従来に比べて幅の広い利得プロファイルを有するようになるので、広い使用温度範囲に渡ってDFB発振が可能である。   Since the distributed feedback laser diode according to the present invention has a wider gain profile than the conventional one, DFB oscillation is possible over a wide operating temperature range.

また、不均一な多重量子井戸構造を用いるので、製造の際ウエハー全体の利得ピーク均一度を厳格に管理する必要がないという長所もある。   Further, since a non-uniform multiple quantum well structure is used, there is an advantage that it is not necessary to strictly control the gain peak uniformity of the entire wafer during manufacturing.

本明細書に添付される下記の図面は本発明の望ましい実施例を例示するものであって、発明の詳細な説明とともに本発明の技術思想をさらに理解させる役割を果たすものであるため、本発明はそのような図面に記載された事項にのみ限定されて解釈されてはいけない。   The following drawings attached to the present specification illustrate preferred embodiments of the present invention and serve to further understand the technical idea of the present invention together with the detailed description of the invention. Should not be construed as being limited to the matter described in such drawings.

従来技術による分布帰還型レーザーダイオードの構成図である。It is a block diagram of the distributed feedback type laser diode by a prior art. 従来技術による分布帰還型レーザーダイオードの多重量子井戸構造図である。1 is a multiple quantum well structure diagram of a distributed feedback laser diode according to the prior art. FIG. 従来技術による分布帰還型レーザーダイオードの利得プロファイル(Profile)である。It is a gain profile (Profile) of the distributed feedback type laser diode by a prior art. 本発明の望ましい実施例によるレーザーダイオードの構成を示す切開斜視図である。1 is a cut perspective view showing a configuration of a laser diode according to a preferred embodiment of the present invention. 図4の多重量子井戸構造図である。It is a multiple quantum well structure figure of FIG. 本発明の望ましい実施例によるレーザーダイオードの利得プロファイルである。3 is a gain profile of a laser diode according to a preferred embodiment of the present invention. 従来技術による分布帰還型レーザーダイオードの温度変化に応じた利得ピークとブラッグ(Bragg)波長の変化を示すグラフである。6 is a graph showing a change in gain peak and Bragg wavelength according to a temperature change of a distributed feedback laser diode according to the prior art. 本発明による分布帰還型レーザーダイオードの温度変化に応じた利得ピークとブラッグ波長の変化を示すグラフである。6 is a graph showing changes in gain peak and Bragg wavelength according to temperature changes of the distributed feedback laser diode according to the present invention.

Claims (8)

注入された電流を光に変換する、多重量子井戸構造を備えた活性層と、この活性層を挟んで形成される化合物半導体のPN接合構造と、電流を注入するための電極とを含む量子井戸レーザーダイオードにおいて、
当該活性層の多重量子井戸は、量子井戸の厚さが均一でない構造を有することを特徴とする量子井戸レーザーダイオード。
A quantum well including an active layer having a multiple quantum well structure that converts injected current into light, a PN junction structure of a compound semiconductor formed across the active layer, and an electrode for injecting current In laser diode,
The quantum well laser diode, wherein the multiple quantum well of the active layer has a structure in which the thickness of the quantum well is not uniform.
前記多重量子井戸は、量子井戸の厚さがそれぞれ異なることを特徴とする請求項1に記載の量子井戸レーザーダイオード。 The quantum well laser diode according to claim 1, wherein the multiple quantum wells have different quantum well thicknesses. 前記多重量子井戸は、同じ厚さを有する量子井戸のグループを含み、当該グループごとに異なる厚さを有することを特徴とする請求項1に記載の量子井戸レーザーダイオード。 The quantum well laser diode according to claim 1, wherein the multiple quantum well includes a group of quantum wells having the same thickness, and the group has a different thickness. ベースになるInP基板が備えられ、
前記基板と前記活性層との間に介在されて前記活性層で生成された光をシングルモード波長にする回折格子をさらに含むことを特徴とする請求項1に記載の量子井戸レーザーダイオード。
A base InP substrate is provided,
The quantum well laser diode according to claim 1, further comprising a diffraction grating interposed between the substrate and the active layer so that light generated in the active layer has a single mode wavelength.
前記回折格子として、指数結合型回折格子、利得結合型回折格子、損失結合型回折格子及び複合結合型回折格子のうちから選択された何れか一つが備えられたことを特徴とする請求項4に記載の量子井戸レーザーダイオード。 5. The diffraction grating according to claim 4, further comprising any one selected from an exponential coupled diffraction grating, a gain coupled diffraction grating, a loss coupled diffraction grating, and a composite coupled diffraction grating. The quantum well laser diode described. 前記回折格子により作られるシングルモード波長は、可視光領域から赤外線領域までの範囲に含まれることを特徴とする請求項4に記載の量子井戸レーザーダイオード。 5. The quantum well laser diode according to claim 4, wherein the single mode wavelength produced by the diffraction grating is included in a range from a visible light region to an infrared region. 光導波構造として、隆起型または埋立ヘテロ構造が用いられたことを特徴とする請求項1に記載の量子井戸レーザーダイオード。 2. The quantum well laser diode according to claim 1, wherein a raised type or a buried heterostructure is used as the optical waveguide structure. 前記多重量子井戸またはその障壁層にストレインが印加されたことを特徴とする請求項1に記載の量子井戸レーザーダイオード。 2. The quantum well laser diode according to claim 1, wherein a strain is applied to the multiple quantum well or a barrier layer thereof.
JP2007556067A 2005-02-18 2006-02-06 Quantum well laser diode with broadband gain Pending JP2008530814A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050013696A KR100693632B1 (en) 2005-02-18 2005-02-18 Quantum well laser diode having wide band gain
PCT/KR2006/000424 WO2006088293A1 (en) 2005-02-18 2006-02-06 Quantum well laser diode having wide band gain

Publications (1)

Publication Number Publication Date
JP2008530814A true JP2008530814A (en) 2008-08-07

Family

ID=36916670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007556067A Pending JP2008530814A (en) 2005-02-18 2006-02-06 Quantum well laser diode with broadband gain

Country Status (3)

Country Link
JP (1) JP2008530814A (en)
KR (1) KR100693632B1 (en)
WO (1) WO2006088293A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398001B (en) * 2020-10-10 2022-04-05 华芯半导体研究院(北京)有限公司 VCSEL chip structure of novel composite quantum well structure and preparation method
CN112563884B (en) * 2020-12-08 2021-10-01 中国科学院微电子研究所 Vertical cavity surface emitting laser and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170589A (en) * 1988-12-23 1990-07-02 Hitachi Ltd Semiconductor element, wavelength variable semiconductor laser and semiconductor phase modulator
JPH07221403A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Variable wave-length semiconductor laser
JPH07249829A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Distributed feedback semiconductor laser
JPH09283837A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Distributed semiconductor feed back laser device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477023A (en) * 1993-04-23 1995-12-19 Westinghouse Electric Corporation Laser engraving system and method for engraving an image on a workpiece
US5483547A (en) 1994-05-10 1996-01-09 Northern Telecom Limited Semiconductor laser structure for improved stability of the threshold current with respect to changes in the ambient temperature
JP3249999B2 (en) * 1995-03-13 2002-01-28 日本電信電話株式会社 Semiconductor laser device
GB2363901A (en) * 2000-06-20 2002-01-09 Mitel Semiconductor Ab An optical emission device having quantum wells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170589A (en) * 1988-12-23 1990-07-02 Hitachi Ltd Semiconductor element, wavelength variable semiconductor laser and semiconductor phase modulator
JPH07221403A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Variable wave-length semiconductor laser
JPH07249829A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Distributed feedback semiconductor laser
JPH09283837A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Distributed semiconductor feed back laser device

Also Published As

Publication number Publication date
KR100693632B1 (en) 2007-03-14
WO2006088293A1 (en) 2006-08-24
KR20060092647A (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP3225942B2 (en) Semiconductor optical element, method of manufacturing the same, and semiconductor optical device
US6580740B2 (en) Semiconductor laser device having selective absorption qualities
JP2004241570A (en) Semiconductor laser device
JP6588859B2 (en) Semiconductor laser
JPH07202327A (en) Optical semiconductor element
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JP6483521B2 (en) Semiconductor laser
JP6588858B2 (en) Semiconductor laser
JP4027639B2 (en) Semiconductor light emitting device
JP2008530814A (en) Quantum well laser diode with broadband gain
JP2950302B2 (en) Semiconductor laser
JP2006203100A (en) Semiconductor laser and light transmitter module
JP2002111125A (en) Distributed feedback semiconductor laser
JP4243506B2 (en) Semiconductor laser and optical module using the same
WO2021117095A1 (en) Directly modulated laser
CN115280609A (en) Optical device
WO2007069734A1 (en) External resonator type variable wavelength laser
JP2003218462A (en) Distributed feedback semiconductor laser device
Oh et al. Fabrication of Butt‐Coupled SGDBR Laser Integrated with Semiconductor Optical Amplifier Having a Lateral Tapered Waveguide
JPH04245493A (en) Multiwavelength semiconductor laser element and driving method of that element
JP7446542B1 (en) Quantum cascade laser device and method for manufacturing quantum cascade laser device
JP2012146761A (en) Semiconductor laser and optical semiconductor device
JP2001237494A (en) Semiconductor laser device
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JP2011205012A (en) Semiconductor light emitting device, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025