JPH07221403A - Variable wave-length semiconductor laser - Google Patents

Variable wave-length semiconductor laser

Info

Publication number
JPH07221403A
JPH07221403A JP6011270A JP1127094A JPH07221403A JP H07221403 A JPH07221403 A JP H07221403A JP 6011270 A JP6011270 A JP 6011270A JP 1127094 A JP1127094 A JP 1127094A JP H07221403 A JPH07221403 A JP H07221403A
Authority
JP
Japan
Prior art keywords
well
layer
semiconductor laser
gain
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6011270A
Other languages
Japanese (ja)
Other versions
JP3407065B2 (en
Inventor
Yutaka Nagai
豊 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01127094A priority Critical patent/JP3407065B2/en
Publication of JPH07221403A publication Critical patent/JPH07221403A/en
Application granted granted Critical
Publication of JP3407065B2 publication Critical patent/JP3407065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a variable wave-length semiconductor laser for a wide frequency range, which has a flat gain independent of oscillating frequency. CONSTITUTION:A variable wave-length semiconductor laser includes an active layer that has a periodical arrangement composed of a plurality of semiconductor layers each having wells 4, 5 and 6 with sequentially different thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、波長可変半導体レー
ザに関し、特にその構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength tunable semiconductor laser, and more particularly to its structure.

【0002】[0002]

【従来の技術】図2(a) は従来の波長可変レーザの構造
を示す共振器方向の断面図である。図において、10は
活性層、11は回折格子、12は活性領域、13はDB
R(Distributed Bragg Reflector)領域である。
2. Description of the Related Art FIG. 2 (a) is a cross-sectional view in the cavity direction showing the structure of a conventional wavelength tunable laser. In the figure, 10 is an active layer, 11 is a diffraction grating, 12 is an active region, and 13 is a DB.
This is an R (Distributed Bragg Reflector) region.

【0003】また、図2(b) ,図2(c) はそれぞれ上記
波長可変レーザの量子井戸構造のバンドダイアグラム,
およびゲインの波長依存性を示す図である。図におい
て、1はp−InPクラッド層、2はn−InPクラッ
ド層、3は層厚10nmのIn0.71Ga0.29As0.64P
0.36バリア層、4はウエル層厚5nmのIn0.53Ga0.
47Asウエル層、5はウエル層厚5.5nmのIn0.53
Ga0.47Asウエル層、6はウエル層厚6nmのIn0.
53Ga0.47Asウエル層である。また、7はウエル層厚
5nmのウエル層のゲインの波長依存性を示す曲線、8
はウエル層厚5.5nmのウエル層のゲインの波長依存
性を示す曲線、9はウエル層厚6nmのウエル層のゲイ
ンの波長依存性を示す曲線である。
2 (b) and 2 (c) are band diagrams of the quantum well structure of the above tunable laser,
It is a figure which shows the wavelength dependence of and gain. In the figure, 1 is a p-InP clad layer, 2 is an n-InP clad layer, 3 is In0.71Ga0.29As0.64P with a layer thickness of 10 nm.
0.36 barrier layer, 4 is In0.53 Ga0 with a well layer thickness of 5 nm.
47As well layer, 5 is In0.53 with a well layer thickness of 5.5 nm
Ga0.47As well layer, 6 is an In0.
53 Ga 0.47 As well layer. Reference numeral 7 is a curve showing the wavelength dependence of the gain of a well layer having a well layer thickness of 5 nm, and 8
Is a curve showing the wavelength dependence of the gain of the well layer having a well layer thickness of 5.5 nm, and 9 is a curve showing the wavelength dependence of the gain of the well layer having a well layer thickness of 6 nm.

【0004】図2(a) に示す半導体レーザは波長可変D
BRレーザと呼ばれ、このレーザは、光の共振器方向に
おいて、活性領域12と、回折格子11が形成されたD
BR領域13の2つの領域に分かれている。DBRの反
射率は、次式で与えられるブラッグ波長λB で最大とな
る。
The semiconductor laser shown in FIG. 2 (a) has a tunable wavelength D
This laser is called a BR laser, and this laser has a D region in which an active region 12 and a diffraction grating 11 are formed in the optical resonator direction.
The BR area 13 is divided into two areas. The reflectance of the DBR becomes maximum at the Bragg wavelength λB given by the following equation.

【0005】λB =2(neff Λ) …(1) ここで、Λは回折格子の周期、neff はDBR領域の導
波路の等価屈折率である。
Λ B = 2 (neff Λ) (1) where Λ is the period of the diffraction grating and neff is the equivalent refractive index of the waveguide in the DBR region.

【0006】この式からわかるように、ブラッグ波長付
近でDBRの反射率は最大となる。一方、半導体レーザ
の発振には、位相整合条件を満足することが必要であ
る。DBRレーザの発振波長は、反射率の最も高いブラ
ッグ波長近傍において、位相整合条件を満足する波長と
なる。DBR領域の等価屈折率neff を変化させれば、
(1) 式で与えられるブラッグ波長が変化し、発振波長が
変化する。DBR領域13に電流(以下DBR領域電流
ともいう。)Idを注入すれば、プラズマ効果により等
価屈折率neff が変化し、それに伴いブラッグ波長も変
わる。この場合、レーザ発振に要する動作電流は活性領
域12に注入された電流Iaによって維持される。図2
(d) に示すように、DBR領域電流Idを変化させるこ
とにより、レーザ発振波長も変化する。この例では、上
記DBR領域電流Idを0mAから100mAまで変え
ると、レーザ発振波長は1.558μmから1.552
μmまで6nm変化する。
As can be seen from this equation, the reflectance of the DBR becomes maximum near the Bragg wavelength. On the other hand, in order to oscillate the semiconductor laser, it is necessary to satisfy the phase matching condition. The oscillation wavelength of the DBR laser is a wavelength that satisfies the phase matching condition in the vicinity of the Bragg wavelength having the highest reflectance. If the equivalent refractive index neff of the DBR region is changed,
The Bragg wavelength given by equation (1) changes and the oscillation wavelength changes. When a current (hereinafter also referred to as a DBR region current) Id is injected into the DBR region 13, the equivalent refractive index neff changes due to the plasma effect, and the Bragg wavelength also changes accordingly. In this case, the operating current required for laser oscillation is maintained by the current Ia injected into the active region 12. Figure 2
As shown in (d), the laser oscillation wavelength is also changed by changing the DBR region current Id. In this example, when the DBR region current Id is changed from 0 mA to 100 mA, the laser oscillation wavelength is from 1.558 μm to 1.552.
6 nm change to μm.

【0007】波長可変DFBレーザの活性層10は、通
常量子井戸構造で構成されている。これは、量子井戸構
造にすると、閾値電流の低減や,変調特性の向上など、
レーザ特性の改善が著しいためである。量子井戸構造
は、ウエル層とバリア層で構成されており、ウエル層の
層厚は20nm以下である。光通信用に用いられるIn
GaAsP系材料の半導体レーザでは、利得、すなわち
ゲインを大きくするため、複数のウエル層にする。波長
可変半導体レーザでは、さらに図2(b) のバンドダイア
グラムに示すように、それぞれ同数,この場合,各3層
のウエル層4,5,6の厚さを5nm,5.5nm,6
nmと少しずつ変えてある。これは、ゲインの波長依存
性をフラットにするためで、各ウエル層厚を変えること
により、図2(c) に示すように、単一の層厚のウエル層
の場合よりゲインの波長依存性を緩和することができる
からである。つまり、ゲインの波長依存性はウエル層厚
により強く影響される訳である。活性層をこのような量
子井戸構造にすると、その波長可変領域が単一のウエル
層の半導体レーザに比べて大きく拡大することができる
ものである。
The active layer 10 of the wavelength tunable DFB laser is usually constructed by a quantum well structure. This is because the quantum well structure reduces the threshold current and improves the modulation characteristics.
This is because the laser characteristics are remarkably improved. The quantum well structure is composed of a well layer and a barrier layer, and the layer thickness of the well layer is 20 nm or less. In used for optical communication
In a semiconductor laser made of a GaAsP-based material, a plurality of well layers are formed in order to increase the gain, that is, the gain. In the wavelength tunable semiconductor laser, as shown in the band diagram of FIG. 2 (b), the number of well layers 4, 5 and 6 of the same number is 5 nm, 5.5 nm and 6 nm, respectively.
It is slightly changed from nm. This is to flatten the wavelength dependence of the gain. By changing the thickness of each well layer, as shown in Fig. 2 (c), the wavelength dependence of the gain is better than in the case of a single well layer. Because it can be alleviated. That is, the wavelength dependence of the gain is strongly influenced by the well layer thickness. When the active layer has such a quantum well structure, the wavelength variable region can be greatly expanded as compared with a semiconductor laser having a single well layer.

【0008】[0008]

【発明が解決しようとする課題】従来の波長可変半導体
レーザは以上のように構成されていたが、この従来の波
長可変半導体レーザにおけるウエル構造では2つの問題
がある。1つはゲインピークは、ウエル層を変えるとこ
れに伴って変化することであり、図2(c) の例では、5
nmのウエル層4のゲインピークが最大で、ウエル層が
厚くなるほどピーク値は小さくなるものであるが、この
ように、該ゲインピークは、図に示すような右下がりに
なり完全にフラットではなくなることとなる。つまり、
長波長側ではゲインは短波長側に比べて低く、発振しに
くくなっているものである。
Although the conventional wavelength tunable semiconductor laser is constructed as described above, the well structure in the conventional wavelength tunable semiconductor laser has two problems. The first is that the gain peak changes with the change of the well layer, and in the example of FIG.
The gain peak of the well layer 4 of nm is the maximum, and the peak value becomes smaller as the well layer becomes thicker. However, the gain peak decreases to the right as shown in the figure and is not completely flat. It will be. That is,
The gain on the long wavelength side is lower than that on the short wavelength side, which makes oscillation difficult.

【0009】もう1つの問題は、複数のウエル層を有す
る量子井戸構造の場合、ホールは質量が大きく、該ホー
ルに対するバリア層3のバリア効果が高いものであるた
め、p−InPクラッド層1側から量子井戸構造内に注
入されるホールが、p−InPクラッド層1に近いウエ
ル層で電子と再結合し、n−InPクラッド層2近傍ま
では至らないため、n−InP側のウエル層ではレーザ
発振しにくくなる、という問題である。すなわち、電子
は軽いため、量子井戸構造に対して均一に入ることがで
きるが、ホールは重いために該量子井戸構造に対して均
一に入ることができず、これにより均一な発振が起こら
ないことによって、ゲインが理論値より小さくなってし
まうという問題があった。
Another problem is that in the case of a quantum well structure having a plurality of well layers, the holes have a large mass, and the barrier effect of the barrier layer 3 on the holes is high, so that the p-InP cladding layer 1 side. The holes injected into the quantum well structure from are recombined with electrons in the well layer close to the p-InP clad layer 1 and do not reach the vicinity of the n-InP clad layer 2. Therefore, in the well layer on the n-InP side, The problem is that laser oscillation becomes difficult. That is, since the electrons are light, they can enter the quantum well structure uniformly, but the holes are heavy, so they cannot enter the quantum well structure uniformly, so that uniform oscillation does not occur. Therefore, there is a problem that the gain becomes smaller than the theoretical value.

【0010】この発明は、上記のような従来の問題点を
解決するためになされたもので、ゲインの波長依存性が
平坦となり、波長可変幅の広い波長可変半導体レーザを
得ることを目的としている。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to obtain a wavelength tunable semiconductor laser having a flat gain wavelength dependency and a wide wavelength tunable width. .

【0011】[0011]

【課題を解決するための手段】この発明にかかる波長可
変半導体レーザは、層厚の互いに異なる複数の種類のウ
エル層を含む量子井戸構造の活性層を有し、かつ上記複
数の種類のウエル層の配列順序を、該活性層における利
得の波長依存性が低減されるような配列順序としたもの
である。
A tunable semiconductor laser according to the present invention has an active layer of a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the plurality of types of well layers described above. Is arranged such that the wavelength dependence of the gain in the active layer is reduced.

【0012】また、この発明にかかる波長可変半導体レ
ーザは、層厚の互いに異なる複数の種類のウエル層を含
む量子井戸構造の活性層を有し、かつ上記複数の種類の
ウエル層の配列順序を、該活性層における利得の波長依
存性が低減されるような配列順序としたものにおいて、
上記量子井戸構造の活性層を含む活性領域と、該活性領
域の共振器長方向の端部に連続して配置された、その等
価屈折率を変化させることが可能な分布ブラッグ反射器
領域とを備えたものである。
Further, the wavelength tunable semiconductor laser according to the present invention has an active layer of a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the plurality of types of well layers are arranged in the order. , In the arrangement order such that the wavelength dependence of the gain in the active layer is reduced,
An active region including the active layer of the quantum well structure, and a distributed Bragg reflector region continuously arranged at the end of the active region in the cavity length direction and capable of changing its equivalent refractive index. Be prepared.

【0013】また、この発明にかかる波長可変半導体レ
ーザは、層厚の互いに異なる複数の種類のウエル層を有
し、各々、層厚の異なる複数のウエル層を層厚の順に配
置してなる,複数組の半導体積層構造を、周期的に配置
してなる量子井戸構造を、その活性層に有するものであ
る。
The tunable semiconductor laser according to the present invention has a plurality of types of well layers having different layer thicknesses, and a plurality of well layers having different layer thicknesses are arranged in this order. The active layer has a quantum well structure in which a plurality of semiconductor laminated structures are periodically arranged.

【0014】また、この発明にかかる波長可変半導体レ
ーザは、層厚の互いに異なる複数の種類のウエル層を有
し、各々、各組ごとに異なる層厚の異なるウエル層を含
む複数組の半導体積層構造を、上記ウエル層の層厚の順
に配置してなる量子井戸構造を、その活性層に有し、か
つ、利得の高い層厚のウエル層を含む組の半導体積層構
造ほどそのウエル層数を少なくし、利得の低い層厚のウ
エル層を含む組の半導体積層構造ほどそのウエル層数を
多くしたものである。
Further, the wavelength tunable semiconductor laser according to the present invention has a plurality of types of well layers having different layer thicknesses, and a plurality of sets of semiconductor laminated layers each including a well layer having a different layer thickness for each set. The quantum well structure in which the structures are arranged in the order of the layer thickness of the well layer is provided in the active layer, and the number of the well layers is increased as the semiconductor laminated structure of the group including the well layer having the high gain is increased. The number of well layers is increased as the number of sets of semiconductor laminated structures is reduced and the well layer having a lower gain and including well layers is included.

【0015】また、この発明にかかる波長可変半導体レ
ーザは、層厚の互いに異なる複数の種類のウエル層を有
し、各々、各組ごとに異なる層厚のウエル層を含む複数
組の半導体積層構造を、上記ウエル層の層厚の順に配置
してなる量子井戸構造を、その活性層に有し、かつ、利
得の高い層厚のウエル層を含む組の半導体積層構造ほど
そのウエル層数を少なくし、利得の低い層厚のウエル層
を含む組の半導体積層構造ほどそのウエル層数を多くし
たものにおいて、i(i=1〜n)番目のウエル層厚の
ウエル層を含む組の半導体積層構造のウエル数Ni と、
i番目のウエル層厚のウエル層の光閉じ込め係数Γi
と、i番目のウエル層厚のウエル層のホール注入効率η
iと、i番目のウエル層厚のウエル層のゲインgi との
積が、 N1 ・Γ1 ・η1 ・g1 =・・・=Ni ・Γi ・ηi ・gi =・・・ =Nn ・Γn ・ηn ・gn であるようにしたものである。
Further, the wavelength tunable semiconductor laser according to the present invention has a plurality of types of well layers having different layer thicknesses, and a plurality of sets of semiconductor laminated structures each including a well layer having a different layer thickness for each set. The quantum well structure formed by arranging the above well layers in the order of the layer thickness is arranged in the active layer, and the number of well layers is reduced in a semiconductor laminated structure of a group including well layers having a high gain. However, in the case where the number of well layers is increased as the number of well layers increases in a group including well layers having a low gain, the number of well layers having i-th (i = 1 to n) well layers is the same. The number of wells in the structure, Ni,
Optical confinement coefficient Γi of well layer with i-th well layer thickness
And the hole injection efficiency η of the well layer having the i-th well layer thickness
The product of i and the gain gi of the well layer of the i-th well layer is N1.GAMMA.1 .eta.1 .g1 = ... = Ni .GAMMA.i .eta.i .gi = ... = Nn .GAMMA.n .eta.n. gn.

【0016】[0016]

【作用】この発明にかかる波長可変半導体レーザにおい
ては、層厚の互いに異なる複数の種類のウエル層を含む
量子井戸構造の活性層を有し、かつ上記複数の種類のウ
エル層の配列順序を、該活性層における利得の波長依存
性が低減されるような配列順序としたので、波長可変幅
の広い半導体レーザが得られる。
In the tunable semiconductor laser according to the present invention, the tunable semiconductor laser has an active layer of a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the arrangement order of the plurality of types of well layers is Since the arrangement order is such that the wavelength dependence of the gain in the active layer is reduced, a semiconductor laser having a wide wavelength variable width can be obtained.

【0017】また、この発明にかかる波長可変半導体レ
ーザにおいては、層厚の互いに異なる複数の種類のウエ
ル層を含む量子井戸構造の活性層を有し、かつ上記複数
の種類のウエル層の配列順序を、該活性層における利得
の波長依存性が低減されるような配列順序としたものに
おいて、上記量子井戸構造の活性層を含む活性領域と、
該活性領域の共振器長方向の端部に連続して配置され
た、その等価屈折率を変化させることが可能な分布ブラ
ッグ反射器領域とを備えた構成としたので、波長可変幅
の広い波長可変DBRレーザが得られる。
Further, the wavelength tunable semiconductor laser according to the present invention has an active layer having a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the arrangement order of the plurality of types of well layers. In an arrangement order such that the wavelength dependence of the gain in the active layer is reduced, and an active region including the active layer of the quantum well structure,
Since the active region is provided with a distributed Bragg reflector region which is continuously arranged at the end portion in the cavity length direction and whose equivalent refractive index can be changed, a wavelength having a wide wavelength tunable width is provided. A tunable DBR laser is obtained.

【0018】この発明にかかる波長可変半導体レーザに
おいては、層厚の互いに異なる複数の種類のウエル層を
有し、各々、層厚の異なる複数のウエル層を層厚の順に
配置してなる,複数組の半導体積層構造を、周期的に配
置してなる量子井戸構造を、その活性層に有するものと
したので、ゲインの波長依存性が平坦になり、波長可変
幅の広い半導体レーザが得られる。
In the tunable semiconductor laser according to the present invention, a plurality of types of well layers having different layer thicknesses are provided, and a plurality of well layers having different layer thicknesses are arranged in order of layer thickness. Since the active layer has a quantum well structure formed by periodically arranging a set of semiconductor laminated structures, the wavelength dependence of gain is flat, and a semiconductor laser having a wide wavelength tunable width can be obtained.

【0019】また、この発明にかかる波長可変半導体レ
ーザにおいては、層厚の互いに異なる複数の種類のウエ
ル層を有し、各々、各組ごとに異なる層厚のウエル層を
含む複数組の半導体積層構造を、上記ウエル層の層厚の
順に配置してなる量子井戸構造を、その活性層に有し、
かつ、利得の高い層厚のウエル層を含む組の半導体積層
構造ほどそのウエル層数を少なくし、利得の低い層厚の
ウエル層を含む組の半導体積層構造ほどそのウエル層数
を多くしたので、ゲインの波長依存性が平坦になり、波
長可変幅の広い半導体レーザが得られる。
In addition, the wavelength tunable semiconductor laser according to the present invention has a plurality of types of well layers having different layer thicknesses, and each set includes a plurality of semiconductor laminated layers including well layers having different layer thicknesses. The active layer has a quantum well structure in which the structure is arranged in the order of the thickness of the well layer,
Further, the number of well layers is reduced as the group of semiconductor stacked structures including the well layer having a high gain layer thickness is increased, and the number of well layers is increased as that of the group including a well layer having a low gain layer thickness. , The gain wavelength dependency becomes flat, and a semiconductor laser having a wide wavelength tunable range can be obtained.

【0020】また、この発明にかかる波長可変半導体レ
ーザにおいては、層厚の互いに異なる複数の種類のウエ
ル層を有し、各々、各組ごとに異なる層厚の異なるウエ
ル層を含む複数組の半導体積層構造を、上記ウエル層の
層厚の順に配置してなる量子井戸構造を、その活性層に
有し、かつ、利得の高い層厚のウエル層を含む組の半導
体積層構造ほどそのウエル層数を少なくし、利得の低い
層厚のウエル層を含む組の半導体積層構造ほどそのウエ
ル層数を多くしたものにおいて、i(i=1〜n)番目
のウエル層厚のウエル層を含む組の半導体積層構造のウ
エル数Ni と、i番目のウエル層厚のウエル層の光閉じ
込め係数Γiと、i番目のウエル層厚のウエル層のホー
ル注入効率ηiと、i番目のウエル層厚のウエル層のゲ
インgiとの積が、 N1 ・Γ1 ・η1 ・g1 =・・・=Ni ・Γi ・ηi ・gi =・・・ =Nn ・Γn ・ηn ・gn であるようにしたので、ゲインの波長依存性が平坦にな
り、波長可変幅の広い半導体レーザが得られる。
In addition, the wavelength tunable semiconductor laser according to the present invention has a plurality of types of well layers each having a different layer thickness, and each set includes a plurality of sets of semiconductor layers including different well layers having different layer thicknesses. The number of well layers is higher in a group of semiconductor laminated structures having a quantum well structure in which the laminated structure is arranged in the order of the layer thicknesses of the above well layers in the active layer and including well layers having a high gain layer thickness. And the number of well layers is increased as the number of well layers increases in a group including well layers with a low gain layer thickness, a group including a well layer having an i (i = 1 to n) th well layer thickness The number of wells Ni of the semiconductor laminated structure, the optical confinement coefficient Γi of the well layer of the i-th well layer, the hole injection efficiency ηi of the well layer of the i-th well layer, and the well layer of the i-th well layer thickness. The product of the gain of 1 · Γ1 · η1 · g1 = ・ ・ ・ = Ni · Γi · ηi · gi = ・ ・ ・ = Nn · Γn · ηn · gn Since the wavelength dependence of the gain is flat and the wavelength tunable A wide semiconductor laser can be obtained.

【0021】[0021]

【実施例】実施例1 .以下本発明の実施例を図について説明する。
図1は、本発明の第1の実施例による波長可変半導体レ
ーザを説明するための図であり、図1(a) は該半導体レ
ーザの量子井戸構造のバンドダイアグラムを、図1(b)
は該量子井戸構造を構成する各ウエル層のゲインの波長
依存性を示している。図において、4はウエル層厚5n
mのIn0.53Ga0.47Asウエル層、5はウエル層厚
5.5nmのIn0.53Ga0.47Asウエル層、6はウエ
ル層厚6nmのIn0.53Ga0.47Asウエル層である。
また、7はウエル層厚5nmのウエル層のゲインの波長
依存性を示す曲線、8はウエル層厚5.5nmのウエル
層のゲインの波長依存性を示す曲線、9はウエル層厚6
nmのウエル層のゲインの波長依存性を示す曲線をそれ
ぞれ示す。
EXAMPLES Example 1 Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining a wavelength tunable semiconductor laser according to a first embodiment of the present invention. FIG. 1 (a) is a band diagram of a quantum well structure of the semiconductor laser, and FIG.
Shows the wavelength dependence of the gain of each well layer constituting the quantum well structure. In the figure, 4 is a well layer thickness of 5n
m is an In0.53Ga0.47As well layer, 5 is an In0.53Ga0.47As well layer having a well layer thickness of 5.5 nm, and 6 is an In0.53Ga0.47As well layer having a well layer thickness of 6 nm.
Further, 7 is a curve showing the wavelength dependence of the gain of the well layer having a well layer thickness of 5 nm, 8 is a curve showing the wavelength dependence of the gain of the well layer having a well layer thickness of 5.5 nm, and 9 is a well layer thickness 6
Curves showing the wavelength dependence of the gain of the well layer in nm are respectively shown.

【0022】本実施例の半導体レーザの構造は、従来例
のそれと同じであるのでその詳しい説明は省略する。本
実施例1の波長可変DBRレーザにおいては、量子井戸
構造は、図1(a) に示すようなエネルギバンドダイアグ
ラムになっている。この図1(a) 中では、左側の方がエ
ネルギが高くなっている。この構造においては、複数の
異なるウエル層厚のウエル層4,5,6が、交互に周期
的に積層された構造になっており、またそれぞれのウエ
ル層4,5,6のトータルの数は、等しくなっている。
この構成では、たとえp−InPクラッド層1から注入
されたホールがn−InPクラッド層2まで到達せずに
量子井戸構造内に不均一に分布することとなっても、こ
れらのホールは特定のウエル層厚のウエル層に片寄って
存在するものではなくなるので、図1(b) に示すよう
に、従来例のようにウエル層の配置がウエル層厚ごとに
順に並ぶ配置となっているものよりも、そのゲインの波
長依存性は大きく緩和されることとなる。従って、該波
長可変半導体レーザの波長可変幅も大きく増大すること
となる。
Since the structure of the semiconductor laser of this embodiment is the same as that of the conventional example, detailed description thereof will be omitted. In the wavelength tunable DBR laser of the first embodiment, the quantum well structure has an energy band diagram as shown in FIG. 1 (a). In FIG. 1 (a), the energy is higher on the left side. In this structure, a plurality of well layers 4, 5 and 6 having different well layer thicknesses are alternately and periodically laminated, and the total number of the well layers 4, 5 and 6 is , Are equal.
With this configuration, even if holes injected from the p-InP clad layer 1 do not reach the n-InP clad layer 2 and are non-uniformly distributed in the quantum well structure, these holes are not uniform. Since it does not exist in the well layer with an uneven thickness, the well layers are arranged in order according to the thickness of the well layer as shown in FIG. 1 (b). However, the wavelength dependence of the gain will be greatly relaxed. Therefore, the tunable width of the tunable semiconductor laser is also greatly increased.

【0023】このような本実施例1の波長可変半導体レ
ーザでは、量子井戸構造の活性層を、層厚の互いに異な
る複数の種類のウエル層を有し、各々、層厚の異なる複
数のウエル層を層厚の順に配置してなる,複数組の半導
体積層構造を、周期的に配置してなるものとしたので、
その量子井戸構造の波長に対するゲインの特性は、例え
ば、低波長側で高いものとなり、従って、この構成で
は、たとえp−InPクラッド層1から注入されたホー
ルがn−InPクラッド層2まで到達せずに量子井戸構
造内に不均一に分布しても、特定の層厚のウエル層に片
寄ることはなく、従来例のようにウエル層の配置が活性
層全体にわたってウエル層厚ごとに順に並ぶ配置となっ
ているものよりも、ゲインの波長依存性は大きく緩和さ
れ、これによりその波長可変幅もこれを増大することの
できる波長可変半導体レーザが得られる効果がある。
In the wavelength tunable semiconductor laser of the first embodiment, the active layer of the quantum well structure has a plurality of types of well layers having different layer thicknesses, and the plurality of well layers having different layer thicknesses are provided. Since a plurality of sets of semiconductor laminated structures, which are arranged in the order of the layer thickness, are arranged periodically,
The characteristic of the gain with respect to wavelength of the quantum well structure is high on the low wavelength side, for example. Therefore, in this configuration, holes injected from the p-InP cladding layer 1 reach the n-InP cladding layer 2. Even if they are distributed unevenly in the quantum well structure without being distributed, the well layers do not deviate to a well layer having a specific layer thickness, and the well layers are arranged in order by the well layer thickness over the entire active layer as in the conventional example. The wavelength dependence of the gain is greatly relaxed more than the above, and there is an effect that a wavelength tunable semiconductor laser capable of increasing the wavelength tunable width can be obtained.

【0024】実施例2.本発明の第2の実施例は、ウエ
ル層厚によってゲインの大きさが変わる影響をなくする
ため、ゲインの一番高いウエル層厚の層数を一定の値と
し、ゲインの小さいウエル層厚のウエルの数を順次増や
していくようにしたものであり、これにより、全体とし
てフラットな、つまり波長依存性の少ないゲインが得ら
れるようにしたものである。
Example 2 In the second embodiment of the present invention, in order to eliminate the influence that the magnitude of the gain changes depending on the well layer thickness, the number of well layers having the highest gain is set to a constant value, and the well layer thickness having the smallest gain is set. The number of wells is gradually increased so that a flat gain as a whole, that is, a gain with little wavelength dependence can be obtained.

【0025】即ち、図3は本発明の第2の実施例による
半導体レーザ装置を示し、図3(a)に示すように、ゲイ
ンの一番高いウエル層厚、この例では5nmのウエル層
4を3層にして、ゲインの小さいウエル層厚5.5n
m,6nm,のウエルの数を、例えば4層,5層と順次
増やしていけば、全体としてフラットな、つまり波長依
存性の少ないゲインを得ることができることとなる。こ
れを一般式として、数式で表わせば、 N1 ・Γ1 ・η1 ・g1 =・・・=Ni ・Γi ・ηi ・gi =・・・ =Nn ・Γn ・ηn ・gn となる。ここで、Ni は、各i(i=1〜n)番目のウ
エル層厚のウエル層のウエル数、Γi は、各i番目のウ
エル層厚のウエル層の光閉じ込め係数、ηi は、各i番
目のウエル層厚のウエル層のホール注入効率、gi は、
各i番目のウエル層厚のウエル層のゲインをそれぞれ表
す。上式を満足するようウエル数を選べば、フラットな
波長依存性のゲインが得られ、その結果、波長可変幅の
広い半導体レーザが得られる。
That is, FIG. 3 shows a semiconductor laser device according to a second embodiment of the present invention. As shown in FIG. 3A, the well layer 4 having the highest gain, in this example 5 nm, is formed. The thickness of the well layer with a small gain of 5.5n
If the number of m, 6 nm wells is increased in order, for example, to 4 layers and 5 layers, it is possible to obtain a flat gain as a whole, that is, a gain with little wavelength dependence. If this is expressed as a general formula, N1.GAMMA.1 .eta.1 .g1 = ... = Ni .GAMMA.i .eta.i .gi = ... = Nn .GAMMA.n .eta.n .gn. Where Ni is the number of wells in the i-th (i = 1 to n) -th well layer, Γi is the optical confinement coefficient of the i-th well-layer, and ηi is each i-th The hole injection efficiency of the well layer having the th well layer thickness, gi is
The gain of the well layer having the i-th well layer thickness is shown. If the number of wells is selected so as to satisfy the above equation, a flat wavelength-dependent gain can be obtained, and as a result, a semiconductor laser having a wide wavelength variable width can be obtained.

【0026】このような本実施例2による波長可変半導
体レーザでは、活性層を、層厚の異なる各複数のウエル
層を、該層厚の変化する順に配置してなる量子井戸構造
により構成し、該量子井戸構造を、利得の高い層厚のウ
エル層ほどそのウエル層数を少なくし、利得の低い層厚
のウエル層ほどそのウエル層数を多くしたので、たとえ
p−InPクラッド層1から注入されたホールがn−I
nPクラッド層2まで到達せずに量子井戸構造内に不均
一に分布することとなったしても、利得の低い層厚のウ
エル層の部分でもそのウエル層数を多くしていることに
よって所要の利得が得られることとなって、ゲインの波
長依存性は大きく緩和され、これによりその波長可変幅
もこれを増大することができるものが得られる効果があ
る。
In the wavelength tunable semiconductor laser according to the second embodiment, the active layer has a quantum well structure in which a plurality of well layers having different layer thicknesses are arranged in the order in which the layer thickness changes, In the quantum well structure, the number of well layers is decreased as the well layer having a higher gain is increased and the number of well layers is increased as the layer thickness is decreased as a lower gain. The opened hole is n-I
Even if the nP clad layer 2 does not reach the nP clad layer 2 and becomes unevenly distributed in the quantum well structure, it is necessary to increase the number of well layers even in the well layer portion having a low gain. As a result, the wavelength dependence of the gain is greatly alleviated, and the wavelength tunable range can be increased accordingly.

【0027】なお、上記各実施例では、DBR領域を備
え、該DBR領域の等価屈折率を変化させることによっ
て発振波長の制御を行なう、波長可変DBRレーザに適
用した場合について説明したが、本発明は、発振波長の
制御をDBR以外の他の構造によって行なう波長可変レ
ーザにも適用することができ、上記実施例と同様の効果
を奏する。
In each of the above-mentioned embodiments, the case where the invention is applied to the wavelength tunable DBR laser in which the DBR region is provided and the oscillation wavelength is controlled by changing the equivalent refractive index of the DBR region has been described. Can be applied to a wavelength tunable laser in which the oscillation wavelength is controlled by a structure other than the DBR, and the same effect as that of the above embodiment can be obtained.

【0028】また、レーザを構成する半導体材料も上記
実施例に示すものに限られるものではなく、GaAs系
等他の材料系を用いて構成したレーザにも適用可能であ
ることは言うまでもない。
Further, it is needless to say that the semiconductor material forming the laser is not limited to those shown in the above-mentioned embodiment, but can be applied to the laser formed by using other material system such as GaAs system.

【0029】[0029]

【発明の効果】以上のように、この発明にかかる波長可
変半導体レーザによれば、層厚の互いに異なる複数の種
類のウエル層を含む量子井戸構造の活性層を有し、かつ
上記複数の種類のウエル層の配列順序を、該活性層にお
ける利得の波長依存性が低減されるような配列順序とし
たので、波長可変幅の広い波長可変半導体レーザを得る
ことができる効果がある。
As described above, the wavelength tunable semiconductor laser according to the present invention has an active layer having a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the plurality of types described above. Since the arrangement order of the well layers is such that the wavelength dependence of the gain in the active layer is reduced, there is an effect that a wavelength tunable semiconductor laser having a wide wavelength tunable width can be obtained.

【0030】また、この発明にかかる波長可変半導体レ
ーザによれば、層厚の互いに異なる複数の種類のウエル
層を含む量子井戸構造の活性層を有し、かつ上記複数の
種類のウエル層の配列順序を、該活性層における利得の
波長依存性が低減されるような配列順序としたものにお
いて、上記量子井戸構造の活性層を含む活性領域と、該
活性領域の共振器長方向の端部に連続して配置された、
その等価屈折率を変化させることが可能な分布ブラッグ
反射器領域とを備えた構成としたので、波長可変幅の広
い波長可変DBRレーザを得ることができる効果があ
る。
Also, according to the tunable semiconductor laser of the present invention, the active layer has a quantum well structure including a plurality of types of well layers having different layer thicknesses, and the plurality of types of well layers are arranged. In the order in which the wavelength dependence of gain in the active layer is reduced, an active region including the active layer of the quantum well structure and an end portion of the active region in the cavity length direction are arranged. Arranged consecutively,
Since the distributed Bragg reflector region capable of changing its equivalent refractive index is provided, the wavelength tunable DBR laser having a wide wavelength tunable width can be obtained.

【0031】また、本発明にかかる波長可変半導体レー
ザによれば、層厚の互いに異なる複数の種類のウエル層
を有し、各々、層厚の異なる複数のウエル層を層厚の順
に配置してなる,複数組の半導体積層構造を、周期的に
配置してなる量子井戸構造を、その活性層に有するもの
としたので、ゲインの波長依存性が平坦になり、波長可
変幅の広い波長可変半導体レーザを得ることができる効
果がある。
Further, according to the wavelength tunable semiconductor laser of the present invention, a plurality of types of well layers having different layer thicknesses are provided, and a plurality of well layers having different layer thicknesses are arranged in order of layer thickness. Since the active layer has a quantum well structure formed by periodically arranging a plurality of sets of semiconductor laminated structures, the wavelength dependence of the gain is flat, and the wavelength tunable semiconductor has a wide wavelength tunable width. There is an effect that a laser can be obtained.

【0032】また、本発明にかかる波長可変半導体レー
ザによれば、層厚の互いに異なる複数の種類のウエル層
を有し、各々、各組ごとに異なる層厚のウエル層を含む
複数組の半導体積層構造を、上記ウエル層の層厚の順に
配置してなる量子井戸構造を、その活性層に有し、か
つ、利得の高い層厚のウエル層を含む組の半導体積層構
造ほどそのウエル層数を少なくし、利得の低い層厚のウ
エル層を含む組の半導体積層構造ほどそのウエル層数を
多くしたので、ゲインの波長依存性が平坦になり、波長
可変幅の広い波長可変半導体レーザを得ることができる
効果がある。
Further, according to the tunable semiconductor laser of the present invention, a plurality of sets of semiconductor layers each having a plurality of types of well layers having different layer thicknesses, each group including a well layer having a different layer thickness, are provided. The number of well layers is higher in a group of semiconductor laminated structures having a quantum well structure in which the laminated structure is arranged in the order of the layer thicknesses of the above well layers in the active layer and including well layers having a high gain layer thickness. Since the number of well layers is increased in a semiconductor laminated structure of a group including well layers having a low gain and a low gain, the wavelength dependence of gain becomes flat, and a wavelength tunable semiconductor laser having a wide wavelength tunable width is obtained. There is an effect that can be.

【0033】また、この発明にかかる波長可変半導体レ
ーザによれば、各ウエル層のウエル数Ni と、各ウエル
層の光閉じ込め係数Γiと、各ウエル層のホール注入効
率ηiと、各ウエル層のゲインgi との積が、 N1 ・Γ1 ・η1 ・g1 =N2 ・Γ2 ・η2 ・g2 =・・・ であるようにしたので、さらにゲインの波長依存性が平
坦になり、波長可変幅の広い波長可変半導体レーザを得
ることができる効果がある。
According to the tunable semiconductor laser of the present invention, the number of wells in each well layer Ni, the optical confinement coefficient Γi of each well layer, the hole injection efficiency ηi of each well layer, and the well injection efficiency ηi of each well layer. Since the product of the gain gi is N1 · Γ1 · η1 · g1 = N2 · Γ2 · η2 · g2 = ..., the wavelength dependence of the gain is further flattened and the wavelength with a wide wavelength tunable range is widened. There is an effect that a variable semiconductor laser can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による波長可変半導体レ
ーザの量子井戸構造のバンドダイアグラムを示す図(図
1(a) ),及びゲインの波長依存性を示す図(図1
(b))である。
FIG. 1 is a diagram showing a band diagram of a quantum well structure of a wavelength tunable semiconductor laser according to a first embodiment of the present invention (FIG. 1 (a)), and a diagram showing wavelength dependence of gain (FIG. 1).
(b)).

【図2】従来の波長可変半導体レーザの素子断面図(図
2(a) ),その量子井戸構造のバンドダイアグラムを示
す図(図2(b) ),そのゲインの波長依存性を示す図
(図2(c) ),及びその発振波長とDBR領域への注入
電流の関係を示す図(図2(d) )である。
2 is a sectional view of a conventional tunable semiconductor laser device (FIG. 2 (a)), a band diagram of its quantum well structure (FIG. 2 (b)), and a graph showing wavelength dependence of its gain ( 2 (c)), and FIG. 2 (d) showing the relationship between the oscillation wavelength and the injection current into the DBR region.

【図3】本発明の第2の実施例による波長可変半導体レ
ーザの量子井戸構造のバンドダイアグラムを示す図(図
3(a) ),及びそのゲインの波長依存性を示す図(図3
(b) )である。
FIG. 3 is a diagram showing a band diagram of a quantum well structure of a wavelength tunable semiconductor laser according to a second embodiment of the present invention (FIG. 3 (a)), and a diagram showing wavelength dependence of its gain (FIG. 3).
(b)).

【符号の説明】[Explanation of symbols]

1 p−InPクラッド層 2 n−InPクラッド層 3 InGaAsPバリア層 4 ウエル層厚5nmのInGaAsウエル層 5 ウエル層厚5.5nmのInGaAsウエル層 6 ウエル層厚6nmのInGaAsウエル層 7 ウエル層厚5nmのゲインの波長依存性を示す
曲線 8 ウエル層厚5.5nmのゲインの波長依存性を
示す曲線 9 ウエル層厚6nmのゲインの波長依存性を示す
曲線 10 活性層 11 回折格子 12 活性領域 13 DBR領域
DESCRIPTION OF SYMBOLS 1 p-InP clad layer 2 n-InP clad layer 3 InGaAsP barrier layer 4 Well layer thickness 5 nm InGaAs well layer 5 Well layer thickness 5.5 nm InGaAs well layer 6 Well layer thickness 6 nm InGaAs well layer 7 Well layer thickness 5 nm Curve showing the wavelength dependence of the gain of a well layer thickness of 5.5 nm Curve showing the wavelength dependence of the gain of 5.5 nm 9 Curve showing the wavelength dependence of the gain of a well layer thickness of 6 nm 10 Active layer 11 Diffraction grating 12 Active region 13 DBR region

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の波長のレーザ光を発生可能な活性
層を有する波長可変半導体レーザにおいて、 層厚の互いに異なる複数の種類のウエル層を含む量子井
戸構造の活性層を有し、かつ上記複数の種類のウエル層
の配列順序を、該活性層における利得の波長依存性が低
減されるような配列順序としたことを特徴とする波長可
変半導体レーザ。
1. A tunable semiconductor laser having an active layer capable of generating laser light of a plurality of wavelengths, the active layer having a quantum well structure including a plurality of types of well layers having different layer thicknesses, A tunable semiconductor laser, wherein a plurality of types of well layers are arranged in such an order that the wavelength dependence of gain in the active layer is reduced.
【請求項2】 請求項1記載の波長可変半導体レーザに
おいて、 上記量子井戸構造の活性層を含む活性領域と、 該活性領域の共振器長方向の端部に連続して配置され
た、その等価屈折率を変化させることが可能な分布ブラ
ッグ反射器領域とを備えたことを特徴とする波長可変半
導体レーザ。
2. The wavelength tunable semiconductor laser according to claim 1, wherein an active region including an active layer of the quantum well structure and an equivalent region of the active region which is continuously arranged at an end portion in the cavity length direction of the active region. A tunable semiconductor laser comprising a distributed Bragg reflector region capable of changing a refractive index.
【請求項3】 請求項1記載の波長可変半導体レーザに
おいて、 層厚の互いに異なる複数の種類のウエル層を有し、各
々、層厚の異なる複数のウエル層を層厚の順に配置して
なる,複数組の半導体積層構造を、周期的に配置してな
る量子井戸構造を、その活性層に有することを特徴とす
る波長可変半導体レーザ。
3. The wavelength tunable semiconductor laser according to claim 1, further comprising a plurality of types of well layers having different layer thicknesses, and a plurality of well layers having different layer thicknesses are arranged in order of layer thickness. A tunable semiconductor laser having a quantum well structure in which a plurality of sets of semiconductor laminated structures are periodically arranged in its active layer.
【請求項4】 請求項1記載の波長可変半導体レーザに
おいて、 層厚の互いに異なる複数の種類のウエル層を有し、各
々、各組ごとに異なる層厚のウエル層を含む複数組の半
導体積層構造を、上記ウエル層の層厚の順に配置してな
る量子井戸構造を、その活性層に有し、 利得の高い層厚のウエル層を含む組の半導体積層構造ほ
どそのウエル層数を少なくし、利得の低い層厚のウエル
層を含む組の半導体積層構造ほどそのウエル層数を多く
したことを特徴とする波長可変半導体レーザ。
4. The tunable semiconductor laser according to claim 1, further comprising a plurality of types of well layers having different layer thicknesses, each set including a plurality of semiconductor layers each including a well layer having a different layer thickness. The active layer has a quantum well structure in which the well layers are arranged in the order of the thickness of the well layers, and the number of well layers is reduced in a semiconductor laminated structure of a group including well layers having a high gain. A tunable semiconductor laser, wherein the number of well layers is increased in a semiconductor laminated structure of a set including well layers having a low gain layer thickness.
【請求項5】 請求項4記載の波長可変半導体レーザに
おいて、 i(i=1〜n)番目のウエル層厚のウエル層を含む組
の半導体積層構造のウエル数Ni と、i番目のウエル層
厚のウエル層の光閉じ込め係数Γiと、i番目のウエル
層厚のウエル層のホール注入効率ηiと、i番目のウエ
ル層厚のウエル層のゲインgi との積が、 N1 ・Γ1 ・η1 ・g1 =・・・=Ni ・Γi ・ηi ・gi =・・・ =Nn ・Γn ・ηn ・gn であることを特徴とする波長可変半導体レーザ。
5. The tunable semiconductor laser according to claim 4, wherein the number of wells Ni of a semiconductor laminated structure of a set including a well layer having an i (i = 1 to n) well layer thickness and an i th well layer. The product of the optical confinement coefficient Γi of the thick well layer, the hole injection efficiency ηi of the well layer of the i-th well layer, and the gain gi of the well layer of the i-th well layer is N1 · Γ1 · η1 · A wavelength tunable semiconductor laser characterized in that g1 = ... = Ni..GAMMA.i..eta.i.gi = ... = Nn..GAMMA.n.eta.n.gn.
JP01127094A 1994-02-03 1994-02-03 Tunable semiconductor laser Expired - Fee Related JP3407065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01127094A JP3407065B2 (en) 1994-02-03 1994-02-03 Tunable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01127094A JP3407065B2 (en) 1994-02-03 1994-02-03 Tunable semiconductor laser

Publications (2)

Publication Number Publication Date
JPH07221403A true JPH07221403A (en) 1995-08-18
JP3407065B2 JP3407065B2 (en) 2003-05-19

Family

ID=11773288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01127094A Expired - Fee Related JP3407065B2 (en) 1994-02-03 1994-02-03 Tunable semiconductor laser

Country Status (1)

Country Link
JP (1) JP3407065B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236868A (en) * 1995-02-28 1996-09-13 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Planar type semiconductor light amplifier element
JPH10294523A (en) * 1997-04-17 1998-11-04 Nec Corp Semiconductor variable wavelength laser
JPH10294530A (en) * 1997-02-19 1998-11-04 Sony Corp Multiquantum well type semiconductor light emitting element
JPH118442A (en) * 1996-10-07 1999-01-12 Canon Inc Optical semiconductor device, optical communication system provided therewith, and method therefor
JP2002344091A (en) * 2001-04-19 2002-11-29 National Taiwan Univ Method for amplifying luminescent bandwidth of semiconductor photoelectric element
JP2006203100A (en) * 2005-01-24 2006-08-03 Opnext Japan Inc Semiconductor laser and light transmitter module
JP2008530814A (en) * 2005-02-18 2008-08-07 エルエス ケーブル リミテッド Quantum well laser diode with broadband gain
JP2009124009A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2009152261A (en) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
WO2016143579A1 (en) * 2015-03-06 2016-09-15 古河電気工業株式会社 Semiconductor optical element
JP2017123445A (en) * 2016-01-08 2017-07-13 浜松ホトニクス株式会社 Distribution feedback type semiconductor laser element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236868A (en) * 1995-02-28 1996-09-13 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Planar type semiconductor light amplifier element
JPH118442A (en) * 1996-10-07 1999-01-12 Canon Inc Optical semiconductor device, optical communication system provided therewith, and method therefor
JPH10294530A (en) * 1997-02-19 1998-11-04 Sony Corp Multiquantum well type semiconductor light emitting element
JPH10294523A (en) * 1997-04-17 1998-11-04 Nec Corp Semiconductor variable wavelength laser
US6052400A (en) * 1997-04-17 2000-04-18 Nec Corporation Variable wavelength semiconductor laser
JP2002344091A (en) * 2001-04-19 2002-11-29 National Taiwan Univ Method for amplifying luminescent bandwidth of semiconductor photoelectric element
JP2006203100A (en) * 2005-01-24 2006-08-03 Opnext Japan Inc Semiconductor laser and light transmitter module
JP2008530814A (en) * 2005-02-18 2008-08-07 エルエス ケーブル リミテッド Quantum well laser diode with broadband gain
JP2009124009A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2009152261A (en) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
WO2016143579A1 (en) * 2015-03-06 2016-09-15 古河電気工業株式会社 Semiconductor optical element
US9912122B2 (en) 2015-03-06 2018-03-06 Furukawa Electric Co., Ltd. Semiconductor optical device
JP2017123445A (en) * 2016-01-08 2017-07-13 浜松ホトニクス株式会社 Distribution feedback type semiconductor laser element

Also Published As

Publication number Publication date
JP3407065B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US6590924B2 (en) Mirror and cavity designs for sampled grating distributed bragg reflector lasers
US7366220B2 (en) Tunable laser
US5727013A (en) Single lobe surface emitting complex coupled distributed feedback semiconductor laser
US4920542A (en) Tunable semiconductor laser
US4993036A (en) Semiconductor laser array including lasers with reflecting means having different wavelength selection properties
US4985897A (en) Semiconductor laser array having high power and high beam quality
US7643532B2 (en) Manufacturable sampled grating mirrors
US20050053112A1 (en) Surface emitting dfb laser structures for broadband communication systems and array of same
US20050238079A1 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
EP1766740B1 (en) Tuneable unipolar laser
JP3407065B2 (en) Tunable semiconductor laser
US20050243882A1 (en) Dual-wavelength semiconductor laser
EP1454393B1 (en) Phase shifted surface emitting dfb laser structures with gain or absorptive gratings
JP7265198B2 (en) Tunable DBR semiconductor laser
JP4074534B2 (en) Semiconductor laser
JP3765117B2 (en) External cavity semiconductor laser
KR20060025168A (en) Method and apparatus for suppression of spatial-hole burning in second or higher order dfb laser
JPH08236868A (en) Planar type semiconductor light amplifier element
US20040151224A1 (en) Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method
JPH02260483A (en) Semiconductor laser device
CA2364817A1 (en) Phase shifted surface emitting dfb laser structures with gain or absorptive gratings
JPH08321659A (en) Manufacture of semiconductor laser array
JPH0318083A (en) Semiconductor laser
JPH06104524A (en) Variable wavelength semiconductor laser and variable transmitting wavelength optical filter
JPH02238686A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees