JP2006203100A - Semiconductor laser and light transmitter module - Google Patents

Semiconductor laser and light transmitter module Download PDF

Info

Publication number
JP2006203100A
JP2006203100A JP2005015131A JP2005015131A JP2006203100A JP 2006203100 A JP2006203100 A JP 2006203100A JP 2005015131 A JP2005015131 A JP 2005015131A JP 2005015131 A JP2005015131 A JP 2005015131A JP 2006203100 A JP2006203100 A JP 2006203100A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
ingaalas
semiconductor laser
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015131A
Other languages
Japanese (ja)
Inventor
Masaru Mukaikubo
優 向久保
Singh Harpreet
ハルプリート スィング
Noriko Sasada
紀子 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2005015131A priority Critical patent/JP2006203100A/en
Publication of JP2006203100A publication Critical patent/JP2006203100A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a gain from a gain spectrum having wide range energy for Bragg wavelength in the overall temperature region of 0°C to 85°C. <P>SOLUTION: A semiconductor laser forms a quantum well layer constituted of three layers or more whose well widths are equal, and whose Eg difference is 18 meV or less in an active layer region. Each quantum well has different forbidden band width, and a gain spectrum 1 has gains within a wide wavelength range. Thus, it is possible to realize the uniformity of gains in a wide temperature range for Bragg wavelength 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体レーザおよび光送信器モジュールに係り、特に使用温度範囲の広い半導体レーザおよび光送信器モジュールに関するものである。   The present invention relates to a semiconductor laser and an optical transmitter module, and more particularly to a semiconductor laser and an optical transmitter module having a wide operating temperature range.

半導体レーザ素子は、その活性層を活性層の禁制帯幅よりの広い禁制帯幅の半導体層で挟んだダブルへテロ構造が、基本的な素子構造として知られている。非特許文献1には、このダブルへテロ構造の活性層に、禁制帯幅の広い超薄膜半導体層で禁制帯幅の狭い超薄膜半導体層を挟み、禁制帯幅の狭い超薄膜半導体中のキャリアが離散的なエネルギ状態をとるようにした量子井戸構造を取り入れることにより、キャリアの状態密度が離散的になり、低発振閾値、高光変換効率で、かつ良好な温度特性となることが記載されている。   2. Description of the Related Art A semiconductor laser element is known as a basic element structure in which a double hetero structure in which an active layer is sandwiched between semiconductor layers having a forbidden band wider than the forbidden band of the active layer. Non-Patent Document 1 discloses that an active layer having a double hetero structure sandwiches an ultra-thin semiconductor layer with a narrow forbidden band between ultra-thin semiconductor layers with a wide forbidden band, and carriers in an ultra-thin semiconductor with a narrow forbidden band. It has been described that by adopting a quantum well structure that takes discrete energy states, the state density of carriers becomes discrete, low oscillation threshold, high light conversion efficiency, and good temperature characteristics. Yes.

N. Holonyak, jr.,et al.、"Quantum-well heterostructure lasers"、IEEE、Journal of Quantum Electronics、1980年、Vol.QE-16 pp.170-186N. Holonyak, jr., Et al., "Quantum-well heterostructure lasers", IEEE, Journal of Quantum Electronics, 1980, Vol.QE-16 pp.170-186

分布帰還型半導体レーザにおいて、発振波長は、実効屈折率と回折格子周期で決定されるブラッグ波長であり、その温度特性は0.1nm/K程度である。これに対し、量子井戸活性層によって決定される利得波長の温度特性は、約0.4nm/Kである。   In the distributed feedback semiconductor laser, the oscillation wavelength is a Bragg wavelength determined by the effective refractive index and the diffraction grating period, and its temperature characteristic is about 0.1 nm / K. On the other hand, the temperature characteristic of the gain wavelength determined by the quantum well active layer is about 0.4 nm / K.

半導体レーザを広温度範囲に適用した場合、ブラッグ波長と利得波長の各々の温度特性の差異により、ブラッグ波長ピークが利得波長ピークから外れてしまい、利得は低下して、発振閾値電流増加、光変換効率低下となる。例えば、0℃から85℃でのブラッグ波長ピークと利得波長ピークの差は、最大約25.5nmとなる。   When a semiconductor laser is applied to a wide temperature range, the Bragg wavelength peak deviates from the gain wavelength peak due to the difference in temperature characteristics of the Bragg wavelength and the gain wavelength, the gain decreases, the oscillation threshold current increases, and the optical conversion Efficiency is reduced. For example, the maximum difference between the Bragg wavelength peak and the gain wavelength peak at 0 ° C. to 85 ° C. is about 25.5 nm.

量子井戸活性層に、少なくとも3層の井戸幅が概ね等しく禁制帯幅がそれぞれ異なる量子井戸を設け、前記量子井戸の禁制帯幅の差を概ね18meVとする。また、量子井戸活性層に、少なくとも3層の井戸幅がそれぞれ異なり禁制帯幅が概ね等しい量子井戸を設け、前記量子井戸の井戸幅の差を概ね0.7nmとする。さらに、これらを組み合わせて、量子井戸の禁制帯幅換算値の差が概ね18meVとなるように前記量子井戸の井戸幅または/および禁制帯幅を調整する。   The quantum well active layer is provided with quantum wells having at least three wells having substantially the same width and different forbidden band widths, and the difference in the forbidden band widths of the quantum wells is about 18 meV. The quantum well active layer is provided with at least three quantum wells having different well widths and substantially equal forbidden band widths, and the difference in well width between the quantum wells is set to approximately 0.7 nm. Further, by combining them, the well width and / or the forbidden band width of the quantum well is adjusted so that the difference between the converted values of the forbidden band width of the quantum well is approximately 18 meV.

上記手段により、0℃から85℃の全温度領域において、ブラッグ波長は広範囲エネルギを有する利得スペクトルから利得を得ることができる。   By the above means, the Bragg wavelength can be gained from a gain spectrum having a wide range of energy in the entire temperature range from 0 ° C. to 85 ° C.

以下、本発明の実施の形態について実施例を用いて図面を参照しながら説明する。各実施例について等価の部分には同じ符号を振り、説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described using examples with reference to the drawings. The same reference numerals are assigned to equivalent parts in the respective embodiments, and description thereof will not be repeated.

本発明の第1の実施の形態である半導体レーザについて、図1ないし図3を用いて説明する。ここで、図1は、多重量子井戸構造の活性層を持つ半導体レーザの光軸方向断面図である。図2は、量子井戸のエネルギーギャップを説明する図である。また、図3は、利得の波長依存性を説明する図である。   A semiconductor laser according to a first embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a sectional view in the optical axis direction of a semiconductor laser having an active layer having a multiple quantum well structure. FIG. 2 is a diagram for explaining the energy gap of the quantum well. FIG. 3 is a diagram for explaining the wavelength dependence of gain.

まず、図1を用いて、半導体レーザの製造プロセスを説明する。図1(a)において、n型InP基板3上に、有機金属気相成長法を用いて、n型InAlAs光クラッド層4、n型InGaAlAs光ガイド層5、InGaAlAs井戸層とInGaAlAs障壁層とを交互に5回積層した量子井戸活性層6、p型InGaAlAs光ガイド層7、p型InGaAsPエッチング停止層8、p型InGaAsP回折格子層9を結晶成長する。次に、図1(b)に示すように、p型InGaAsP回折格子層9にホトリソグラフィの手法で、回折格子を形成する。   First, a semiconductor laser manufacturing process will be described with reference to FIG. In FIG. 1A, an n-type InAlAs optical cladding layer 4, an n-type InGaAlAs optical guide layer 5, an InGaAlAs well layer, and an InGaAlAs barrier layer are formed on an n-type InP substrate 3 by metal organic vapor phase epitaxy. A quantum well active layer 6, a p-type InGaAlAs light guide layer 7, a p-type InGaAsP etching stop layer 8, and a p-type InGaAsP diffraction grating layer 9 which are alternately stacked five times are crystal-grown. Next, as shown in FIG. 1B, a diffraction grating is formed on the p-type InGaAsP diffraction grating layer 9 by a photolithography technique.

なお、量子井戸活性層6のInGaAlAs井戸層の成長時には、膜厚(6.3nm)とInとAsとの組成比は、各成長回とも一定として、Gaの組成比を1回ごとに増やし、Alの組成比を1回ごとに減らす。   When the InGaAlAs well layer of the quantum well active layer 6 is grown, the composition ratio of the film thickness (6.3 nm) and In and As is constant for each growth time, and the Ga composition ratio is increased every time. Reduce the Al composition ratio every time.

図1(c)に移って、p型InPクラッド層10、p型InGaAsコンタクト層11を結晶成長する、基板表面にp電極12、基板裏面にn電極13形成し、劈開したのち、素子前方端面には無反射膜14、後方端面には高反射膜15を形成した。共振器長は150μmとした。   1C, a p-type InP clad layer 10 and a p-type InGaAs contact layer 11 are crystal-grown, a p-electrode 12 is formed on the substrate surface, an n-electrode 13 is formed on the back surface of the substrate, cleaved, and then the front end surface of the device A non-reflective film 14 was formed on the back surface, and a highly reflective film 15 was formed on the rear end face. The resonator length was 150 μm.

この素子構造の量子井戸活性層は、図2に示すように、井戸幅が等しく、禁制帯幅の異なる5つの量子井戸となった。量子井戸の禁制帯幅は、それぞれEg1=0.972eV、Eg2=0.967eV、Eg3=0.963eV、Eg4=0.958eV、Eg5=0.954eVとした。   As shown in FIG. 2, the quantum well active layer of this device structure has five quantum wells having the same well width and different forbidden band widths. The forbidden band widths of the quantum wells were Eg1 = 0.972 eV, Eg2 = 0.967 eV, Eg3 = 0.963 eV, Eg4 = 0.958 eV, and Eg5 = 0.954 eV, respectively.

また、図3において、利得は禁制帯幅の違いに対応して、5つのピークを持つ。これは、広いエネルギ範囲で利得を持つことを意味する。この結果、広い温度範囲で利得を低下させないことができる。Eg1−Eg5=18meVなので、Eg1とEg5の利得ピーク差(所定値)は、26nmである。この所定値は、使用する温度範囲と、ブラッグ波長ピークの温度特性と、利得波長ピークの温度特性とから、計算できる。   In FIG. 3, the gain has five peaks corresponding to the difference in the forbidden bandwidth. This means having gain over a wide energy range. As a result, the gain cannot be reduced over a wide temperature range. Since Eg1−Eg5 = 18 meV, the gain peak difference (predetermined value) between Eg1 and Eg5 is 26 nm. This predetermined value can be calculated from the temperature range to be used, the temperature characteristic of the Bragg wavelength peak, and the temperature characteristic of the gain wavelength peak.

この半導体レーザ素子は、素子温度0℃から85℃において、発振閾値の温度特性100K、光変換効率の温度依存性1.1dBと、禁制帯幅一定の場合の発振閾値の温度特性70K、光変換効率の温度依存性2.0dBから向上した。   This semiconductor laser device has an oscillation threshold temperature characteristic of 100 K, an optical conversion efficiency temperature dependency of 1.1 dB, an oscillation threshold temperature characteristic of 70 K when the element band is constant, and an optical conversion at an element temperature of 0 ° C. to 85 ° C. The temperature dependence of efficiency was improved from 2.0 dB.

なお、量子井戸活性層6のInGaAlAs井戸層の成長時には、膜厚とInとAsとの組成比は、各成長回とも一定として、Alの組成比を1回ごとに増やし、Gaの組成比を1回ごとに減らしてもよい。ランダムに異なっても良い。井戸の層数が2層の場合、デイップを生ずる。したがって、井戸の層数は好ましくは3層以上であり、さらに好ましくは5層以上である。また、当業者なら容易に理解できるように、導電型(p型またはn型)を逆転させてもよい。これは、これ以降の実施例でも同様である。   When the InGaAlAs well layer of the quantum well active layer 6 is grown, the film thickness and the composition ratio of In and As are constant for each growth time, and the Al composition ratio is increased each time to increase the Ga composition ratio. It may be reduced every time. It may be different at random. When the number of well layers is two, dip occurs. Therefore, the number of well layers is preferably 3 or more, and more preferably 5 or more. Further, as can be easily understood by those skilled in the art, the conductivity type (p-type or n-type) may be reversed. This is the same in the following embodiments.

半導体レーザの実施例2について、図1、図3、図4を用いて説明する。ここで、図4は、量子井戸の構造を説明する図である。
実施例2の半導体レーザの構造は、基本的には図1と同じである。しかし、実施例1では、InGaAlAs井戸層の成長時に、膜厚を一定としてGaとAlの組成比を変えていたのに対し、InGaAlAsの組成は一定として、膜厚(すなわち井戸幅)を変える。具体的には、井戸層は5層とし、各々の井戸幅WはW1=6.0nm、W2=6.2nm、W3=6.3nm、W4=6.5nm、W5=6.7nmとした。
Example 2 of the semiconductor laser will be described with reference to FIGS. 1, 3, and 4. FIG. Here, FIG. 4 is a diagram for explaining the structure of the quantum well.
The structure of the semiconductor laser of Example 2 is basically the same as that shown in FIG. However, in Example 1, when the InGaAlAs well layer was grown, the composition ratio of Ga and Al was changed with the film thickness being constant, whereas the film thickness (that is, well width) was changed with the composition of InGaAlAs being constant. Specifically, the number of well layers is five, and the width W of each well is W1 = 6.0 nm, W2 = 6.2 nm, W3 = 6.3 nm, W4 = 6.5 nm, and W5 = 6.7 nm.

この実施例の量子井戸の構造は、図4に示すように、禁制帯幅(0.963eV)は一定で、幅の異なる5つの井戸で表される。また、実施例1で説明した利得の波長依存性(図3)は、実施例2でも共通である。すなわち、換算されたEg1と換算されたEg5の利得ピーク差は、26nmである。   As shown in FIG. 4, the quantum well structure of this embodiment is expressed by five wells having a constant forbidden band width (0.963 eV) and different widths. Further, the wavelength dependency of gain (FIG. 3) described in the first embodiment is also common to the second embodiment. That is, the gain peak difference between the converted Eg1 and the converted Eg5 is 26 nm.

この半導体レーザ素子は、素子温度0℃から85℃において、発振閾値の温度特性100K、光変換効率の温度依存性1.1dBを得た。
なお、井戸の幅は、最初広くして徐々に狭めても良い。また、井戸幅は、ランダムに変えても良い。井戸の層数は好ましくは3層以上であり、さらに好ましくは5層以上である。
This semiconductor laser device obtained an oscillation threshold temperature characteristic of 100 K and a temperature dependency of light conversion efficiency of 1.1 dB at an element temperature of 0 ° C. to 85 ° C.
The width of the well may be increased initially and gradually reduced. Further, the well width may be changed randomly. The number of well layers is preferably 3 or more, and more preferably 5 or more.

さらに、井戸幅と禁制帯幅との組み合わせで、禁制帯幅に換算して18meV程度の差を持った少なくとも3層の井戸としてもよい。換言すれば、井戸幅または/および禁制帯幅を調整して、禁制帯幅に換算して18meV程度の差を持った少なくとも3層の井戸としてもよい。   Furthermore, a combination of the well width and the forbidden band width may be a three-layer well having a difference of about 18 meV in terms of the forbidden band width. In other words, the well width or / and the forbidden band width may be adjusted to convert the forbidden band width into at least three wells having a difference of about 18 meV.

半導体レーザの実施例3について、図5を用いて説明する。図5は、多重量子井戸構造の活性層を持つ半導体レーザの光軸方向断面図である。   Example 3 of the semiconductor laser will be described with reference to FIG. FIG. 5 is a sectional view in the optical axis direction of a semiconductor laser having an active layer having a multiple quantum well structure.

図5に示すのは、分布反射型半導体レーザの光軸方向断面図である。図5を用いて、半導体レーザの製造プロセスを説明する。n型InP基板3上に、有機金属気相成長法を用いて、n型InAlAs光クラッド層4、n型InGaAlAs光ガイド層5、InGaAlAs井戸層とInGaAlAs障壁層とを交互に5回積層した量子井戸活性層6、p型InGaAlAs光ガイド層7、p型InGaAsPエッチング停止層8結晶成長する。ここで、量子井戸活性層6のInGaAlAs井戸層の成長時には、膜厚とInとAsとの組成比は、各成長回とも一定として、Gaの組成比を1回ごとに増やし、Alの組成比を1回ごとに減らす。   FIG. 5 is a sectional view in the optical axis direction of the distributed reflection type semiconductor laser. The semiconductor laser manufacturing process will be described with reference to FIG. Quantum in which an n-type InAlAs optical cladding layer 4, an n-type InGaAlAs light guide layer 5, an InGaAlAs well layer, and an InGaAlAs barrier layer are alternately stacked five times on an n-type InP substrate 3 by metal organic chemical vapor deposition. A well active layer 6, a p-type InGaAlAs light guide layer 7, and a p-type InGaAsP etching stop layer 8 are grown. Here, when the InGaAlAs well layer of the quantum well active layer 6 is grown, the film thickness and the composition ratio of In and As are constant for each growth time, and the composition ratio of Al is increased by increasing the Ga composition ratio every time. Is reduced every time.

次に、中央の活性層部をマスクし、両脇の光出力導波路部分の各層をn型InGaAlAs光ガイド層5まで、エッチング除去する。次にバッドジョイント(Butt Joint)部となるInGaAlAsパッシブ導波路15を、活性層の両脇に結晶成長させ、光出力導波路16を形成する。この光出力導波路16は、量子井戸活性層6と光結合する。光導波路部とバットジョイント部の上にエッチング停止層8aとp型InGaAsP回折格子層17を形成する。p型InGaAsP回折格子層17にホトリソグラフィの手法で、回折格子を形成する。   Next, the central active layer portion is masked, and the layers of the optical output waveguide portions on both sides are removed by etching up to the n-type InGaAlAs light guide layer 5. Next, an InGaAlAs passive waveguide 15 serving as a bad joint part is crystal-grown on both sides of the active layer to form an optical output waveguide 16. This optical output waveguide 16 is optically coupled to the quantum well active layer 6. An etching stop layer 8a and a p-type InGaAsP diffraction grating layer 17 are formed on the optical waveguide portion and the butt joint portion. A diffraction grating is formed on the p-type InGaAsP diffraction grating layer 17 by photolithography.

続いて、p型InPクラッド層10、p型InGaAsコンタクト層11を結晶成長し、p電極12形成、裏面研磨、n電極13形成、劈開工程を経て、素子を作製した。なお、この素子前方後方端面には無反射膜14を形成した。共振器長は、活性層部を150μm、活性層を挟んだ二つの光出力導波路部をそれぞれ200μmとした。   Subsequently, the p-type InP clad layer 10 and the p-type InGaAs contact layer 11 were crystal-grown, and a device was fabricated through p-electrode 12 formation, back surface polishing, n-electrode 13 formation, and cleavage steps. An antireflective film 14 was formed on the front rear end face of the element. The resonator length was 150 μm for the active layer portion and 200 μm for each of the two optical output waveguide portions sandwiching the active layer.

この素子構造での量子井戸活性層は、図1に示すように、井戸幅が等しく、組成波長が異なる複数の量子井戸層を形成した。量子井戸層は5層とし、各々の禁制帯幅はEg1=0.972eV、Eg2=0.967eV、Eg3=0.963eV、Eg4=0.958eV、Eg5=0.954eVとした。このとき、Eg1とEg5の利得ピーク差は、実施例1に示したように26nmである。   As shown in FIG. 1, the quantum well active layer in this device structure was formed with a plurality of quantum well layers having the same well width and different composition wavelengths. The quantum well layers are five layers, and the forbidden band widths are set to Eg1 = 0.972 eV, Eg2 = 0.967 eV, Eg3 = 0.963 eV, Eg4 = 0.958 eV, and Eg5 = 0.954 eV. At this time, the gain peak difference between Eg1 and Eg5 is 26 nm as shown in the first embodiment.

本構造の半導体レーザ素子は素子温度0℃から85℃において、発振閾値の温度特性70K、光変換効率の温度依存性2.0dBを得た。
なお、実施例2と同様に、量子井戸活性層を、組成波長が等しく、井戸幅の異なるものとした場合でも、同様の特性が得られた。
The semiconductor laser device of this structure obtained an oscillation threshold temperature characteristic of 70 K and a temperature dependency of optical conversion efficiency of 2.0 dB at an element temperature of 0 ° C. to 85 ° C.
Similar to Example 2, the same characteristics were obtained even when the quantum well active layers had the same composition wavelength and different well widths.

本発明の第2の実施の形態である光送信器モジュールについて、図6を用いて説明する。ここで、図6は、光送信器モジュールの回路ブロック図である。   An optical transmitter module according to the second embodiment of the present invention will be described with reference to FIG. Here, FIG. 6 is a circuit block diagram of the optical transmitter module.

図6に示す光送信器モジュール200は、実施例1ないし実施例3の半導体レーザ素子100、100’を、光送信器モジュールに搭載したものである。光送信器モジュール200は、接地された金属ケース107内部に、半導体レーザ素子100、フォトダイオード101、サーミスタ102、ドライバIC103にて構成されている。ドライバIC103には、電源線106とDATA入力線104とが接続され、半導体レーザ素子100を直接変調する。半導体レーザ素子100の前端から出射された光信号は、図示しない光ファイバ伝送路に結合し伝送される。一方、半導体レーザ素子100の後端から出射された光信号は、フォトダイオード101に入射し、半導体レーザ素子100の前方出力をモニタされる。金属ケース107内には、サーミスタ102を設け、半導体レーザ素子温度が、0℃から85℃の範囲にあることをモニタする。   An optical transmitter module 200 shown in FIG. 6 is obtained by mounting the semiconductor laser elements 100 and 100 ′ of the first to third embodiments on an optical transmitter module. The optical transmitter module 200 includes a semiconductor laser element 100, a photodiode 101, a thermistor 102, and a driver IC 103 inside a grounded metal case 107. A power source line 106 and a DATA input line 104 are connected to the driver IC 103, and the semiconductor laser element 100 is directly modulated. An optical signal emitted from the front end of the semiconductor laser element 100 is coupled to an optical fiber transmission line (not shown) and transmitted. On the other hand, the optical signal emitted from the rear end of the semiconductor laser element 100 is incident on the photodiode 101 and the front output of the semiconductor laser element 100 is monitored. A thermistor 102 is provided in the metal case 107 to monitor that the semiconductor laser element temperature is in the range of 0 ° C. to 85 ° C.

この光送信器モジュール200は、0℃から75℃(ケース温度)の全温度において動作可能な、発振閾値変化、光変換効率変化の少ない特性を実現した。
本実施例に拠れば、金属ケース内に温度調節装置が不要な光送信器モジュールを実現できた。
This optical transmitter module 200 realized a characteristic that can be operated at all temperatures from 0 ° C. to 75 ° C. (case temperature) and that has a small change in oscillation threshold and a change in light conversion efficiency.
According to this embodiment, an optical transmitter module that does not require a temperature control device in the metal case can be realized.

多重量子井戸構造の活性層を持つ半導体レーザの光軸方向断面図である。FIG. 3 is a cross-sectional view in the optical axis direction of a semiconductor laser having an active layer having a multiple quantum well structure. 量子井戸のエネルギーギャップを説明する図である。It is a figure explaining the energy gap of a quantum well. 利得の波長依存性を説明する図である。It is a figure explaining the wavelength dependence of a gain. 量子井戸の構造を説明する図である。It is a figure explaining the structure of a quantum well. 多重量子井戸構造の活性層を持つ半導体レーザの光軸方向断面図である。FIG. 3 is a cross-sectional view in the optical axis direction of a semiconductor laser having an active layer having a multiple quantum well structure. 光送信器モジュールの回路ブロック図である。It is a circuit block diagram of an optical transmitter module.

符号の説明Explanation of symbols

1…利得スペクトラム、2…ブラッグ波長、3…n型InP基板、4…n型InAlAs光クラッド層、5…n型InGaAlAs光ガイド層、6…量子井戸活性層、7…p型InGaAlAs光ガイド層、8…p型InGaAsPエッチストッパー層、9…p型InGaAsP回折格子層、10…p型InPクラッド層、11…p型InGaAsコンタクト層、12…p電極、13…n電極、14…無反射膜、15…InGaAlAsパッシブ導波路、16…InGaAlAs光出力導波路、17…p型InGaAsP回折格子、100…半導体レーザ素子、101…フォトダイオード、102…サーミスタ、103…ドライバIC、104…DATA線、105…光出力、106…電源線、107…金属ケース、200…光送信器モジュール。
DESCRIPTION OF SYMBOLS 1 ... Gain spectrum, 2 ... Bragg wavelength, 3 ... n-type InP substrate, 4 ... n-type InAlAs optical cladding layer, 5 ... n-type InGaAlAs optical guide layer, 6 ... quantum well active layer, 7 ... p-type InGaAlAs optical guide layer 8 ... p-type InGaAsP etch stopper layer, 9 ... p-type InGaAsP diffraction grating layer, 10 ... p-type InP cladding layer, 11 ... p-type InGaAs contact layer, 12 ... p-electrode, 13 ... n-electrode, 14 ... non-reflective film , 15 ... InGaAlAs passive waveguide, 16 ... InGaAlAs optical output waveguide, 17 ... p-type InGaAsP diffraction grating, 100 ... semiconductor laser element, 101 ... photodiode, 102 ... thermistor, 103 ... driver IC, 104 ... DATA line, 105 Optical output 106 Power line 107 Metal case 200 Optical transmitter module

Claims (5)

第1の導電型の半導体基板上に、第1の導電型の光クラッド層と、第1の導電型のInGaAlAs光ガイド層と、InGaAlAs量子井戸活性層と、第2の導電型のInGaAlAs光ガイド層と、第2の導電型の光クラッド層と、回折格子層と、コンタクト層とを積層形成された半導体レーザであって、
前記InGaAlAs量子井戸活性層に、少なくとも3層の禁制帯幅換算値がそれぞれ異なる量子井戸を設け、前記量子井戸の禁制帯幅換算値の差が所定値となるように前記量子井戸の井戸幅または禁制帯幅を調整されたことを特徴とする半導体レーザ素子。
A first conductivity type optical cladding layer, a first conductivity type InGaAlAs light guide layer, an InGaAlAs quantum well active layer, and a second conductivity type InGaAlAs light guide on a first conductivity type semiconductor substrate. A semiconductor laser in which a layer, an optical cladding layer of a second conductivity type, a diffraction grating layer, and a contact layer are laminated,
The InGaAlAs quantum well active layer is provided with quantum wells having different forbidden band width conversion values of at least three layers, and the well width of the quantum well or the difference of the forbidden band width conversion values of the quantum wells becomes a predetermined value. A semiconductor laser device having a forbidden bandwidth adjusted.
第1の導電型の半導体基板上に、第1の導電型の光クラッド層と、第1の導電型のInGaAlAs光ガイド層と、InGaAlAs量子井戸活性層と、第2の導電型のInGaAlAs光ガイド層と、第2の導電型の光クラッド層と、回折格子層と、コンタクト層とを積層形成された半導体レーザであって、
前記InGaAlAs量子井戸活性層に、少なくとも3層の井戸幅が概ね等しく禁制帯幅がそれぞれ異なる量子井戸を設け、前記量子井戸の禁制帯幅の差を概ね18meVとすることを特徴とする半導体レーザ素子。
A first conductivity type optical cladding layer, a first conductivity type InGaAlAs light guide layer, an InGaAlAs quantum well active layer, and a second conductivity type InGaAlAs light guide on a first conductivity type semiconductor substrate. A semiconductor laser in which a layer, an optical cladding layer of a second conductivity type, a diffraction grating layer, and a contact layer are laminated,
The InGaAlAs quantum well active layer is provided with quantum wells having at least three wells having substantially the same width and different forbidden band widths, and the difference in the forbidden band widths of the quantum wells is set to about 18 meV. .
第1の導電型の半導体基板上に、第1の導電型の光クラッド層と、第1の導電型のInGaAlAs光ガイド層と、InGaAlAs量子井戸活性層と、第2の導電型のInGaAlAs光ガイド層と、第2の導電型の光クラッド層と、回折格子層と、コンタクト層とを積層形成された半導体レーザであって、
前記InGaAlAs量子井戸活性層に、少なくとも3層の井戸幅がそれぞれ異なり禁制帯幅が概ね等しい量子井戸を設け、前記量子井戸の井戸幅の差を概ね0.7nmとすることを特徴とする半導体レーザ素子。
A first conductivity type optical cladding layer, a first conductivity type InGaAlAs light guide layer, an InGaAlAs quantum well active layer, and a second conductivity type InGaAlAs light guide on a first conductivity type semiconductor substrate. A semiconductor laser in which a layer, an optical cladding layer of a second conductivity type, a diffraction grating layer, and a contact layer are laminated,
The InGaAlAs quantum well active layer is provided with at least three quantum wells having different well widths and substantially equal forbidden band widths, and the difference between the well widths of the quantum wells is approximately 0.7 nm. element.
請求項1ないし請求項3のいずれか一つに記載の半導体レーザ素子であって、
第1の導電型は、n型であることを特徴とする半導体レーザ。
A semiconductor laser device according to any one of claims 1 to 3,
A semiconductor laser characterized in that the first conductivity type is n-type.
第1の導電型の半導体基板上に、第1の導電型の光クラッド層と、第1の導電型のInGaAlAs光ガイド層と、InGaAlAs量子井戸活性層と、第2の導電型のInGaAlAs光ガイド層と、第2の導電型の光クラッド層と、回折格子層と、コンタクト層とを積層形成され、前記InGaAlAs量子井戸活性層に、少なくとも3層の禁制帯幅換算値がそれぞれ異なる量子井戸を設け、前記量子井戸の禁制帯幅換算値の差が概ね18meVとなるように前記量子井戸の井戸幅または/および禁制帯幅を調整された半導体レーザ素子と、
前記半導体レーザ素子収容するケースとからなる光送信器モジュール。
A first conductivity type optical cladding layer, a first conductivity type InGaAlAs light guide layer, an InGaAlAs quantum well active layer, and a second conductivity type InGaAlAs light guide on a first conductivity type semiconductor substrate. A layer, a second-conductivity-type optical cladding layer, a diffraction grating layer, and a contact layer, and the InGaAlAs quantum well active layer includes at least three quantum wells having different forbidden band width conversion values. A semiconductor laser device, wherein a well width or / and a forbidden band width of the quantum well is adjusted so that a difference in a forbidden band width converted value of the quantum well is approximately 18 meV;
An optical transmitter module comprising a case for housing the semiconductor laser element.
JP2005015131A 2005-01-24 2005-01-24 Semiconductor laser and light transmitter module Pending JP2006203100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015131A JP2006203100A (en) 2005-01-24 2005-01-24 Semiconductor laser and light transmitter module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015131A JP2006203100A (en) 2005-01-24 2005-01-24 Semiconductor laser and light transmitter module

Publications (1)

Publication Number Publication Date
JP2006203100A true JP2006203100A (en) 2006-08-03

Family

ID=36960795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015131A Pending JP2006203100A (en) 2005-01-24 2005-01-24 Semiconductor laser and light transmitter module

Country Status (1)

Country Link
JP (1) JP2006203100A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094410A (en) * 2007-10-11 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical integrated device and its manufacturing method
JP2009152261A (en) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2014150145A (en) * 2013-01-31 2014-08-21 Japan Oclaro Inc Semiconductor laser element and optical semiconductor device
JP2017152724A (en) * 2017-04-24 2017-08-31 日本オクラロ株式会社 Semiconductor laser element, and optical semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257385A (en) * 1988-04-07 1989-10-13 Fujitsu Ltd Semiconductor light emitting device
JPH03214683A (en) * 1990-01-19 1991-09-19 Hitachi Ltd Variable wavelength semiconductor laser
JPH07221403A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Variable wave-length semiconductor laser
JPH07235734A (en) * 1993-12-27 1995-09-05 Nec Corp Multiple quantum well distribution feedback semiconductor laser
JPH07249829A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Distributed feedback semiconductor laser
JPH09162495A (en) * 1995-12-11 1997-06-20 Sumitomo Electric Ind Ltd External resonator semiconductor laser
JPH09283837A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Distributed semiconductor feed back laser device
JP2002134842A (en) * 2000-10-26 2002-05-10 Hitachi Ltd Semiconductor laser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257385A (en) * 1988-04-07 1989-10-13 Fujitsu Ltd Semiconductor light emitting device
JPH03214683A (en) * 1990-01-19 1991-09-19 Hitachi Ltd Variable wavelength semiconductor laser
JPH07235734A (en) * 1993-12-27 1995-09-05 Nec Corp Multiple quantum well distribution feedback semiconductor laser
JPH07221403A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Variable wave-length semiconductor laser
JPH07249829A (en) * 1994-03-10 1995-09-26 Hitachi Ltd Distributed feedback semiconductor laser
JPH09162495A (en) * 1995-12-11 1997-06-20 Sumitomo Electric Ind Ltd External resonator semiconductor laser
JPH09283837A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Distributed semiconductor feed back laser device
JP2002134842A (en) * 2000-10-26 2002-05-10 Hitachi Ltd Semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094410A (en) * 2007-10-11 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical integrated device and its manufacturing method
JP2009152261A (en) * 2007-12-19 2009-07-09 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2014150145A (en) * 2013-01-31 2014-08-21 Japan Oclaro Inc Semiconductor laser element and optical semiconductor device
JP2017152724A (en) * 2017-04-24 2017-08-31 日本オクラロ株式会社 Semiconductor laser element, and optical semiconductor device

Similar Documents

Publication Publication Date Title
US7809038B2 (en) Electro-absorption optical modulator integrated with a laser to produce high speed, uncooled, long distance, low power, 1550 nm optical communication device with optimized parameters
US9312663B2 (en) Laser device, light modulation device, and optical semiconductor device
US8155161B2 (en) Semiconductor laser
US8787420B2 (en) Integrated semiconductor laser element
WO2011096040A1 (en) Semiconductor laser element, method of manufacturing semiconductor laser element, and optical module
JP2008227367A (en) Distributed feedback semiconductor laser element
JP6588859B2 (en) Semiconductor laser
JP2010232424A (en) Semiconductor optical amplifier, and optical module
JP2017107958A (en) Semiconductor laser
US7460576B2 (en) Semiconductor optical amplifier
JP2011049317A (en) Semiconductor laser device
JP6483521B2 (en) Semiconductor laser
US8576472B2 (en) Optoelectronic device with controlled temperature dependence of the emission wavelength and method of making same
JP2006203100A (en) Semiconductor laser and light transmitter module
JP2017204600A (en) Semiconductor laser
EP1766739B1 (en) Semiconductor laser with side mode suppression
JP4243506B2 (en) Semiconductor laser and optical module using the same
US20170194766A1 (en) Optical device and optical module
JP3971600B2 (en) Laser diode
JP5163355B2 (en) Semiconductor laser device
KR100693632B1 (en) Quantum well laser diode having wide band gain
JP2009016878A (en) Semiconductor laser and optical module using the same
JP2010141232A (en) Semiconductor laser element
Yashiki et al. Wavelength-independent operation of EA-modulator integrated wavelengthselectable microarray light sources
Zhu et al. Widely Tunable 1.3 μm InGaAlAs/InP DBR Laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308