JPH08321659A - Manufacture of semiconductor laser array - Google Patents

Manufacture of semiconductor laser array

Info

Publication number
JPH08321659A
JPH08321659A JP15396496A JP15396496A JPH08321659A JP H08321659 A JPH08321659 A JP H08321659A JP 15396496 A JP15396496 A JP 15396496A JP 15396496 A JP15396496 A JP 15396496A JP H08321659 A JPH08321659 A JP H08321659A
Authority
JP
Japan
Prior art keywords
layer
layers
diffraction grating
array
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15396496A
Other languages
Japanese (ja)
Other versions
JP2746262B2 (en
Inventor
Masato Ishino
正人 石野
Yoichi Sasai
洋一 佐々井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8153964A priority Critical patent/JP2746262B2/en
Publication of JPH08321659A publication Critical patent/JPH08321659A/en
Application granted granted Critical
Publication of JP2746262B2 publication Critical patent/JP2746262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a method of manufacturing a semiconductor laser array, which lessens an irregularity in the characteristics of each resonator and integrates a diffraction grating, an optical waveguide layer, active layers and a clad layer on a substrate in a wide wavelength range. CONSTITUTION: A laser array is constituted of an LD 1 and an LD 2. The array is mainly constituted of a diffraction grating, 100, an InGaAsP optical waveguide layer 12, active layers 31 and 32 and a P-type InP clad layer on an N-type InP substrate 11. The active layers are active layers 31 and 32, which are respectively formed into a multiple quantum well structure consisting of InGaAsP well and barrier layers having layer thicknesses different from each other. Here, the MQW active layer 31 consists of well layers 33 of a layer thickness of 50Å and barrier layers 34 of a layer thickness of 50Å as the enlarged figure of the layer 31 is shown in a diagram D and the MQW active layer 32 consists of well layers 35 of a layer thickness of 100Å and barrier layers 36 of a layer thickness of 100Å as the enlarged figure of the layer 32 is shown in a diagram E. In this case, the pitch of the diffraction grating is the same to both layers 31 and 32. In such a way, the structure of each resonator constituting the array can be formed by the one-time formation of the diffraction grating and a one-time epitaxial growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は波長多重光通信に必
要な光源である集積化多波長分布帰還型半導体レーザア
レイの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an integrated multi-wavelength distributed feedback semiconductor laser array which is a light source required for wavelength division multiplexing optical communication.

【0002】[0002]

【従来の技術】近年、大容量光通信として、光多重通信
が盛んに研究開発されている。このような波長多重通信
用光源には、異なる発振波長の複数の半導体レーザが必
要となるが、光源の小型化,光軸の調整等の立場から同
一基板上に異なる発振波長のレーザを集積化した多波長
集積化レーザアレイの研究開発も盛んになっている。こ
のような多波長光源では多重密度を上げるためにも高速
変調時においても安定な単一軸モード発振を有する分布
帰還型半導体レーザ(以下DFB−LD)で構成される
ことが好ましい。
2. Description of the Related Art Recently, optical multiplex communication has been actively researched and developed as a large capacity optical communication. A plurality of semiconductor lasers with different oscillation wavelengths are required for such a light source for wavelength-division communication, but lasers with different oscillation wavelengths are integrated on the same substrate from the standpoint of downsizing the light source, adjusting the optical axis, etc. The research and development of the multi-wavelength integrated laser array is also active. In order to increase the multiplex density in such a multi-wavelength light source, it is preferable that the multi-wavelength light source is composed of a distributed feedback semiconductor laser (hereinafter referred to as DFB-LD) having stable single axis mode oscillation even at the time of high speed modulation.

【0003】DFB−LDアレイにおいて、各LDの発
振波長を変化させる比較的容易な方法としては各LDを
構成する回折格子のピッチΛを各LDで変化させる方法
がある〔参考文献H.Okuda.et.al.シ゛ャハ゜ン シ゛ェイ アフ゜ライト゛
フィシ゛ックス(J pn.J.Appl.Phys.)23(1984)L904〕。
In the DFB-LD array, as a relatively easy method of changing the oscillation wavelength of each LD, there is a method of changing the pitch Λ of the diffraction grating forming each LD in each LD [Reference H. Okuda. et.al. JAPAN GAY READY
Physics (Jpn.J.Appl.Phys.) 23 (1984) L904].

【0004】図6Aは同一基板上に複数のLDを集積し
たLDアレイの平面構造図である。ここでは代表的な2
つのLD(1,2)のみ示してある。図6B,Cはそれ
ぞれのLD1,2のキャピティ方向の断面a−a’,b
−b’のエピタキシャル構造図である。ここで11はn
型InP基板、12はn−InGaAsP光導波層(バ
ンドギャップ波長λg=1.1μm)、13はInGa
AsP活性層(λg=1.3μm)、14はp型InP
クラッド層である。n型InP基板11上にはそれぞれ
ピッチΛ1=3940ÅおよびΛ2=3850Åの回折格
子20,21が形成されている。
FIG. 6A is a plan view of an LD array in which a plurality of LDs are integrated on the same substrate. Two typical here
Only two LDs (1,2) are shown. 6B and 6C are sectional views aa ′ and b of the LD1 and LD2 in the capacity direction.
It is an epitaxial structure figure of -b '. Where 11 is n
Type InP substrate, 12 n-InGaAsP optical waveguide layer (bandgap wavelength λ g = 1.1 μm), 13 InGa
AsP active layer (λ g = 1.3 μm), 14 is p-type InP
It is a clad layer. Diffraction gratings 20 and 21 having pitches Λ 1 = 3940Å and Λ 2 = 3850Å are formed on the n-type InP substrate 11, respectively.

【0005】LDの発振波長λはneffを実効屈折率,
Nを回折次数とすると、 λ=2neff・Λ/N ……………(1) で決定される。ここでN=2,neffを3.30とする
と、LDの発振波長はそれぞれλ1=1.30μm,λ2
=1.27μmと2つのLDで30nmの発振波長差を
得ることができる。このように各LDでの回折格子のピ
ッチを変化させることによりDFB−LDの発振波長は
変化されることができる。
The oscillation wavelength λ of the LD is n eff, which is the effective refractive index,
When N is the diffraction order, it is determined by λ = 2n eff · Λ / N (1). When N = 2 and n eff are set to 3.30, the oscillation wavelengths of the LD are λ 1 = 1.30 μm and λ 2 respectively.
= 1.27 μm, and an oscillation wavelength difference of 30 nm can be obtained with two LDs. Thus, the oscillation wavelength of the DFB-LD can be changed by changing the pitch of the diffraction grating in each LD.

【0006】しかしながら、このDFB−LDアレイの
各LD1,2の活性層13のバンドギャップ波長λg
すなわちゲインピークは1.3μmと同一であるので、
発振波長とゲインピークのずれが問題となってくる。す
なわち図7A,BにLD1,LD2の発振スペクトルを
示すが、LD1においては発振波長はゲインピークに対
応しているのに対し、LD2においては回折格子ピッチ
で決まる発振波長はゲインピークに対して大きく短波長
側にシフトしていることがわかる。このようなずれは発
振しきい値電流の上昇,発光効率の低下および温度特性
の劣化を生じることになる。さらに両者のずれが大きく
なると、もはやDFBモードで発振しなくなる。
However, the bandgap wavelength λ g of the active layer 13 of each LD 1, 2 of this DFB-LD array,
That is, since the gain peak is the same as 1.3 μm,
The difference between the oscillation wavelength and the gain peak becomes a problem. That is, FIGS. 7A and 7B show the oscillation spectra of LD1 and LD2. In LD1, the oscillation wavelength corresponds to the gain peak, whereas in LD2, the oscillation wavelength determined by the diffraction grating pitch is large with respect to the gain peak. It can be seen that the wavelength is shifted to the short wavelength side. Such a shift causes an increase in oscillation threshold current, a decrease in light emission efficiency, and deterioration of temperature characteristics. Further, when the difference between the two becomes large, the DFB mode no longer oscillates.

【0007】また作製上の問題として、同一基板上の異
なる領域にピッチの異なる回折格子を一般に用いられて
いる二光束干渉露光法で作製するには選択領域以外のマ
スキング工程および二光干渉露光工程を多段階でくり返
して作製しなければならないことがある。このような複
雑な工程は歩留りの低下のみならずデバイス特性の劣
化,ばらつきの原因となるものである。
Further, as a manufacturing problem, in order to manufacture diffraction gratings having different pitches in different regions on the same substrate by a commonly used two-beam interference exposure method, a masking process and a two-light interference exposure process other than the selected region are performed. May have to be repeated in multiple stages. Such a complicated process causes not only a decrease in yield but also deterioration and variation in device characteristics.

【0008】[0008]

【発明が解決しようとする課題】以上、従来例における
回折格子ピッチを変化させて発振波長差を得る方法での
DFB−LDアレイにおいては、回折格子ピッチによっ
て決まるLDの発振波長と活性層バンドギャップによっ
て決まるゲインピークのずれにより、アレイを構成する
LD特性の低下やばらつきが問題となる。
As described above, in the DFB-LD array according to the method of obtaining the oscillation wavelength difference by changing the diffraction grating pitch in the conventional example, the oscillation wavelength of the LD and the active layer bandgap determined by the diffraction grating pitch. Due to the shift of the gain peak determined by the above, there is a problem of deterioration or variation in the LD characteristics of the array.

【0009】さらに選択領域にピッチの異なる回折格子
を形成するためには非常に複雑な工程を必要とし、歩留
りの低下や特性の劣化を来たすことになる。
Further, a very complicated process is required to form diffraction gratings having different pitches in the selected region, resulting in a decrease in yield and deterioration in characteristics.

【0010】本発明は、各共振器の特性のばらつきが小
さく、安定な単一波長を有するレーザをより広い波長範
囲で集積した多波長半導体レーザアレイの製造方法を提
供することを目的とする。
An object of the present invention is to provide a method of manufacturing a multi-wavelength semiconductor laser array in which lasers having a stable single wavelength with a small variation in characteristics of each resonator are integrated in a wider wavelength range.

【0011】[0011]

【課題を解決するための手段】本発明は、第1,第2の
少なくとも2つの分布帰還型レーザ共振器を備え、各共
振器で相異なる単一の発振波長のレーザ光を発する半導
体レーザアレイであって、半導体基板上に同一ピッチの
回折格子を形成する工程と、前記基板上にストライプ幅
の異なる第1の共振器領域および第2の共振器領域を形
成する工程と、前記第1,第2の共振器領域に、光導波
層、井戸層と障壁層の周期構造である量子井戸活性層と
で構成され、前記第1の共振器領域の前記光導波層、井
戸層、障壁層の膜厚は、前記第2の共振器領域の前記光
導波層、井戸層、障壁層の膜厚より薄くする膜を同時に
形成する工程とを備えた半導体レーザアレイの製造方法
とする。
SUMMARY OF THE INVENTION The present invention comprises a semiconductor laser array having at least two first and second distributed feedback laser resonators, each of which emits laser light of a single oscillation wavelength. A step of forming a diffraction grating having the same pitch on a semiconductor substrate, a step of forming a first resonator region and a second resonator region having different stripe widths on the substrate, The second resonator region includes an optical waveguide layer, a well layer, and a quantum well active layer that is a periodic structure of a barrier layer, and the optical waveguide layer, the well layer, and the barrier layer of the first resonator region are formed. A method of manufacturing a semiconductor laser array includes a step of simultaneously forming a film having a thickness smaller than those of the optical waveguide layer, the well layer, and the barrier layer in the second resonator region.

【0012】上述の手段により、アレイを構成する各分
布帰還型レーザキャピティにおける実効屈折率差により
発振波長差を得るとともに、量子サイズ効果によりゲイ
ンピークも発振波長シフトと同様のシフトを示し、発振
波長とゲインピークのずれによるレーザ特性劣化を抑え
た分布帰還型レーザアレイを非常に容易な手段で提供で
きるものである。
By the above-mentioned means, the oscillation wavelength difference is obtained by the effective refractive index difference in each distributed feedback laser capacity forming the array, and the gain peak also shows the same shift as the oscillation wavelength shift due to the quantum size effect. It is possible to provide a distributed feedback laser array in which deterioration of laser characteristics due to a shift between a wavelength and a gain peak is suppressed by a very easy means.

【0013】[0013]

【発明の実施の形態】以下、本発明による分布帰還型
(DFB)LDアレイをInGaAsP/InP系材料
を用いた実施例について説明する。図1はこのアレイ構
造を示すもので、A〜Cは従来例を示す図6の場合と同
様、2つのLD(LD1,LD2)についての平面図A
およびキャピティ方向の断面基本構造図B,Cである。
従来例と同じくn−InP基板11上に回折格子10
0,InGaAsP光導波層12,活性層31,32,
p−InPクラッド層で主に構成される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which a distributed feedback (DFB) LD array according to the present invention uses an InGaAsP / InP material will be described below. FIG. 1 shows this array structure, and A to C are plan views A of two LDs (LD1, LD2) as in the case of FIG. 6 showing a conventional example.
2A and 2B are cross-sectional basic structure diagrams B and C in the direction of the capacity.
Like the conventional example, the diffraction grating 10 is formed on the n-InP substrate 11.
0, InGaAsP optical waveguide layer 12, active layers 31, 32,
It is mainly composed of a p-InP clad layer.

【0014】ここで従来例との違いは、従来例において
は回折格子20,21のピッチがΛ 1,Λ2と異なり活性
層13の組成および層厚は同一であったのに対し、本実
施例においては活性層はそれぞれ層厚の異なる、InG
aAsP井戸層(λg=1.3μm)とInGaAsP
障壁層(λg=1.05μm)から成る多重量子井戸
(MQW)構造活性層31,32である。ここでMQW
活性層31は図1Dにその拡大図を示すように50Åの
井戸層33と50Åの障壁層34の5対から成り、MQ
W活性層32は図1Eにその拡大図を示すように100
Åの井戸層35と100Åの障壁層36の5対から成
る。回折格子のピッチはこの場合両者ともΛ 0=400
0Åで同じである。
The difference from the conventional example is that in the conventional example.
Is the pitch of the diffraction gratings 20 and 21 is Λ 1, Λ2Active unlike
Although the composition and layer thickness of the layer 13 were the same,
In the embodiments, the active layers have different layer thicknesses, InG
aAsP well layer (λg= 1.3 μm) and InGaAsP
Barrier layer (λg= 1.05 μm)
(MQW) structure active layers 31 and 32. MQW here
The active layer 31 has a thickness of 50 Å as shown in the enlarged view of FIG. 1D.
It consists of 5 pairs of well layer 33 and barrier layer 34 of 50 Å, MQ
The W active layer 32 is 100% as shown in the enlarged view of FIG. 1E.
It consists of 5 pairs of Å well layer 35 and 100 Å barrier layer 36.
It In this case, the diffraction grating pitch is Λ 0= 400
It is the same with 0Å.

【0015】DFB−LDにおける発振波長は従来例に
おける(1)式に従い、LDの導波モードの実効屈折率に
依存する(図2A)。図1において、LD1のneff
3.18であるのに対し、LD2においては3.25で
ある。このneffの差により図2Aに示すようにそれぞ
れの発振波長はそれぞれLD1では1.27μm,LD
2では1.30μmと30nmの差が得られている。
The oscillation wavelength of the DFB-LD depends on the effective refractive index of the guided mode of the LD according to the equation (1) in the conventional example (FIG. 2A). In FIG. 1, n eff of LD1 is 3.18, while that of LD2 is 3.25. Due to this difference in n eff , the respective oscillation wavelengths are 1.27 μm in LD1 and LD
2, the difference between 1.30 μm and 30 nm is obtained.

【0016】一方、本発明の構造においてはLD1,L
D2の活性層31,32はそれぞれ井戸層厚50Åおよ
び100ÅのMQW層であるので、両者のバンドギャッ
プエネルギーすなわちゲインピークは第2図Bに示すよ
うに量子サイズ効果により異なる。すなわちLD1にお
いては1.27μmであるのに対しLD2においては
1.30μmとなる。図3に本発明の2つのLDの発振
スペクトルを示す。AはLD1、BはLD2に対応す
る。ゲインピークは発振波長にほぼ一致しており、図5
に示した従来例のような両者のずれはほとんどない。こ
れは井戸層厚の変化に対して、neff変化による発振波
長シフトと量子サイズ効果によるゲインピークシフトは
同一方向に生じるからである。
On the other hand, in the structure of the present invention, LD1, L
Since the active layers 31 and 32 of D2 are MQW layers with well layer thicknesses of 50 Å and 100 Å, respectively, the band gap energy, that is, the gain peak, of both is different due to the quantum size effect as shown in FIG. 2B. That is, in LD1, it is 1.27 μm, whereas in LD2 it is 1.30 μm. FIG. 3 shows oscillation spectra of two LDs of the present invention. A corresponds to LD1 and B corresponds to LD2. The gain peak almost coincides with the oscillation wavelength.
There is almost no difference between the two as in the conventional example shown in FIG. This is because the oscillation wavelength shift due to the change in n eff and the gain peak shift due to the quantum size effect occur in the same direction with respect to the change in the well layer thickness.

【0017】このように本発明のDFB−LDアレイで
は発振波長とゲインピークのずれが小さく、アレイ中の
各LDの特性のばらつきは小さく、すべて良好な電流−
光出力特性,温度特性を示す。
As described above, in the DFB-LD array of the present invention, the deviation between the oscillation wavelength and the gain peak is small, the variation in the characteristics of each LD in the array is small, and all good current-
The optical output characteristics and temperature characteristics are shown.

【0018】次に、本発明の構造のDFB−LDアレイ
を作製プロセスについて説明する。まず図4Aに示すよ
うにn型InP基板上に二光束干渉露光法によりピッチ
Λ0=4000Åの回折格子を形成する。次に図4Bに
示すようにこの基板上に、回折格子と垂直の方向に幅S
1,S2の異なる複数のメサストライプ35,36を通常
のフォトリソグラフィーで形成する。このメサ基板上に
液相エピタキシャル成長法で第3図Cに示すように、I
nGaAsP光導波層11,InGaAsPMQW活性
層(31,32),p−InP層14を順次形成する。
液相成長法によると、メサストライプ上のエピタキシャ
ル層の厚さは平坦部より薄く、かつメサストライプの幅
に大きく依存する。
Next, a manufacturing process of the DFB-LD array having the structure of the present invention will be described. First, as shown in FIG. 4A, a diffraction grating with a pitch Λ 0 = 4000Å is formed on an n-type InP substrate by a two-beam interference exposure method. Next, as shown in FIG. 4B, a width S is formed on the substrate in the direction perpendicular to the diffraction grating.
A plurality of mesa stripes 35 and 36 having different 1 and S 2 are formed by ordinary photolithography. On this mesa substrate, as shown in FIG. 3C by liquid phase epitaxial growth, I
The nGaAsP optical waveguide layer 11, the InGaAsPMQW active layer (31, 32), and the p-InP layer 14 are sequentially formed.
According to the liquid phase epitaxy method, the thickness of the epitaxial layer on the mesa stripe is thinner than that of the flat portion and largely depends on the width of the mesa stripe.

【0019】図5にMQW活性層の井戸層LZおよび実
効屈折率のメサストライプ幅S依存性を示す。メサスト
ライプ幅の減少とともに井戸層厚および実効屈折率はと
もに減少する。S1を10μm,S2を20μmとすると
図1D,Eに示すMQW層31,32における井戸層厚
33,35はそれぞれ50Åおよび100Åとなり、活
性層の実効屈折率neffはそれぞれ3.18,3.25
と異なる。図2,図3に従い、この実効屈折率差による
発振波長シフトと、井戸層厚差によるゲインピークシフ
トは同様の挙動を示すので、発振波長とゲインピークの
ずれの小さい良好な特性の多波長DFB−LDアレイを
得ることができる。
FIG. 5 shows the dependency of the well layer L Z of the MQW active layer and the effective refractive index on the mesa stripe width S. Both the well layer thickness and the effective refractive index decrease as the mesa stripe width decreases. When S 1 is 10 μm and S 2 is 20 μm, the well layer thicknesses 33 and 35 in the MQW layers 31 and 32 shown in FIGS. 1D and 1E are 50 Å and 100 Å, respectively, and the effective refractive index n eff of the active layer is 3.18, respectively. 3.25
And different. As shown in FIGS. 2 and 3, the oscillation wavelength shift due to the difference in effective refractive index and the gain peak shift due to the difference in well layer thickness exhibit the same behavior. Therefore, a multi-wavelength DFB having good characteristics with a small deviation between the oscillation wavelength and the gain peak. An LD array can be obtained.

【0020】このように本作製法においては一回の回折
格子形成プロセスと基本的に一回のエピタキシャル成長
という非常に簡単なプロセスにより、特性のばらつきの
小さい集積化波長DFB−LDアレイを得ることができ
る。
As described above, in this manufacturing method, an integrated wavelength DFB-LD array having a small variation in characteristics can be obtained by a very simple process of one diffraction grating formation process and basically one epitaxial growth process. it can.

【0021】ところで本実施例においては簡単のため、
2波長集積素子を例にとって説明したが、3波長以上の
多波長LDアレイの場合も全く同様である。またDFB
−LDの構造は活性層の下に回折格子が存在する構造で
あったが、活性層上に回折格子を有するDFB−LD構
造においても全く同じである。またエピタキシャル成長
法としては液相法について説明したが、MOVPE法や
MBE法等の他の方法においても条件を選べば同様の効
果を得ることができる。さらに材料としてInGaAs
P/InP系について説明したがAlGaAs/GaA
s系等の他のIII−V族半導体についても同様に適用で
きるものである。
By the way, in this embodiment, for simplicity,
Although the two-wavelength integrated element has been described as an example, the same applies to a multi-wavelength LD array having three or more wavelengths. Also DFB
The structure of -LD is a structure in which a diffraction grating exists under the active layer, but the same applies to the DFB-LD structure having a diffraction grating on the active layer. Although the liquid phase method has been described as the epitaxial growth method, similar effects can be obtained by selecting the conditions in other methods such as the MOVPE method and the MBE method. InGaAs as a material
The P / InP system was explained, but AlGaAs / GaA
The same applies to other III-V group semiconductors such as s series.

【0022】[0022]

【発明の効果】以上のように本発明は、1回の回折格子
作製と1回のエピタキシャル成長でアレイを構成する各
共振器構造を形成できるという、非常に簡単なプロセス
で多波長集積化レーザアレイを作製できるとともに、井
戸層厚で決定されるゲインピーク波長と光導波層、井戸
層、障壁層の総膜厚で決まる発振波長の差が各共振器で
一定であるため各共振器の特性のばらつきが小さく、安
定な単一波長を有するレーザをより広い波長範囲で集積
した多波長半導体レーザアレーを提供できるという格別
の効果を発揮したものである。
As described above, according to the present invention, a multi-wavelength integrated laser array can be formed by a very simple process in which each resonator structure constituting the array can be formed by one-time production of a diffraction grating and one-time epitaxial growth. In addition, the difference between the gain peak wavelength determined by the well layer thickness and the oscillation wavelength determined by the total film thickness of the optical waveguide layer, the well layer, and the barrier layer is constant in each resonator. This is a remarkable effect that it is possible to provide a multi-wavelength semiconductor laser array in which lasers having a stable single wavelength with a small variation are integrated in a wider wavelength range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のDFB−LDアレイの構造
を示し、同図Aはその平面図、同図B,Cはその光軸方
向a−a’,b−b’線での断面図、同図D,Eはそれ
ぞれ同図B,CにおけるMQW層の拡大断面図
FIG. 1 shows a structure of a DFB-LD array according to an embodiment of the present invention, FIG. 1A is a plan view thereof, and FIGS. 1B and 1C are optical axis directions aa ′ and bb ′. Sectional views, and Figures D and E are enlarged sectional views of the MQW layer in Figures B and C, respectively.

【図2】Aは発振波長の実効屈折率依存性、Bはゲイン
ピークの井戸層厚依存性を示す図
FIG. 2A is a diagram showing an effective refractive index dependency of an oscillation wavelength, and B is a well layer thickness dependency of a gain peak.

【図3】A,Bは本発明のアレイの代表的な2つのLD
の発振スペクトルを示す図
FIG. 3A and B are two representative LDs of the array of the present invention.
Figure showing the oscillation spectrum of

【図4】A,B,Cは本発明によるDFB−LDアレイ
の製造プロセスを示す斜視図,断面図
4A, 4B and 4C are perspective views and sectional views showing a manufacturing process of a DFB-LD array according to the present invention.

【図5】実効屈折率および井戸層厚のメサストライプ幅
依存性を示す図
FIG. 5 is a diagram showing the dependence of the effective refractive index and the well layer thickness on the mesa stripe width.

【図6】従来例のレーザにおける構造を示し、同図Aは
その平面図、同図B,Cは同図Aのa−a’,b−b’
線断面図
6 shows a structure of a conventional laser, FIG. 6A is a plan view thereof, and FIGS. 6B and 6C are aa ′ and bb ′ of FIG.
Line cross section

【図7】A,Bは第6図の発振スペクトルを示す図7A and 7B are diagrams showing the oscillation spectrum of FIG.

【符号の説明】[Explanation of symbols]

1 LD1 2 LD2 11 n型InP基板 12 InGaAsP光導波層 14 p型InPクラッド層 31 MQW活性層 32 MQW活性層 33 井戸層 35 井戸層 100 回折格子 1 LD1 2 LD2 11 n-type InP substrate 12 InGaAsP optical waveguide layer 14 p-type InP clad layer 31 MQW active layer 32 MQW active layer 33 well layer 35 well layer 100 diffraction grating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1,第2の少なくとも2つの分布帰還
型レーザ共振器を備え、各共振器で相異なる単一の発振
波長のレーザ光を発する半導体レーザアレイであって、 半導体基板上に同一ピッチの回折格子を形成する工程
と、 前記基板上にストライプ幅の異なる第1の共振器領域お
よび第2の共振器領域を形成する工程と、 前記第1,第2の共振器領域に、光導波層、井戸層と障
壁層の周期構造である量子井戸活性層とで構成され、前
記第1の共振器領域の前記光導波層、井戸層、障壁層の
膜厚は、前記第2の共振器領域の前記光導波層、井戸
層、障壁層の膜厚より薄くする膜を同時に形成する工程
とを備えた半導体レーザアレイの製造方法。
1. A semiconductor laser array comprising at least two first and second distributed feedback laser resonators, wherein each resonator emits laser light of a single oscillation wavelength different from each other. Forming a diffraction grating with the same pitch, forming a first resonator region and a second resonator region having different stripe widths on the substrate, in the first and second resonator regions, An optical waveguide layer, a well layer, and a quantum well active layer that is a periodic structure of a barrier layer, and the thickness of the optical waveguide layer, the well layer, and the barrier layer in the first cavity region is the same as that of the second cavity region. A method of manufacturing a semiconductor laser array, comprising the step of simultaneously forming a film that is thinner than the optical waveguide layer, the well layer, and the barrier layer in the resonator region.
JP8153964A 1996-06-14 1996-06-14 Method of manufacturing semiconductor laser array Expired - Fee Related JP2746262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153964A JP2746262B2 (en) 1996-06-14 1996-06-14 Method of manufacturing semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153964A JP2746262B2 (en) 1996-06-14 1996-06-14 Method of manufacturing semiconductor laser array

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1075312A Division JPH0770781B2 (en) 1989-03-27 1989-03-27 Semiconductor laser array

Publications (2)

Publication Number Publication Date
JPH08321659A true JPH08321659A (en) 1996-12-03
JP2746262B2 JP2746262B2 (en) 1998-05-06

Family

ID=15573924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153964A Expired - Fee Related JP2746262B2 (en) 1996-06-14 1996-06-14 Method of manufacturing semiconductor laser array

Country Status (1)

Country Link
JP (1) JP2746262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898949A (en) * 2015-10-08 2017-06-27 三星电子株式会社 Edge emitter laser light source and the acquiring three-dimensional images device including the light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191093A (en) * 1985-02-20 1986-08-25 Matsushita Electric Ind Co Ltd Semiconductor device
JPS62196886A (en) * 1986-02-24 1987-08-31 Matsushita Electric Ind Co Ltd Semiconductor laser array and manufacture thereof
JPS63181493A (en) * 1987-01-23 1988-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191093A (en) * 1985-02-20 1986-08-25 Matsushita Electric Ind Co Ltd Semiconductor device
JPS62196886A (en) * 1986-02-24 1987-08-31 Matsushita Electric Ind Co Ltd Semiconductor laser array and manufacture thereof
JPS63181493A (en) * 1987-01-23 1988-07-26 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898949A (en) * 2015-10-08 2017-06-27 三星电子株式会社 Edge emitter laser light source and the acquiring three-dimensional images device including the light source

Also Published As

Publication number Publication date
JP2746262B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
EP0836255B1 (en) Laser diode array and fabrication method thereof
US6107112A (en) Distributed feedback semiconductor laser and method for producing the same
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
JPH07326820A (en) Variable wavelength semiconductor laser device
JP2001308451A (en) Semiconductor light emitting element
JPH06204610A (en) Semiconductor laser and manufacture thereof
JP4026334B2 (en) Semiconductor laser, distributed feedback semiconductor laser, and wavelength tunable semiconductor laser
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
US5602866A (en) Semiconductor laser
US6967983B2 (en) Semiconductor laser apparatus
US20040156411A1 (en) Optical semiconductor device and process for producing the same
US6925103B2 (en) Gain-coupled DFB laser diode
JPH0337874B2 (en)
JP3166836B2 (en) Semiconductor laser
JP7265198B2 (en) Tunable DBR semiconductor laser
JP2746262B2 (en) Method of manufacturing semiconductor laser array
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
JPH0770781B2 (en) Semiconductor laser array
Kudo et al. 1.55/spl mu/m wavelength-selectable microarray DFB-LDs with integrated MMI combiner, SOA, and EA-modulator
JPH04105386A (en) Wavelength variable semiconductor laser
JP2004273644A (en) Semiconductor laser
JPH07335977A (en) Semiconductor laser and optical integrated device and manufacture thereof
JPH1027936A (en) Method of forming laser with modulator
JPH0864903A (en) Manufacture of semiconductor multiwavelength laser array

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees