JPH0438880A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0438880A
JPH0438880A JP2144304A JP14430490A JPH0438880A JP H0438880 A JPH0438880 A JP H0438880A JP 2144304 A JP2144304 A JP 2144304A JP 14430490 A JP14430490 A JP 14430490A JP H0438880 A JPH0438880 A JP H0438880A
Authority
JP
Japan
Prior art keywords
layer
light emitting
inp
electrode
emitting region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2144304A
Other languages
Japanese (ja)
Inventor
Toshihiro Kono
河野 敏弘
Makoto Haneda
誠 羽田
Shinji Tsuji
伸二 辻
Yuichi Ono
小野 佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2144304A priority Critical patent/JPH0438880A/en
Publication of JPH0438880A publication Critical patent/JPH0438880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve the performance of heat radiation in a light emitting region and reduce the saturation of optical output in a high current injection region by producing electric isolation between electrodes by means of a semiconductor layer. CONSTITUTION:An n-InP buffer layer 2, a p-InGaAsP active layer 3, a p-InP clad layer 4, and an n-InGaAsP cap layer 5 are successively laminated on an n-InP substrate 1 based on an organic metal vapor phase growth process. Then, a light emitting region which ranges from 20 to 50mum dia. by the formation of an isolation groove 14 which reaches the n-InP buffer layer 2. Then, the isolation groove 14 is flatly filled with a Ti dope InP high resistance layer 6 and an Fe dope InP high resistance layer 7. After the groove is buried, Zn diffusion 8, which reaches the p-InP clad layer 4, is carried out to the central part of the light emitting region. Then, an n electrode 9 and a p electrode 10 are formed by a vapor deposition process. After it is formed into a chip, the light emitting side is partially or wholly processed into dome shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ドーム形高出力半導体発光素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a dome-shaped high-power semiconductor light emitting device.

〔従来の技術〕[Conventional technology]

従来例のドーム形発光素子として、アイ・イー・イー・
イー、トランザクションズ オン エレクトロン デバ
イシズ、イー デイ−28、374(1981)  (
IEEE、 Transactions on Ele
ctronDevices、 Vol ED−28,3
74(1981)に記載のような構造を挙げることがで
きる。
As a conventional dome-shaped light emitting element, I.E.
E. Transactions on Electron Devices, E.D.-28, 374 (1981) (
IEEE,Transactions on ELE
ctronDevices, Vol ED-28,3
74 (1981).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来例の素子は、n電極側とP電極側がアイソレー
ション溝により電気的に分離された構造となっていた。
The conventional element described above has a structure in which the n-electrode side and the p-electrode side are electrically separated by an isolation groove.

このアイソレーション溝の形成により発光領域への電流
注入をより効果的に行なうことができる。しかしながら
、この従来技術においては電流注入により生しる発光領
域の熱は、発光領域の電極部を通してのみサブマウント
側へ放熱される。したがって、光出力を増すために高電
流注入を行なうと、光出力−電流特性において光出力の
飽和が起こるという問題があった。
By forming this isolation groove, current can be more effectively injected into the light emitting region. However, in this prior art, heat in the light emitting region generated by current injection is radiated toward the submount only through the electrode portion of the light emitting region. Therefore, when a high current is injected to increase the optical output, there is a problem in that the optical output saturates in the optical output-current characteristic.

本発明の目的は、発光領域の熱放散を良くし、高電流注
入領域における光出力の飽和を低減することにあり、更
に高出力の発光素子を提供することにある。
An object of the present invention is to improve heat dissipation in a light emitting region, reduce saturation of light output in a high current injection region, and further provide a high output light emitting device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、従来のア
イソレーション溝領域を高抵抗半導体層により形成した
In order to achieve the above object, in the present invention, a conventional isolation trench region is formed of a high-resistance semiconductor layer.

〔作用〕[Effect]

従来の発光素子では、n側領域とn側領域がアイソレー
ション溝により分離されているため発光領域の熱の放散
が悪く高電流側で光出力の飽和があった。本発明では、
上記アイソレーション溝部が高抵抗半導体層で形成され
ているため、電流注入はアイソレーション溝の場合と同
様発光領域のみに制限される。更に発光領域で発生した
熱は上記高抵抗半導体層を通して横方向へも放熱される
ため熱放散が良くなり、高電流注入時の光出力の飽和が
生じにくく、高出力動作が可能である。
In a conventional light emitting element, since the n-side region and the n-side region are separated by an isolation groove, heat dissipation in the light emitting region is poor and optical output is saturated on the high current side. In the present invention,
Since the isolation groove portion is formed of a high-resistance semiconductor layer, current injection is limited to only the light emitting region as in the case of the isolation groove. Furthermore, the heat generated in the light emitting region is also dissipated in the lateral direction through the high-resistance semiconductor layer, so heat dissipation is improved, optical output is less likely to be saturated when high current is injected, and high output operation is possible.

〔実施例〕 以下、本発明の実施例を第1図〜第5図により説明する
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5.

〔実施例1〕 第1図は、本発明を長波長発光ダイオードに適用した場
合の素子構造を示す。
[Example 1] FIG. 1 shows an element structure when the present invention is applied to a long wavelength light emitting diode.

n−InP基板1 (キャリア濃度1−5 X10”a
m−3)上に有機金属気相成長(MOCVD)法により
n−InPバッファ層2 (3±1μm、キャリア濃度
I X 1018C1−勺、  p−1nGaAsP活
性層3(1g 〜1.3 p m T O−5±0.3
μm、キャリア濃度5X1017cn−3) 、p−I
 nPクラッド層4(1±0.5μm、キャリア濃度1
x10”a++−3) −n−InGaAsPキャップ
層5 (1±0.5μm、キャリア濃度1〜4×10’
73)を順次積層する。次に、n−InPバッファ層2
に達する深さのアイソレーション溝14の形成により2
o〜50μmφの発光領域を形成する。
n-InP substrate 1 (carrier concentration 1-5 x 10"a
n-InP buffer layer 2 (3±1 μm, carrier concentration I×1018C1−1), p-1nGaAsP active layer 3 (1 g to 1.3 p m T) by metal organic chemical vapor deposition (MOCVD) O-5±0.3
μm, carrier concentration 5×1017cn-3), p-I
nP cladding layer 4 (1±0.5 μm, carrier concentration 1
x10"a++-3) -n-InGaAsP cap layer 5 (1±0.5 μm, carrier concentration 1 to 4×10'
73) are sequentially stacked. Next, the n-InP buffer layer 2
By forming the isolation groove 14 with a depth of 2.
A light emitting region with a diameter of 0 to 50 μm is formed.

次に上記アイソレーション溝14をMOCVD法により
TiドープInP高抵抗層6 (0,5μm)、および
FeドープInP高抵抗層7(1〜3μm)で平坦に埋
込む。TiおよびFeを同時ドーピングしたInP層1
層のみでもよい。その後、発光領域の中央部へp−In
Pクラッド層4に達するZn拡散8を施こし、n電極9
.n電極10を蒸着により形成する。更に、チップ化し
た後光出射面の一部あるいは全面を図のようにドーム状
に加工する。
Next, the isolation trench 14 is filled flat with a Ti-doped InP high resistance layer 6 (0.5 μm) and an Fe-doped InP high resistance layer 7 (1 to 3 μm) by MOCVD. InP layer 1 co-doped with Ti and Fe
It may be just a layer. After that, p-In is applied to the center of the light emitting region.
Zn diffusion 8 is performed to reach the P cladding layer 4, and an n electrode 9 is formed.
.. The n-electrode 10 is formed by vapor deposition. Furthermore, after the chip is formed, a part or the entire surface of the light emitting surface is processed into a dome shape as shown in the figure.

第2図に以上の様にして作製した発光素子の光出力−電
流特性を示す。
FIG. 2 shows the optical output-current characteristics of the light emitting device manufactured as described above.

従来の発光素子のようにnおよびp電極間がアイソレー
ション溝によって電気的に分離されている場合は、熱放
散が悪いため高電流領域において光出力の飽和が生し易
く、高出力動作時に不利である。ところが、本発明のよ
うにアイソレーション溝内部が高抵抗半導体層によって
埋込まれている場合、発光領域において発生した熱の横
方向への放散が良いため高電流領域における光出力の飽
和が起こりにくく高出力動作が可能である。
When the n and p electrodes are electrically separated by an isolation groove as in conventional light emitting devices, the optical output tends to saturate in the high current region due to poor heat dissipation, which is disadvantageous during high output operation. It is. However, when the inside of the isolation groove is filled with a high-resistance semiconductor layer as in the present invention, the heat generated in the light emitting region is well dissipated in the lateral direction, so saturation of the optical output in the high current region is less likely to occur. High output operation is possible.

更に本実施例のようにまず正孔をトラップする深い不純
物準位を形成する遷移元素(Ti)をドブした層で埋込
み1次に電子をトラップする深い不純物準位を形成する
遷移元素(Fe)をトープした層で埋込み、Feトープ
層がp導電形層と接触しない構造とするとリーク電流が
少なく発光効率の良い素子が得られる。また、Feの替
わりに同様に電子をトラップする不純物準位をつくるM
nやCoなど他の遷移元素を用いても良く、更にT1ド
ープ層の替わりにn導電形層(0,1〜0.5μm)を
用いても同様の効果が得られる。また、1種類の遷移元
素のみをドープした高抵抗層1層で平坦に埋込んでも良
い。
Furthermore, as in this example, first, a layer doped with a transition element (Ti) that forms a deep impurity level that traps holes is buried, and the first layer is doped with a transition element (Fe) that forms a deep impurity level that traps electrons. If the structure is such that the Fe-topped layer does not come into contact with the p conductivity type layer, an element with low leakage current and high luminous efficiency can be obtained. Also, instead of Fe, M which creates an impurity level that similarly traps electrons is used.
Other transition elements such as n and Co may be used, and the same effect can be obtained even if an n conductivity type layer (0.1 to 0.5 μm) is used instead of the T1 doped layer. Alternatively, a single high-resistance layer doped with only one type of transition element may be buried flatly.

〔実施例2〕 第3図に5本発明の他の実施例の素子構造を示した。実
施例1と同様にMOCVD法により作製した。まず、n
−InP基板上にP−InPバッファ層2’  (10
〜30μm、キャリア濃度1〜2 X 10”an−’
)を成長し、その後p −InGaAsP活性層3(λ
g=1.3μm、0.5±0.3μm。
[Embodiment 2] FIG. 3 shows an element structure of another embodiment of the present invention. It was produced by the MOCVD method in the same manner as in Example 1. First, n
- P-InP buffer layer 2' (10
~30μm, carrier concentration 1~2 x 10"an-'
), and then p-InGaAsP active layer 3 (λ
g=1.3 μm, 0.5±0.3 μm.

キャリア濃度5X1017a++−3)、n−I nP
クラッド層4′ (1±0.5μm 、キャリア濃度1
×10”a++−3) 、  n −InGaAsP 
キャップ層5 (λ1=1.5μm、1±0.5μm、
キャリア濃度1〜4 X I Q”as−”)を順次積
層する。次に発光領域を20〜50μmφにp−InP
バッファ層に達する深さにメサエッチして形成し、発光
領域の側部をFeおよびT1ドープ高抵抗層7′で平坦
に。
Carrier concentration 5X1017a++-3), n-I nP
Cladding layer 4' (1±0.5 μm, carrier concentration 1
×10”a++-3), n-InGaAsP
Cap layer 5 (λ1=1.5 μm, 1±0.5 μm,
Carrier concentrations of 1 to 4XIQ"as-") are sequentially stacked. Next, the light emitting region is made of p-InP with a diameter of 20 to 50 μm.
It is formed by mesa etching to a depth that reaches the buffer layer, and the sides of the light emitting region are flattened with Fe and T1 doped high resistance layers 7'.

かつ選択的に埋込む。この埋込み層は実施例]−と同様
に多層埋込み構造としても良い。次に高抵抗埋込み層の
一部にp−InPバッファ層に達する深さのZn拡散8
を施こし、n電極9+P電極10を形成する。更に実施
例1と同様にチップ化し光出射面をドーム状に加工する
and selectively embed. This buried layer may have a multilayer buried structure similar to the embodiment]-. Next, Zn is diffused into a part of the high-resistance buried layer to a depth that reaches the p-InP buffer layer 8.
The n-electrode 9 and the p-electrode 10 are formed. Furthermore, in the same manner as in Example 1, it is made into a chip and the light emitting surface is processed into a dome shape.

本実施例においても、実施例1と同様高電流領域におい
て光出力飽和の少ない高出力発光ダイオードが得られた
In this example, as in Example 1, a high-output light emitting diode with little optical output saturation in the high current region was obtained.

〔実施例3〕 第4図は、実施例2の発光ダイオードに半導体多層反射
膜を適用し、更に高出力化を図った素子の断面構造であ
る。素子製作については、実施例2とほぼ同様でありn
−InPクラット層4′とn−InGaAsPキャップ
層5の間に半導体多層反射膜11をエピタキシャル成長
するのみであるので、詳細は省略する。
[Example 3] FIG. 4 is a cross-sectional structure of a device in which a semiconductor multilayer reflective film is applied to the light emitting diode of Example 2 to further increase the output. The device fabrication is almost the same as in Example 2.
Since only the semiconductor multilayer reflective film 11 is epitaxially grown between the -InP crat layer 4' and the n-InGaAsP cap layer 5, the details will be omitted.

半導体多層反射膜11の構造は、高屈折率層としてn 
−InGsAsP (λg”1.15μm、971.3
Aキャリア濃度I X 1015cm’−3) 、低屈
折率層としてn−InP (1012,6人 、キャリ
ア濃度IX 1018aa−3)を用い16ペアとした
。反射膜のトータル膜厚は3.17μmである。
The structure of the semiconductor multilayer reflective film 11 includes n as a high refractive index layer.
-InGsAsP (λg”1.15 μm, 971.3
A carrier concentration IX 1015 cm'-3) and n-InP (1012,6, carrier concentration IX 1018 aa-3) were used as the low refractive index layer to form 16 pairs. The total thickness of the reflective film is 3.17 μm.

本実施例では、多層反射膜11を採用したため、実施例
1,2の発光ダイオードに比へ、更に高出力の素子が得
られ、第2図に示した高抵抗埋込の場合に比へて30%
程度光出力が向上した。また。
In this example, since the multilayer reflective film 11 is adopted, a device with even higher output is obtained compared to the light emitting diodes of Examples 1 and 2, and compared to the case of high-resistance embedding shown in FIG. 30%
The light output has been improved to a certain degree. Also.

この素子においても、FeおよびTiドープInP層埋
込みの効果により高電流領域における光出力の飽和は第
2図の高抵抗埋込の場合とほぼ同程度に低減された。
In this device as well, saturation of optical output in the high current region was reduced to approximately the same level as in the case of high resistance embedding shown in FIG. 2 due to the effect of embedding the Fe- and Ti-doped InP layers.

〔実施例4〕 第5図は、本発明を面発光型レーザに適用した場合の実
施例である。n −丁n P基板1上にMOCVD法に
よりp−InPバッファ層2’  (10〜30μm)
を成長し、次にp −InGaAsP  (λ8=1.
15μm、971.3人、キャリア濃度0.5−IXL
O”ao−一とp−InP(1012,6人、匁ヤlア
濃度0.5〜l X 1019an−’)を交互に16
ヘア積層した多層反射膜12を成長する。更に、p −
I n Pクララト層13(−5μm、キャリア濃度l
X1019cn−’) 、 p−4nGaAsP活性層
3(λg”1.3μm、2〜5μm、キャリア濃度0.
5=IXl○1″Qll−’)、n−InPクラット層
4′ (〜5μm、キャリア濃度I X 10”■−3
)を順次積層し、つづいて上記反射膜と同構造の多層反
射膜11およびn−InPキャップ層5(λg” ]、
 、 15 p m、1±0.5 μm、キャリア濃度
1〜4X10”8】〜1)を積層する。その後、発光領
域が10〜20μmφになるよう反射膜12またL:!
p−InPバッファ層に達する深さのアイツレジョン溝
14を形成する。次にそのアイソレーション溝をFeト
ープInP7 (または、Feおよび1゛]トープIn
P7’)で平坦に埋込み、図に示すようなZn拡散8を
施こす。更に、n電極9 、 n電極10を形成し、光
出射面をドーム状に加工して素子は完了する。
[Embodiment 4] FIG. 5 shows an embodiment in which the present invention is applied to a surface emitting laser. A p-InP buffer layer 2' (10 to 30 μm) is formed on a p-substrate 1 by MOCVD.
and then p-InGaAsP (λ8=1.
15 μm, 971.3 people, carrier concentration 0.5-IXL
O"ao-1 and p-InP (1012, 6 people, Momoyara concentration 0.5~l x 1019an-') were alternately 16
A multilayer reflective film 12 formed by laminating hair is grown. Furthermore, p −
I n P clarato layer 13 (-5 μm, carrier concentration l
X1019cn-'), p-4nGaAsP active layer 3 (λg" 1.3 μm, 2 to 5 μm, carrier concentration 0.
5=IXl○1"Qll-'), n-InP crat layer 4' (~5 μm, carrier concentration IX10"■-3
) are sequentially laminated, followed by a multilayer reflective film 11 having the same structure as the above reflective film and an n-InP cap layer 5 (λg''),
, 15 pm, 1±0.5 μm, carrier concentration 1 to 4×10”8] to 1) are laminated. Then, the reflective film 12 and L:! are layered so that the light emitting area becomes 10 to 20 μmφ.
An eye region trench 14 is formed with a depth that reaches the p-InP buffer layer. Next, insert the isolation groove into Fe-topped InP7 (or Fe and 1゛]-topped InP7
P7') is buried flatly, and Zn diffusion 8 is performed as shown in the figure. Further, an n-electrode 9 and an n-electrode 10 are formed, and the light emitting surface is processed into a dome shape to complete the device.

この面発光レーザにおいては、発振波長1.3μmしき
い値電流20〜30mAの素子が得られ、熱放散が改善
されたため光出力−電流特性の直線性良い素子が得られ
た。
In this surface emitting laser, a device with an oscillation wavelength of 1.3 μm and a threshold current of 20 to 30 mA was obtained, and due to improved heat dissipation, a device with good linearity of optical output-current characteristics was obtained.

以上の実施例ではInP基扱としてn導電形のウェハを
用いたが、p形1nP基板を用いても良く、その場合実
施例2,3.4においてはp −InPバッファ層2′
が薄くても良い(〜5μm)という利点がある。
In the above embodiments, an n-conductivity type wafer was used as the InP base, but a p-type 1nP substrate may also be used. In that case, in Examples 2 and 3.4, the p-InP buffer layer 2'
It has the advantage that it can be thin (~5 μm).

また1本発明はG a A s系の発光素子についても
適用可能であり、その場合高抵抗層のドーパントとして
はCr、V、Oなどが良く用いられる。
The present invention is also applicable to GaAs-based light emitting elements, in which case Cr, V, O, etc. are often used as dopants for the high resistance layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、n電極とn電極を高抵抗層により電気
的にアイソレーションしているため、発光領域において
発生した熱の横方向への放散が良くなるため、高電流領
域における光出力の飽和が低減され、高出力動作が可能
になる。
According to the present invention, since the n-electrode and the n-electrode are electrically isolated by the high-resistance layer, the heat generated in the light emitting region is better dissipated in the lateral direction, so that the light output in the high current region is reduced. Saturation is reduced and high power operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のアイソレーション溝のみを
高抵抗層で埋込んだ発光素子の断面図、第2図は第1図
の発光素子の光出力−電流特性図、第3図は発光領域以
外を全て高抵抗層で埋込んだ実施例になる発光素子の断
面図、第4図は多層反射膜を具備した実施例になる発光
素子の断面図、第5図は本発明を面発光レーザに適用し
た実施例の素子断面図である。 1・・InP基板、2,2′・・バッファ層、3・・活
性層、4・・・pクラッド層、S・・・キャップ層、6
・・高抵抗層、7,7′・・・高抵抗層、8・・・Zn
拡散、9・n電極、10・・P電極、11・・・多層反
射膜。 12・・多層反射膜、13・・・nクラッド層、14・
・アイソレーション溝。
FIG. 1 is a cross-sectional view of a light emitting device according to an embodiment of the present invention in which only the isolation groove is filled with a high resistance layer, FIG. 2 is a light output-current characteristic diagram of the light emitting device shown in FIG. 1, and FIG. 4 is a sectional view of a light emitting device according to an embodiment in which the entire area other than the light emitting region is filled with a high resistance layer, FIG. 4 is a sectional view of a light emitting device according to an embodiment equipped with a multilayer reflective film, and FIG. FIG. 2 is a cross-sectional view of an element of an example applied to a surface emitting laser. 1...InP substrate, 2,2'...buffer layer, 3...active layer, 4...p cladding layer, S...cap layer, 6
...High resistance layer, 7,7'...High resistance layer, 8...Zn
Diffusion, 9.N electrode, 10..P electrode, 11..multilayer reflective film. 12...Multilayer reflective film, 13...n cladding layer, 14...
・Isolation groove.

Claims (1)

【特許請求の範囲】 1、半導体基板上に、少なくとも活性層、クラッド層を
含む多層構造を有し、かつn電極とp電極が光出射面に
対して反対側に有り、光出射面の少なくとも一部がドー
ム状になっている発光素子において、該電極間が高抵抗
半導体層により電気的にアイソレーションされているこ
とを特徴とする半導体発光素子。 2、高抵抗半導体層が、Fe、Co、Ti、Mn、Cr
、V、Oのうち少なくとも1つを添加した少なくとも1
つの半導体層で形成されていることを特徴とする請求項
1記載の半導体発光素子。
[Claims] 1. A semiconductor substrate has a multilayer structure including at least an active layer and a cladding layer, and an n-electrode and a p-electrode are located on the opposite side of the light-emitting surface, and at least one of the light-emitting surfaces 1. A semiconductor light emitting device, wherein a portion of the light emitting device has a dome shape, and the electrodes are electrically isolated by a high resistance semiconductor layer. 2. High resistance semiconductor layer is made of Fe, Co, Ti, Mn, Cr
, V, and O.
2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is formed of two semiconductor layers.
JP2144304A 1990-06-04 1990-06-04 Semiconductor light emitting element Pending JPH0438880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144304A JPH0438880A (en) 1990-06-04 1990-06-04 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144304A JPH0438880A (en) 1990-06-04 1990-06-04 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH0438880A true JPH0438880A (en) 1992-02-10

Family

ID=15358962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144304A Pending JPH0438880A (en) 1990-06-04 1990-06-04 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0438880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002910A1 (en) * 1993-07-12 1995-01-26 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device
CN103730431A (en) * 2014-01-07 2014-04-16 宝钢金属有限公司 High-power array light-emitting diode (LED) chip surface radiating structure and manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002910A1 (en) * 1993-07-12 1995-01-26 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device
EP0639875A1 (en) * 1993-07-12 1995-02-22 BRITISH TELECOMMUNICATIONS public limited company Electrical barrier structure for semiconductor device
US5838025A (en) * 1993-07-12 1998-11-17 British Telecommunications Public Limited Company Electrical barrier structure for semiconductor device doped with chromium and/or titanium
CN103730431A (en) * 2014-01-07 2014-04-16 宝钢金属有限公司 High-power array light-emitting diode (LED) chip surface radiating structure and manufacturing method

Similar Documents

Publication Publication Date Title
US6175582B1 (en) Semiconductor laser device
US6584130B2 (en) Multiple semiconductor laser structure with narrow wavelength distribution
JPH0243351B2 (en)
JPS6239839B2 (en)
JPH0438880A (en) Semiconductor light emitting element
JPS60101989A (en) Semiconductor laser and manufacture thereof
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
JPH01155678A (en) Semiconductor light emitting device
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JPS59125684A (en) Buried type semiconductor laser
JPH0436598B2 (en)
JP3144821B2 (en) Semiconductor laser device
JPS6257271A (en) Semiconductor laser device
JPS6244440B2 (en)
KR100565049B1 (en) Vertical cavity surface emitting laser
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPH0513872A (en) Hetero junction type semiconductor laser
JPH03203282A (en) Semiconductor laser diode
JPH06334260A (en) Semiconductor laser element and its manufacture
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS62102583A (en) Buried structure semiconductor laser
JPS622718B2 (en)
JPH01215081A (en) Semiconductor light emitting device
JPS5884485A (en) Buried hetero-structure semiconductor laser
JPS62259490A (en) Buried hetero structure semiconductor laser