JPH0436598B2 - - Google Patents

Info

Publication number
JPH0436598B2
JPH0436598B2 JP60087906A JP8790685A JPH0436598B2 JP H0436598 B2 JPH0436598 B2 JP H0436598B2 JP 60087906 A JP60087906 A JP 60087906A JP 8790685 A JP8790685 A JP 8790685A JP H0436598 B2 JPH0436598 B2 JP H0436598B2
Authority
JP
Japan
Prior art keywords
layer
inp
current blocking
blocking layer
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60087906A
Other languages
Japanese (ja)
Other versions
JPS61247084A (en
Inventor
Isamu Sakuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8790685A priority Critical patent/JPS61247084A/en
Publication of JPS61247084A publication Critical patent/JPS61247084A/en
Publication of JPH0436598B2 publication Critical patent/JPH0436598B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はInGaAsP活性層の周囲をInP層で埋め
込んだ埋め込みヘテロ構造半導体レーザに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a buried heterostructure semiconductor laser in which the periphery of an InGaAsP active layer is buried with an InP layer.

〔従来の技術〕[Conventional technology]

埋め込みヘテロ構造半導体レーザ(BH−LD)
は低い発振しきい値電流、安定化した発振横モー
ド、高温動作可能などの優れた特性を有している
ため、光フアイバ通信用光源として注目を集めて
いる。従来の技術として、例えば特願昭56−
166666に示した構造の半導体レーザがある。この
構造は、2本のほぼ平行な溝にはさまれて形成さ
れた発光再結合する活性層を含むメサストライプ
の周囲で確実に電流ブロツク層が形成でき、した
がつて温度特性に優れ、種々の基板処理過程での
ダメージを受けることが少なく製造歩留まりの向
上したInGaAsP/InP BH−LDが提案されてい
る。
Buried heterostructure semiconductor laser (BH-LD)
Because it has excellent properties such as a low oscillation threshold current, a stabilized oscillation transverse mode, and the ability to operate at high temperatures, it is attracting attention as a light source for optical fiber communications. As a conventional technique, for example, the patent application 1986-
There is a semiconductor laser with the structure shown in 166666. This structure allows a current blocking layer to be reliably formed around a mesa stripe containing an active layer that recombines light and is sandwiched between two approximately parallel grooves, and therefore has excellent temperature characteristics and can be used in a variety of ways. An InGaAsP/InP BH-LD has been proposed, which is less susceptible to damage during the substrate processing process and has improved manufacturing yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この構造のBH−LDでは発光
再結合する活性層を含むメサストライプをはさん
でいる溝の部分においては電流ブロツク層の成長
速度が速く、P−InP電流ブロツク層、n−InP
電流ブロツク層の積層に際し、特にn−InP電流
ブロツク層がメサストライプ上部で連続して成長
してしまうことがあり、歩留りの低下を招いてい
た。
However, in the BH-LD with this structure, the growth rate of the current blocking layer is fast in the groove part sandwiching the mesa stripes containing the active layer that undergoes luminescent recombination, and the growth rate of the current blocking layer is fast, and the growth rate of the current blocking layer is fast, and the growth rate of the current blocking layer is fast.
When stacking current blocking layers, the n-InP current blocking layer in particular may grow continuously over the mesa stripes, resulting in a decrease in yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は上記の欠点を除去すべく、メサ
ストライプ上部に形成されたn−InP電流ブロツ
ク層を、不純物のアウト、拡散によりP型領域に
変換せしめ、製造歩留りの大幅に向上したBH−
LDを提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks by converting the n-InP current blocking layer formed on the top of the mesa stripe into a P-type region by removing and diffusing impurities, thereby significantly improving the manufacturing yield.
The goal is to provide LD.

本発明によれば、第1導電型半導体基板上に少
くとも活性層を含む半導体多層膜を成長させた多
層膜構造半導体ウエハアを活性層よりも深い2本
の平行な溝によりメサストライプを形成した後埋
め込み成長してなる埋め込みヘテロ構造半導体レ
ーザにおいて、前記発光再結合する活性層を含む
メサストライプの上面のみ除いて第2導電型半導
体電流ブロツク層、第1導電型半導体ブロツク層
が順次積層され、さらに、前記第1導電型半導体
ブロツク層の一部が不純物の固相拡散により前記
第2導電型領域に変換させるような高濃度の前記
不純物をドープした第2導電型半導体埋め込み層
が積層されてなることを特徴とする埋め込みヘテ
ロ構造半導体レーザが得られる。
According to the present invention, a multilayer structure semiconductor wafer in which a semiconductor multilayer film including at least an active layer is grown on a first conductivity type semiconductor substrate is formed into a mesa stripe by two parallel grooves deeper than the active layer. In a buried heterostructure semiconductor laser formed by post-buried growth, a second conductivity type semiconductor current blocking layer and a first conductivity type semiconductor block layer are sequentially laminated except for only the upper surface of the mesa stripe including the active layer that emits and recombines; Further, a second conductivity type semiconductor buried layer doped with the impurity at a high concentration is stacked such that a part of the first conductivity type semiconductor block layer is converted into the second conductivity type region by solid-phase diffusion of the impurity. A buried heterostructure semiconductor laser is obtained.

〔実施例〕〔Example〕

以下図面を用いて本発明を説明する。 The present invention will be explained below using the drawings.

第1図は本発明の実施例であるInGaAsP BH
−LDの断面図を示す。このようなBH−LDを作
製するには次のようにすればよい。まず(100)
n−InP基板1上にn−InPバツフア層2
InGaAsP活性層、3P−InPクラツド層4を順次積
層された多層膜構造半導体ウエハーにD11方向
に平行にInGaAsP活性層3よりも深くメサエツ
チングして幅5μm、深さ2μmの2本の平行な溝3
0,31を作り、それにより発光再結合する活性
層を含む幅2μmのメサストライプ10を形成す
る。このようにして得られた半導体基板上にP−
InP電流ブロツク層5、n−InP電流ブロツク層、
6をメサ上面のみ除いて、積層させ、さらにZn
を1018/cm3以上ドープしたP−InP埋め込み層、
7P−InGaAsP電極層8を全面にわたつて成長さ
せ、目的のBH−LDが得られる。
Figure 1 shows an InGaAsP BH which is an embodiment of the present invention.
- Shows a cross-sectional view of the LD. Such a BH-LD can be manufactured as follows. First (100)
n-InP buffer layer 2 on n-InP substrate 1
A multilayer structure semiconductor wafer in which an InGaAsP active layer and a 3P-InP cladding layer 4 are sequentially laminated is mesa-etched in parallel to the D11 direction deeper than the InGaAsP active layer 3 to form two parallel grooves 3 with a width of 5 μm and a depth of 2 μm.
0,31, thereby forming a mesa stripe 10 with a width of 2 μm including an active layer for radiative recombination. P-
InP current blocking layer 5, n-InP current blocking layer,
6 except for the top surface of the mesa, and then layered with Zn
P-InP buried layer doped with 10 18 /cm 3 or more,
A 7P-InGaAsP electrode layer 8 is grown over the entire surface to obtain the desired BH-LD.

〔発明の効果〕〔Effect of the invention〕

本発明の実施例においてはP−InP埋め込み層
にZnのような熱拡散しやすい不純物を高濃度に
ドープすることにより、従来例のようにn−InP
電流ブロツク層がメサストライプ上に積層して
も、成長過程で、P−InP埋め込み層のZn不純物
がn−InP電流ブロツク層中に熱拡散して、P領
域に変換される。したがつて、メサストライプ部
分に電流が流れなくなるという欠点が除去される
ため、製造歩留りが大幅に向上した。このような
BH−LDにおいて、1枚のウエハー内で発振し
きい値電流が10〜20mA、微分量子効率が50〜60
%というレーザが均一に得られ、またウエハー間
のバラツキも小さく、BH−LDの特性上の再現
性、製作歩留りが大幅に向上した。
In the embodiment of the present invention, by doping the P-InP buried layer with an impurity that is easily thermally diffused, such as Zn, the n-InP
Even if the current blocking layer is stacked on the mesa stripe, during the growth process, the Zn impurity in the P-InP buried layer is thermally diffused into the n-InP current blocking layer and converted into a P region. Therefore, the drawback that current does not flow in the mesa stripe portion is eliminated, and the manufacturing yield is significantly improved. like this
In BH-LD, the oscillation threshold current is 10 to 20 mA and the differential quantum efficiency is 50 to 60 within one wafer.
%, and the variation between wafers was small, greatly improving the reproducibility of BH-LD characteristics and manufacturing yield.

本発明の特徴は、メサストライプ上に積層した
n−InP電流ブロツク層をその上に成長するP−
InP埋め込み層中のZn不純物の固相拡散によりP
型領域に変換せしめることである。したがつて高
性能なBH−LDの製造歩留りを大幅に改善する
ことができた。
The feature of the present invention is that the n-InP current blocking layer is laminated on the mesa stripe and the P-InP current blocking layer is grown on top of the n-InP current blocking layer.
Due to the solid phase diffusion of Zn impurities in the InP buried layer, P
This is to convert it into a type domain. Therefore, it was possible to significantly improve the manufacturing yield of high-performance BH-LDs.

尚、P−InP埋め込み層中に添加するZn又は
Mg濃度が1018/cm3以上必要な理由は、結晶成長
温度が600〜650℃範囲で不純物の固相拡散を有効
と活用するために必要な濃度であり実験結果では
1018/cm3を境いとして良否がはつきりした。
In addition, Zn or
The reason why the Mg concentration is required to be 10 18 /cm 3 or more is that the concentration is necessary to effectively utilize the solid phase diffusion of impurities when the crystal growth temperature is in the range of 600 to 650 °C.
10 18 / cm 3 was the boundary between good and bad results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のBH−LDの断面図である。 1……n形InP基板、2……n形InPバツフア
層、3……InGaAsP活性層、4……P形InPクラ
ツド層、5……P形InPブロツク層、6……n形
InPブロツク層、7……P形InP埋め込み層、8
……P形InGaAsPキヤツプ層、10……メサス
トライプ、30および31……互いに平行な溝、
3m……メサストライプ10中の活性層光導波
路、4m……P形InPクラツド層メサ部、20…
…P側電極、21……n型電極である。
FIG. 1 is a sectional view of the BH-LD of the present invention. 1...n-type InP substrate, 2...n-type InP buffer layer, 3...InGaAsP active layer, 4...P-type InP cladding layer, 5...P-type InP block layer, 6...n-type
InP block layer, 7... P-type InP buried layer, 8
... P-type InGaAsP cap layer, 10 ... mesa stripe, 30 and 31 ... mutually parallel grooves,
3m...Active layer optical waveguide in mesa stripe 10, 4m...P-type InP clad layer mesa portion, 20...
...P-side electrode, 21...n-type electrode.

【特許請求の範囲】[Claims]

1 銅、アルミニウム、鉄、ニツケル、クロムも
しくは亜鉛の単体金属またはこれらの合金からな
る導電性金属箔帯で構成された導電回路パターン
を水溶性接着剤を塗布した転写用台紙上に、少な
くとも熱酸化で消失機能を有する合成樹脂からな
るオーバーコート層を介して一体化した回路パタ
ーン転写紙を用いてその転写紙からホーロ基板に
前記回路パターンを転写、ホーロ基板を構成する
ガラス層が軟化流動する温度以上で、加熱するこ
とにより、前記オーバーコート層が熱消失すると
ともに、前記基板上に導電回路を形成することを
特徴とする導電回路の形成法。
1. A conductive circuit pattern composed of a conductive metal foil strip made of a single metal such as copper, aluminum, iron, nickel, chromium, or zinc or an alloy thereof is placed on a transfer mount coated with a water-soluble adhesive and subjected to at least thermal oxidation. The circuit pattern is transferred from the transfer paper to the hollow substrate using a circuit pattern transfer paper integrated through an overcoat layer made of a synthetic resin having a vanishing function at a temperature at which the glass layer constituting the hollow substrate softens and flows. The above method for forming a conductive circuit is characterized in that the overcoat layer is thermally dissipated by heating, and a conductive circuit is formed on the substrate.

JP8790685A 1985-04-24 1985-04-24 Embedded hetero-structure semiconductor laser Granted JPS61247084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8790685A JPS61247084A (en) 1985-04-24 1985-04-24 Embedded hetero-structure semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8790685A JPS61247084A (en) 1985-04-24 1985-04-24 Embedded hetero-structure semiconductor laser

Publications (2)

Publication Number Publication Date
JPS61247084A JPS61247084A (en) 1986-11-04
JPH0436598B2 true JPH0436598B2 (en) 1992-06-16

Family

ID=13927951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8790685A Granted JPS61247084A (en) 1985-04-24 1985-04-24 Embedded hetero-structure semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61247084A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690063A (en) * 1992-07-20 1994-03-29 Toyota Motor Corp Semiconductor laser
JP2973794B2 (en) * 1993-09-24 1999-11-08 トヨタ自動車株式会社 Semiconductor laser
DE59900742D1 (en) 1998-01-30 2002-02-28 Osram Opto Semiconductors Gmbh SEMICONDUCTOR LASER CHIP

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200484A (en) * 1983-04-28 1984-11-13 Nec Corp Semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200484A (en) * 1983-04-28 1984-11-13 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPS61247084A (en) 1986-11-04

Similar Documents

Publication Publication Date Title
CN106972345B (en) Method of forming semiconductor optical device and semiconductor optical device
JPS6080292A (en) Semiconductor laser
WO2019208697A1 (en) Optical semiconductor element and method for producing same, and integrated optical semiconductor element and method for producing same
JPH0436598B2 (en)
JPS6237913B2 (en)
JPH07115251A (en) Semiconductor laser
JPH07254750A (en) Semiconductor laser
JP2680804B2 (en) Semiconductor laser
JPS61276285A (en) Semiconductor light-emitting device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP3285079B2 (en) Semiconductor laser
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS622718B2 (en)
JPH04199587A (en) Optical semiconductor device
JPS6244440B2 (en)
JPS6237914B2 (en)
JP2740165B2 (en) Semiconductor laser
JPH0438880A (en) Semiconductor light emitting element
JPS641072B2 (en)
JPS641073B2 (en)
JPH03174793A (en) Semiconductor laser
JPS6257271A (en) Semiconductor laser device
JPH1140897A (en) Semiconductor laser element and its manufacture
JPS61150294A (en) Semiconductor light emitting device
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same