JPS60143678A - Light emitting transistor - Google Patents

Light emitting transistor

Info

Publication number
JPS60143678A
JPS60143678A JP58248408A JP24840883A JPS60143678A JP S60143678 A JPS60143678 A JP S60143678A JP 58248408 A JP58248408 A JP 58248408A JP 24840883 A JP24840883 A JP 24840883A JP S60143678 A JPS60143678 A JP S60143678A
Authority
JP
Japan
Prior art keywords
light
light emission
light emitting
construction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58248408A
Other languages
Japanese (ja)
Inventor
Koji Shinohara
篠原 宏爾
Yoshito Nishijima
西嶋 由人
Hirokazu Fukuda
福田 広和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58248408A priority Critical patent/JPS60143678A/en
Publication of JPS60143678A publication Critical patent/JPS60143678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain an element construction enabling light emission of two wave lengths or a laser oscillation by laminating light emitting devices into a construction of transistor. CONSTITUTION:In a light emitting transisror of n-p-n three-electrode construction, if the forward direction current flows between the electrodes 11, 12, the nnu light emissionis obtained and if the forward direction current also flows between the electrodes 13, 11, the nnu' light emission is obtained. By combining the crystal compositions of the p-n junction, different wave lengths can be obtained simultaneously and a light emitting transistor which emits two wave lengths with a construction of one semiconductor device is formed. If, for example, a current flows between the electrodes 11, 12 emitting the light of nu' and the voltage of a signal is applied between 11, 13 or 12, 13, such a construction of device can also modulate the intensity of light emission between 11, 12 and by coupling the light emission between 11, 12 and the light emission between 12, 13, makes multicoloring by subtractive color mixture possible.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は化合物半導体基板上lこ光電変換素子を搭載す
る発光トランジスタに係り、特に三波長発光を得るのに
答易な発光素子の構成に関する〇(b) 技術の背景 通常レーザタイオード(LD)、発光ダイオード等の元
1変換素子はPN接合の二極構成をなしている。PN接
合に順方向電流を流すことにより、発振又は発光させる
ものである。順方向バイアスによりてPN接合部のポテ
ンシャル障壁が低められ、N影領域から電子がP影領域
へ、P影領域から正孔がN影領域へ流れ、これら電子、
正孔は注入した領域で再結合し、半導体のエネルギーギ
ャップ(Bg)に相当する元(Eg =h−■)を出す
。発光ダイオードとレーザダイオードの違いは前者が自
然数出により発光するのに対して後者は誘導放出による
点である。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a light emitting transistor mounting a photoelectric conversion element on a compound semiconductor substrate, and particularly relates to a structure of a light emitting element that is easy to obtain three wavelength light emission. 〇(b) Background of the Technology Normally, an element-1 conversion element such as a laser diode (LD) or a light emitting diode has a bipolar structure of a PN junction. Oscillation or light emission is caused by passing a forward current through the PN junction. The potential barrier of the PN junction is lowered by the forward bias, and electrons flow from the N shadow region to the P shadow region, and holes flow from the P shadow region to the N shadow region.
The holes recombine in the injected region and release an element (Eg = h-■) corresponding to the energy gap (Bg) of the semiconductor. The difference between a light emitting diode and a laser diode is that the former emits light by natural numbering, whereas the latter emits light by stimulated emission.

そのためレーザダイオードの′電流密度は発光ダイオー
ドに比し桁違いに大きくその構造もPN接合面に垂直に
二つの面があり活性領域で発光した元は、この二つの反
射面を往復する間に、この反射面で決定される波長のレ
ーザに成長し、これを外部に取り出すものである。
Therefore, the current density of a laser diode is an order of magnitude higher than that of a light-emitting diode, and its structure has two planes perpendicular to the PN junction plane, and the light emitted from the active region is emitted while traveling back and forth between these two reflecting planes. A laser beam with a wavelength determined by this reflective surface is grown, and this laser beam is extracted to the outside.

発光ダイオードの累子形成に用いる(Ja As l 
−XPxはガリウム砒素(GaAs)とガリウムリん(
GaP)の混晶であり、Xの容量により直接又は間接遷
移形をなくすことはよく知らnている。即ち0≦X<0
.45で直接遷移形、0.45(x≦1で間接遷移形の
県止帝@を持ちGaAs(赤外)、GaAsP(赤) 
、 Ga P(赤、黄、緑)等が多く用いられる。
Used in the formation of light emitting diodes (Ja As l
-XPx is gallium arsenide (GaAs) and gallium phosphide (
It is well known that the direct or indirect transition type is eliminated by the capacitance of X. That is, 0≦X<0
.. 45 is a direct transition form, 0.45 (x≦1 has an indirect transition form kenstopte @, GaAs (infrared), GaAsP (red)
, Ga P (red, yellow, green), etc. are often used.

一方レーザダイオードはG a A sレーザの外に可
視から遠赤外の広い範囲lこわたってダイオードレーザ
の発振が確められている。赤外域のダイオードレーザは
エネルギーギツプ(Eg)が小さい半導体な基板にして
おり、温度、圧力、磁界、ダイオード電流により外部か
ら発振波長を連続的に変化させ得る!長をもち中でも鉛
カルコゲナイド系(Pb8an、pb8nTe)の赤外
牛導体レーザが広域にわたって波長可変の有オU性から
注目されている。
On the other hand, laser diodes have been confirmed to oscillate over a wide range from visible to far infrared, in addition to GaAs lasers. The infrared diode laser uses a semiconductor substrate with a small energy gap (Eg), and the oscillation wavelength can be changed continuously from the outside by changing temperature, pressure, magnetic field, and diode current! Among the long-lasting infrared conductor lasers, lead chalcogenide (Pb8an, pb8nTe) infrared conductor lasers are attracting attention because of their wavelength tunability over a wide range.

(C) 従来技術と問題点 第1図は従来のGaP緑色発光ダイオードの一例を示す
構成図、第2図は鉛カルコゲナイド系赤外牛導体レーザ
の一例を示す構成図である。
(C) Prior Art and Problems FIG. 1 is a block diagram showing an example of a conventional GaP green light emitting diode, and FIG. 2 is a block diagram showing an example of a lead chalcogenide-based infrared conductor laser.

第1回着こおいて硫黄(S)又はテルル(Te)をドー
プしたn形のGaP基板1にn形GaPエピタキシャル
層2、P形GaPエピタキシャル層3を積層形成する。
In the first step, an n-type GaP epitaxial layer 2 and a p-type GaP epitaxial layer 3 are laminated on an n-type GaP substrate 1 doped with sulfur (S) or tellurium (Te).

n形OaPエピタキシャルノー2には基板1と同一不純
物の8又はTeがドープされてn形をなしP形GaPエ
ピタキシャル層3には亜鉛(Zn)がドープされてP形
を構成する。n形及びP形エピタキシャルJ曽2.:H
こは1〜2×1018Crn−3ON原子が添加されて
おり従って緑色発光は、結晶を構成するりん原子(Pl
の格子位置を置換するN原子を発光中心として商い発光
効率を示す。Pを置換したNJfA子はPと同じVgl
こp4するので、電気的1こは中性であるがNの電気隘
性度がPより大きいためイソエレクトロニットラップ(
iso electronictrap)として働きこ
れに捕獲された励起子が消滅する際に緑色発光が生ずる
The n-type OaP epitaxial layer 2 is doped with 8 or Te, which is the same impurity as the substrate 1, to form an n-type layer, and the P-type GaP epitaxial layer 3 is doped with zinc (Zn) to form a P-type layer. N-type and P-type epitaxial J So 2. :H
1 to 2 x 1018Crn-3ON atoms are added to this, and therefore the green light emission is caused by phosphorus atoms (Pl) that make up the crystal.
Luminous efficiency is expressed by taking the N atom that replaces the lattice position of the luminescent center as the luminescent center. The NJfA child that replaced P has the same Vgl as P.
Since this is p4, electrically 1 is neutral, but since the electrical resistance of N is greater than P, isoelectronic wrap (
When excitons captured by this act as an electronic trap are annihilated, green light is emitted.

電極は上部P[m4及び下部n′i[極5からなり両[
極4,5間に順方向電流l流すことにより所望の緑色発
光が得らnるがl素子に対厄する1発元のみである。
The electrode consists of an upper P[m4 and a lower n′i[pole 5, both [
By passing a forward current l between the poles 4 and 5, the desired green light emission can be obtained, but there is only one emission source that is harmful to the l element.

第2図ではP形の鉛テルル基板6 (p−PLTe)上
に液相エピタキシャル法によりn形Pb1−X5nxT
e層8を挾んでP、n形のP b ’I’ e層7,9
を形成するOX値な決めることにより所定の発振波長の
赤外レーザが傅ら孔る。
In Fig. 2, an n-type Pb1-
P and n-type P b 'I' e layers 7 and 9 sandwiching the e layer 8
By determining the OX value to form the infrared laser of a predetermined oscillation wavelength.

3− n形Pb1ysnXTe層8は活性層をなし、P形。3- The n-type Pb1ysnXTe layer 8 forms an active layer and is P-type.

n形Pb’l’e/d 7 、9はブラッド層が形成さ
れるととlこより上部、下部′に他より順方向電流を流
すことにより活性層より赤外レーザな励起させるもので
あり、この場合も前述した発光ダイオードと同様l索子
対応の1波長の赤外光発振である。
When the blood layer is formed, the n-type Pb'l'e/d 7,9 is used to excite the active layer with more infrared laser by passing a forward current in the upper part and the lower part'. In this case as well, infrared light oscillation is performed with one wavelength corresponding to the l-chord, similar to the above-mentioned light emitting diode.

本発明者等はこれら光電変換素子を積層して三波長発光
又は発振を得るトランジスタ構造に着目したものである
The present inventors focused on a transistor structure in which these photoelectric conversion elements are stacked to obtain three-wavelength light emission or oscillation.

(d) 発明の目的 本発明は上記の点に鑑み発光素子な積層してトランジス
タ構造とし、三波長発光又はレーザ発振を可能とする素
子構成の提供を目的とする。
(d) Purpose of the Invention In view of the above points, the present invention aims to provide a device structure in which a light emitting device is stacked to form a transistor structure and enables three-wavelength light emission or laser oscillation.

tel 発明の構成 上記目的は本発明によれば14電型の第1の化合物半導
体層と、該第1の化合物半導体層上に形成された反体導
電型の第2の化合物半導体層と、該第2の化合物半導体
層上に形成されたl導電型の第3の化合物半導体Nを有
し、谷接合lこおいて発光させることによって運せられ
る。
tel Structure of the Invention According to the present invention, the above object includes a first compound semiconductor layer of 14-electroconductivity type, a second compound semiconductor layer of anticonductivity type formed on the first compound semiconductor layer, It has a third compound semiconductor N of conductivity type formed on the second compound semiconductor layer, and is transported by emitting light at the valley junction.

4− (f) 発明の実施例 第3図は本発明の実施例である三極構造とした発光トラ
ンジスタの基本構成を示′″f換弐図、第4図は本発明
の一実施例である三波長の赤外牛導体装置を不す構成図
、第5図は第4図のPn接合部におけるエネルギーギャ
ップを示す模式図である。
4-(f) Embodiment of the Invention Figure 3 shows the basic configuration of a light-emitting transistor having a triode structure, which is an embodiment of the invention, and Figure 4 shows an embodiment of the invention. FIG. 5 is a schematic diagram illustrating the energy gap at the Pn junction in FIG. 4, which is a block diagram of a certain three-wavelength infrared conductor device.

第3図に示すように三極構造としたn−P、−n構成の
発光トランジスタにおいて電極lt、12間に順方向電
流を流すとbvの発光が得られ、電極13゜11間に同
様に順方向電流を流すことlこよりhr’の発光が得ら
れる。
As shown in Fig. 3, when a forward current is passed between electrodes lt and 12 in a light-emitting transistor with a triode structure of n-P and -n, light emission of bv is obtained, and similarly between electrodes 13 and 11. By passing a forward current, light emission of hr' can be obtained.

このP −n接合部の結晶組成を組合せることにより、
異なる波長が同時に得られることになり1つの半導体デ
バイス構成で三波長発光の発光トランジスタが形成され
ることになる。
By combining the crystal composition of this P-n junction,
Since different wavelengths can be obtained simultaneously, a light emitting transistor capable of emitting light at three wavelengths can be formed with one semiconductor device configuration.

このようなデバイス構成を取ることにより例えば電極1
1.12間な通電してhv’の発光をさせながら11.
13間或いは12.13間1こ信号電圧を印加すること
により、11.12間の発光強度を変調させることもで
き、また11.12間の発光と12゜13間の発光との
カップリングにより減法混色lこよる多色化も1181
′能となる。
By adopting such a device configuration, for example, the electrode 1
1. While applying electricity for 12 seconds to emit hv' light, 11.
By applying a signal voltage between 13 and 12.13, the light emission intensity between 11.12 and 12.13 can be modulated, and by coupling the light emission between 11.12 and the light emission between 12° and 13. 1181 Multicoloring due to subtractive color mixing
' Become capable.

第4図に示すものは二重のダブルへテロ接合をなす赤外
半導体を構成し、活性層に接する両面にPn接合部を配
し、二重構成とし、それぞnに対応する電極を形成し二
系子構成の半導体とした実施例を示すものである。
The one shown in Figure 4 constitutes an infrared semiconductor that forms a double double heterojunction, with Pn junctions arranged on both sides in contact with the active layer, making it a double structure, and forming electrodes corresponding to each n. This shows an example in which the semiconductor has a two-system structure.

活性層にはPb5nTe層14.15を設け、この活性
Nを挾んで第1素子囚側にn形クラッド層(n−PbT
e層)16、P形りラッド層(1’−PbTe層)18
を設ける。第2素子(I3)側にも同様lこn形クラッ
ド層(n−Pb’l’e層)17及び第1素子(5)と
共有するP形りラッド層(P−PbTeffi ) 1
8で構成される。
A Pb5nTe layer 14.15 is provided in the active layer, and an n-type cladding layer (n-PbT
e layer) 16, P-shaped rad layer (1'-PbTe layer) 18
will be established. Similarly, on the second element (I3) side, there is also an l-type cladding layer (n-Pb'l'e layer) 17 and a p-type cladding layer (P-PbTeffi) 1 shared with the first element (5).
Consists of 8.

電極構成は第1素子(AlNilは上部電極19.下部
電極22を第2素子(B)側には上部゛電極21及び下
部1を極20をそnぞれ設けて二素子構成とするもので
ある。
The electrode configuration is such that the first element (AlNil has an upper electrode 19 and a lower electrode 22) and the second element (B) side has an upper electrode 21 and a lower electrode 20, making it a two-element configuration. be.

本実施例では各層の厚さを1μmにとり、n形りラッド
層16.17にはビスマス(Bi)又はインジウム(I
n)Y一方P形クラッド層18にはテルル(Te)をそ
れぞれI Q”CIIL” トープ−する、活性層14
.154こは不純物注入は行なわれい。キャリア濃度を
1015鑞−3とし電極間にolV程度を印加すること
lこより所望の三波長レーザが得られる。
In this example, the thickness of each layer is 1 μm, and the n-type rad layers 16 and 17 are made of bismuth (Bi) or indium (I).
n) Y, while the active layer 14 is doped with tellurium (Te) in the P-type cladding layer 18.
.. 154 No impurity implantation is performed here. A desired three-wavelength laser can be obtained by setting the carrier concentration to 1015 -3 and applying about OLV between the electrodes.

第5図に示すように二重のタプルへテロ接合を取ること
により発S効率を向上させることができる。即ち電子側
の伝導帯23と正孔側の価電子帯24との間隙エネルギ
ーギャップ(Eg)は図より明らかなようlこEgのせ
まいPb Sn Te7i114 、15yrEgの広
イP b Te Nil b + 17.18で挾んだ
構造であり、二つのPb5nTe J曽14 、 l 
5は各々第1素子、第2素子の発光領域(f5性層)t
なし光子を放出するため発光効率を高め得ることができ
る。
As shown in FIG. 5, the generation efficiency can be improved by forming a double tuple heterojunction. That is, as is clear from the figure, the gap energy gap (Eg) between the conduction band 23 on the electron side and the valence band 24 on the hole side is narrow for 1 Pb Sn Te7i114 and wide for 15yrEg P b Te Nil b + 17 It has a structure sandwiched by .18, and two Pb5nTe J so14, l
5 is the light emitting region (f5 layer) t of the first element and the second element, respectively.
Since no photons are emitted, the luminous efficiency can be increased.

本実施例ではN−P−N型について説明したがP−N−
P型でもよいことは勿論である。
In this example, the N-P-N type was explained, but the P-N-
Of course, the P type may also be used.

電変換索子とすることAこより変調或は三波長発光が可
能となり、更に種々の信号皿畳が容易となる等適応範囲
は拡大する。
By using an electric conversion cable, it becomes possible to modulate or emit light with three wavelengths, and the range of application is expanded, such as making it easier to create various signal plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaP緑色発光ダイオードの一例を示す
構成図、第2図は鉛カルコゲナイド系赤外半導体レーザ
の一例を示す構成図、第3図は本発明の実施例である三
極構造とした発光トランジスタの基本構成を示す模式図
、第4図は本発明の一実施例である三波長の赤外千尋装
置を示す構成図、第5図は第4図のPn接合部における
エネルギーギャップを示す模式図である。 ゛ 図中11〜13.19〜22・・・・川・・1L極、1
4.15・・・−・−・−PbSnTe層(活性層) 
l 6 、17 、 l 8−−−−−−−・・PbT
e層(クラッド層〕、23・・・明・・伝導帯、24・
・・・・・・・・価電子帯。 亭 1 囚 亭、ス jY−5凶
Fig. 1 is a block diagram showing an example of a conventional GaP green light emitting diode, Fig. 2 is a block diagram showing an example of a lead chalcogenide-based infrared semiconductor laser, and Fig. 3 is a block diagram showing an example of a lead chalcogenide-based infrared semiconductor laser. FIG. 4 is a schematic diagram showing the basic configuration of a light-emitting transistor, which is an embodiment of the present invention. FIG. FIG.゛11-13 in the figure. 19-22... River... 1L pole, 1
4.15...----PbSnTe layer (active layer)
l 6 , 17 , l 8 ----------...PbT
e layer (cladding layer), 23... light... conduction band, 24...
・・・・・・・・・Valence band. Tei 1 Prisoner Tei, SujY-5Ko

Claims (1)

【特許請求の範囲】[Claims] l導電盤の第1の化合物半導体層と、該第1の化合物半
導体層上lこ形成された反対4を型の第2の化合物半導
体層と、該第2の化合物半導体I−上に形成された1導
電型の第3の化合物半導体層を有し、各接合において発
光することを特徴とする発光トランジスタ。
a first compound semiconductor layer of a conductive plate, a second compound semiconductor layer of an opposite type formed on the first compound semiconductor layer, and a second compound semiconductor layer formed on the second compound semiconductor layer; A light-emitting transistor comprising a third compound semiconductor layer of one conductivity type and emitting light at each junction.
JP58248408A 1983-12-29 1983-12-29 Light emitting transistor Pending JPS60143678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248408A JPS60143678A (en) 1983-12-29 1983-12-29 Light emitting transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248408A JPS60143678A (en) 1983-12-29 1983-12-29 Light emitting transistor

Publications (1)

Publication Number Publication Date
JPS60143678A true JPS60143678A (en) 1985-07-29

Family

ID=17177665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248408A Pending JPS60143678A (en) 1983-12-29 1983-12-29 Light emitting transistor

Country Status (1)

Country Link
JP (1) JPS60143678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102955A1 (en) * 2017-11-27 2019-05-31 株式会社ニコン Light-emitting element and display device, and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102955A1 (en) * 2017-11-27 2019-05-31 株式会社ニコン Light-emitting element and display device, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3270476B2 (en) Ohmic contacts, II-VI compound semiconductor devices, and methods of manufacturing these devices
JPH0738487B2 (en) Wide bandgap semiconductor light emitting device
JPH0695588B2 (en) Semiconductor device
JPS63181486A (en) Semiconductor light emitting device
JPH0268968A (en) Compound semiconductor light-emitting device
US3514715A (en) Multilayer,light-emitting semiconductor device
JP3464853B2 (en) Semiconductor laser
JPH0236585A (en) Quantum well structure and semiconductor element provided therewith
JPS6244434B2 (en)
JP2653562B2 (en) Semiconductor laser and method of manufacturing the same
US5250814A (en) Semiconductor light-emitting devices
JPS60143678A (en) Light emitting transistor
JP2892053B2 (en) Semiconductor light emitting element array
JPS58213491A (en) Semiconductor laser
JP2755940B2 (en) Light emitting element
JP2508649B2 (en) Semiconductor light emitting device
JP2738040B2 (en) Semiconductor light emitting device
JP3119513B2 (en) Avalanche light emitting device
JP2815165B2 (en) Two-way injection type semiconductor laser device
JPH02125477A (en) Visible light emitting element
JPH0371797B2 (en)
JPS6257259A (en) Light emitting semiconductor element
JPH0370392B2 (en)
JPH07335940A (en) Compound semiconductor light emitting device
JPH0467689A (en) Tunnel junction light-emitting element