WO2019102955A1 - Light-emitting element and display device, and method for manufacturing same - Google Patents

Light-emitting element and display device, and method for manufacturing same Download PDF

Info

Publication number
WO2019102955A1
WO2019102955A1 PCT/JP2018/042613 JP2018042613W WO2019102955A1 WO 2019102955 A1 WO2019102955 A1 WO 2019102955A1 JP 2018042613 W JP2018042613 W JP 2018042613W WO 2019102955 A1 WO2019102955 A1 WO 2019102955A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
substrate
layers
light
Prior art date
Application number
PCT/JP2018/042613
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 坂田
義隆 小菅
洋佑 岩▲崎▼
靖和 藤岡
篤史 原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201880076745.2A priority Critical patent/CN111418077A/en
Priority to JP2019555292A priority patent/JPWO2019102955A1/en
Priority to KR1020207015071A priority patent/KR20200088347A/en
Publication of WO2019102955A1 publication Critical patent/WO2019102955A1/en
Priority to JP2023127536A priority patent/JP2023156400A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to a light emitting element and a display device, and a method of manufacturing the light emitting element and the display device.
  • micro LED light emitting diode
  • a so-called micro light emitting diode hereinafter referred to as micro LED
  • red, blue, and green light emitting diodes are different from each other in the base material and the material to be deposited thereon, these three color light emitting diodes are manufactured using the semiconductor element manufacturing process on the same base material It is difficult to form. For this reason, when manufacturing a full color image display device, after manufacturing many micro LED of those three colors separately, it was necessary to arrange those micro LEDs separately in a predetermined arrangement. For example, cited document 1 is proposed as an example of the arrangement method.
  • a plurality of light emitting layers each emitting light, and a plurality of semiconductor layers joined to the plurality of light emitting layers such that the light is emitted by the plurality of light emitting layers when voltage is applied
  • a light emitting device in which a plurality of light emitting layers and a plurality of semiconductor layers are joined in order in a predetermined direction.
  • a display device comprising the light emitting element of the first aspect and a substrate on which a wiring for supplying power to the light emitting layer is formed and the light emitting element is joined.
  • a method of manufacturing a light emitting device comprising: cutting the bonded light emitting device in a direction intersecting with the predetermined direction.
  • a manufacturing method of manufacturing the display device of the second aspect wherein scattering of a plurality of light emitting elements, bonding of the scattered light emitting elements and the substrate are performed on the substrate. And providing a method of manufacturing a display device.
  • (A) is an enlarged perspective view showing a three-color micro LED according to the first embodiment
  • (B) is a view showing a red micro LED in FIG. 1 (A) and a modification thereof
  • (C) is a view It is an expanded sectional view which shows the state which arrange
  • (A) is a front view which shows the image display apparatus which concerns on the embodiment
  • (B) is an enlarged view which shows a part of image display apparatus of FIG. 2 (A). It is a flowchart which shows an example of the manufacturing method of the image display apparatus which concerns on the embodiment.
  • (A) is a perspective view which shows the state which arrange
  • (B) is a perspective view which shows the state which installed the guide member on the upper surface of the board
  • (A) is a perspective view which shows the state which disperse
  • (B) is a perspective view which shows the state which arrange
  • (A) is a perspective view showing a state in which the guide member is removed from the substrate
  • (B) is an enlarged perspective view showing the three-color micro LED of the modification
  • (C) is an enlarged perspective view showing the micro LED of another modification FIG.
  • FIG. 7 (A) is an enlarged view showing a part of an image display apparatus according to still another modification
  • (B) is a cross-sectional view of FIG. 7 (A)
  • (C) is another corresponding to FIG. 7 (B)
  • (D) is a cross-sectional view corresponding to FIG. 7 (B) of the example using the micro LED of FIG. 6 (B) which shows a modification.
  • (A), (B), (C), and (D) are side views showing the first, second, third, and fourth micro LED units according to the second embodiment, respectively.
  • (A) is a front view which shows the image display apparatus which uses a 1st micro LED unit
  • (B) is a front view which shows an image display apparatus which uses a 2nd micro LED unit.
  • (A) is a front view which shows the image display apparatus which uses a 4th micro LED unit
  • (B) is an expanded sectional view of a part of FIG. 10 (A).
  • It is a flowchart which shows an example of the manufacturing method of the image display apparatus which concerns on 2nd Embodiment.
  • (A) is an enlarged side view showing wafers for five light emitting diodes
  • (B) is an enlarged side view showing a state in which five wafers are bonded.
  • (A) is an enlarged side view showing a state in which the lowermost base material is separated from five wafers
  • (B) is an enlarged side view showing a state in which the micro LED unit is cut out.
  • (A) is a perspective view which shows the state which arrange
  • (B) is a perspective view which shows the state which disperse
  • (A) is a perspective view showing a state in which the micro LED unit is disposed in a large number of openings of the first guide member
  • FIG. 6 is an enlarged cross-sectional view showing the state of FIG.
  • FIG. 1A generates a light emitting diode (hereinafter referred to as a red LED) 10R that generates red light, a light emitting diode (hereinafter referred to as a blue LED) 10B that generates blue light, and green light according to the present embodiment.
  • a light emitting diode (hereinafter referred to as a green LED) 10G is shown.
  • Each of the LEDs 10R, 10B, and 10G has a rectangular cross-sectional shape and a rectangular parallelepiped shape having a height (length) higher than the length of the side of the cross section.
  • the side length of the cross section is about 20 to 100 ⁇ m, and the height is about 1.5 times to 3 times the side length. That is, the LEDs 10R, 10B, and 10G are each a micro LED. Furthermore, the red LED 10R has the largest cross-sectional area and the lowest height, the blue LED 10B has a smaller cross-sectional area than the red LED 10R and a higher height than the red LED 10R, and the green LED 10G has the smallest cross-sectional area and the highest height high. In addition, LED10R, 10B, 10G should just differ in a shape mutually, The shape is arbitrary. Below, the direction of height (length) of LED10R, 10B, 10G is demonstrated as T direction.
  • the red LED 10R includes, in order in the T direction, a first P-type semiconductor layer (hereinafter referred to as P layer) 12P1 (first semiconductor layer), a first light emitting layer 12R1, an N-type semiconductor layer It is formed by laminating 12 N (second semiconductor layer) (hereinafter referred to as N layer), second light emitting layer 12 R 2, and second P layer 12 P 2 (first semiconductor layer).
  • the P layers 12P1 and 12P2 and the N layer 12N have different conduction types.
  • the light emitting layers 12R1 and 12R2 can also be regarded as part of the semiconductor layer.
  • lamination can also be said to be bonding of multiple times.
  • the T direction is the bonding direction (stacking direction) of the light emitting layer and the semiconductor layer.
  • the light emitting layer 12R1 (12R2) includes, in order from the P layer 12P1 (12P2) to the N layer 12N, a so-called p-layer having a hole density lower than that of the P layer 12P1 (12P2) and an N layer 12N. It is a laminate of so-called n-layers with low electron density.
  • the first P layer 14P1, the first light emitting layer 14B1, the N layer 14N, the second light emitting layer 14B2, and the second P layer 14P2 are sequentially arranged in the T direction.
  • the green LED 10G (green micro LED) is formed by stacking the first P layer 16P1, the first light emitting layer 16G1, the N layer 16N, the second light emitting layer 16G2, and the second light emitting layer 16G.
  • P layer 16P2 is laminated and formed.
  • the red LED 10R is made of gallium phosphor (GaP (Zn, O)) or gallium aluminum arsenide (GaAlAs) in which zinc, oxygen, etc. are added to the surface of a substrate made of gallium phosphor (GaP) or gallium arsenide (GaAs).
  • GaP gallium phosphor
  • GaAlAs gallium aluminum arsenide
  • the blue LED 10B is a semiconductor layer such as indium gallium nitrogen (InGaN) on the surface of the base made of sapphire or silicon carbide (SiC) And the light emitting layer are formed, and the green LED 10G is formed on the surface of the base material made of sapphire or SiC by forming the semiconductor layer and the light emitting layer such as gallium phosphorus (GaP (N)) or InGaN to which nitrogen or the like is added. Manufactured.
  • the materials of the base, the semiconductor layer, and the light emitting layer of the LED 10R and the LEDs 10B and 10G are different from each other.
  • LED10B and 10G may mutually differ in the material of a base material, a semiconductor layer, and at least one of a light emitting layer mutually.
  • the materials of the base material and the semiconductor layer of the LED 10R, 10B and 10G and the light emitting layer are arbitrary, and the materials of the base material and / or the semiconductor layer of the LED 10R, 10B and 10G and the light emitting layer may be the same.
  • the P layers 12P1 and 12P2 and the N layer 12N are respectively symmetrical (linearly symmetrical) with respect to a straight line 18 centered in the T direction.
  • being symmetrical about a straight line 18 centered in the T direction is also referred to simply as being symmetrical about the T direction.
  • the red LED 10R is placed in the guide member 30 on the substrate 22 to set the wires 28A and 28B.
  • the P layers 12P1 and 12P2 and the N layer 12N are symmetrical with respect to the T direction in the red LED 10R, even if the red LED 10R is installed on the substrate 22 with the red LED 10R inverted with respect to the T direction
  • the red LED 10R emits light in the same manner as before reversing the direction without changing the voltage and without changing the voltage applied to the wirings 28A to 28C.
  • the light emitting layers 12R1 and 12R2 are also symmetrical with respect to the T direction. Therefore, the color tone does not change even if the red LED 10R is installed in the T direction in a reversed manner.
  • the first N layer 12N1, the first light emitting layer 12R1, the P layer 12P, the second light emitting layer 12R2, and the first light emitting layer 12R1 are sequentially arranged in the T direction. It is also possible to manufacture (use) a red LED 10RA formed by bonding two N layers 12N2. In other words, the red LED 10RA has a configuration in which the P layer and the N layer of the red LED 10R are interchanged.
  • the N layers 12N1 and 12N2, the light emitting layers 12R1 and 12R2, and the P layer 12P are symmetrical with respect to the T direction. Therefore, even if the red LED 10RA is installed on the substrate 22 so as to be inverted with respect to the T direction, the red LED 10RA emits light as before the direction is inverted.
  • FIG. 2A shows a full-color image display device 20 using the LEDs 10R, 10B, and 10G (micro LEDs of three colors) according to the present embodiment.
  • the image display device 20 includes a display unit in which red LEDs 10R, blue LEDs 10B, and green LEDs 10G are arranged in a matrix and fixed on the upper surface of a substrate 22 made of a substantially rectangular insulator, and a large number of LEDs 10R, 10B, and 10G are turned on. And a controller 24 for individually controlling the light intensity and the light intensity.
  • the LEDs 10R, 10B, and 10G are shown in a considerably enlarged size than the actual size for the convenience of description.
  • the T direction which is the bonding direction of the LEDs 10R, 10B, and 10G
  • the red LEDs 10R, the blue LEDs 10B, and the green LEDs 10G are arranged at a predetermined pitch in the Y direction along straight lines parallel to the Y axis, and one row of red LEDs 10R, one row of blue LEDs 10B, and one row of green LEDs 10G It is arranged at a predetermined pitch in the X direction.
  • the pitch of the arrangement of the LEDs 10R, 10B and 10G in the X direction and the Y direction is, for example, about 100 ⁇ m to 200 ⁇ m, and the arrangement number of the LEDs 10R, 10B and 10G in the X direction and Y direction is about 1000, respectively.
  • the arrangement of the LEDs 10R, 10B and 10G is arbitrary, and the LEDs 10R, 10B and 10G may be arranged in a checkered pattern, for example.
  • P layers 12P1, 12P2, 14P1, 14P2 and 16P1, 16P2 of the LEDs 10R, 10B, 10G are provided in the regions of the upper surface of the substrate 22 where the LEDs 10R, 10B, 10G are installed.
  • Wiring 28A, 28C, 28D, 28F, 28G, 28I for applying a voltage to FIG. 1 (A), and wiring 28B for applying a voltage to N layers 12N, 14N and 16N of LEDs 10R, 10B, 10G. , 28E, 28H are formed.
  • thin disk-like terminal portions 26A, 26B, 26C, 26D, 26E, 26F, 26G, 26H, 26I are provided at the contact portions of the wires 28A to 28I with the corresponding P layer 12P1 or the like or the N layer 12N or the like. It is formed.
  • the terminal portions 26A to 26I are formed of a material (for example, solder or the like) that can be welded to the corresponding P layer or N layer by heating.
  • the wires 28A to 28I may also be formed of a material that can be welded.
  • the control unit 24 individually controls the voltage applied to the wirings 28A to 28I for each of the multiple LEDs 10R, 10B, and 10G and for each of two light emitting layers in each of the LEDs 10R, 10B, and 10G. As a result, it is possible to display an arbitrary image in full color and high definition on the display unit.
  • the terminal portions 26A to 26I (and the wires 28A to 28I) may be formed of a conductive adhesive.
  • a thin film forming apparatus (not shown), a coater / developer for a resist, an exposure apparatus for transferring and exposing a mask pattern onto the resist on the surface of a substrate, an etching apparatus, an inspection apparatus, a dicing apparatus, etc. are used. .
  • the P layer, the light emitting layer, and the like are respectively formed on the surfaces of three types of disk-like base materials (not shown) for manufacturing the LEDs 10R, 10B and 10G using a semiconductor device manufacturing process.
  • the N layer, the light emitting layer, and the P layer are stacked to produce three types of wafers.
  • the substrate portions are separated (removed) from the wafers for the LEDs 10R, 10B and 10G by etching or the like, and a large number of LEDs 10R, 10B and 10G are cut out from the wafers for respective colors by a dicing apparatus. As a result, a large number of red LEDs 10R, blue LEDs 10B, and green LEDs 10G are manufactured.
  • step 106 the substrate 22 and the guide member 30 of the image display device 20 are manufactured.
  • the regions 23R, 23B and 23G where the LEDs 10R, 10B and 10G are arranged on the upper surface of the substrate 22 for example, the positions are defined in advance with respect to the ends of the substrate 22 in the X direction and Y direction
  • To 28I and terminal portions 26A to 26I are formed.
  • the control unit 24 is also manufactured.
  • the guide member 30 has substantially the same size as the substrate 22, and the guide member 30 has the same arrangement as the arrangement of the LEDs 10R, 10B, and 10G of FIG.
  • Rectangular openings 32B that can accommodate the LEDs 10B and rectangular openings 32G that can accommodate the green LEDs 10G are formed in a matrix.
  • the openings 32R, 32B, 32G are formed slightly larger than the shapes of the side surfaces of the corresponding LEDs 10R, 10B, 10G.
  • the LEDs 10R, 10B, and 10G are gradually elongated in shape, when the LEDs 10R, 10B, and 10G are disposed such that the side surfaces are in contact with the substrate 22, the openings 32R, 32B, and 32G are red LEDs 10R, respectively. Only the blue LED 10B and the green LED 10G can be accommodated.
  • the guide members 30 When using the guide members 30 only when arranging the LEDs 10R, 10B and 10G on the substrate 22 and removing the guide members 30 after the arrangement is completed, the guide members 30 are formed of metal (aluminum etc.) or ceramics etc. It is also good. On the other hand, when the guide member 30 is attached to the substrate 22, the guide member 30 may be formed of synthetic resin or the like. The thickness of the guide member 30 around the openings 32R, 32B, 32G is about the side length of the cross section of the green LED 10G having the smallest cross sectional area.
  • step 108 the guide member 30 with respect to the substrate 22 such that the openings 32R, 32B and 32G of the guide member 30 face the regions 23R, 23B and 23G in which the LEDs 10R, 10B and 10G of the substrate 22 are disposed.
  • the guide member 30 is disposed on the upper surface of the substrate 22 as shown in FIG. 4 (B).
  • the longitudinal directions of the openings 32R, 32B, 32G of the guide member 30 are parallel to the X direction.
  • the guide member 30 may be held slightly spaced from the substrate 22 by, for example, a support member (not shown).
  • the guide member 30 When the guide member 30 is attached to the substrate 22, the guide member 30 may be fixed to the substrate 22 by adhesion or the like.
  • the steps of manufacturing the LEDs 10R and the like in steps 102 and 104 and the steps of manufacturing the substrates and the like in steps 106 and 108 may be performed substantially in parallel.
  • the red LED 10R, the blue LED 10B, and the green LED 10G are accommodated in the openings 32R, 32B, and 32G of the guide member 30 such that the side surfaces thereof are in contact with the substrate 22.
  • step 114 the LEDs 10R, 10B and 10G which are on the upper surface of the guide member 30 and are not accommodated in the openings 32R, 32B and 32G are removed.
  • This step 114 may be performed after the LEDs 10R, 10B, and 10G are fixed to the substrate 22 as described later.
  • step 116 it is checked whether the LEDs 10R, 10B and 10G corresponding to all the openings 32R, 32B and 32G of the guide member 30 are accommodated using an inspection device (not shown).
  • LED10R, 10B, 10G when LED10R, 10B, 10G is accommodated in all the opening 32R, 32B, 32G, it transfers to step 118 and heats the board
  • the upper portions of the LEDs 10R, 10B, and 10G may be biased toward the substrate 22 side using a member having flexibility (not shown).
  • step 120 it is determined whether or not the guide member 30 is to be removed. If the guide member 30 is to be removed, the process proceeds to step 122, and as shown in FIG. Remove Thereafter, in step 124, the image display device 20 is manufactured by installing a cover glass that covers the LEDs 10R, 10B, and 10G. If the guide member 30 is not removed, the operation moves from step 120 to step 124.
  • the terminal portions 26A to 26I and the wires 28A to 28I
  • the heating process of the substrate 22 in step 118 can be omitted.
  • the LEDs 10R, 10B, 10G are symmetrical with respect to the openings 32R, 32B, 32G of the guide member 30 because the P layers 12P1, 12P2, etc. and the N layer 12N etc. (semiconductor layers) are symmetrical in the T direction.
  • the LEDs 10 R, 10 B, and 10 G are accommodated in an inverted manner with respect to the T direction (X direction), the LEDs 10 R, 10 B, and 10 G can emit light in the same manner without changing the voltage applied to the wirings 28 A to 28 I. Therefore, the image display device 20 can be manufactured more efficiently.
  • the red light is emitted in the plurality of light emitting layers 12R1 and 12R2 that respectively emit red light and the light emitting layers 12R1 and 12R2 when voltage is applied.
  • This is a light emitting element in which 12P1 and 12P2 and an N layer 12N (semiconductor layer) are joined in order in the T direction (junction direction).
  • the blue LED 10B and the green LED 10G are also similar light emitting elements.
  • the LEDs 10R, 10B and 10G are openings of the guide member 30 only by scattering the LEDs 10R, 10B and 10G on the upper surface of the guide member 30 on the substrate 22, for example.
  • the LEDs 10R, 10B and 10G can be efficiently arranged in a targeted arrangement.
  • the red LED 10R is The direction in which the current flows (the arrangement state of the P layers 12P1 and 12P2 and the N layer 12N) may be detected, and the voltage supplied to the red LED 10R may be changed based on the detection result.
  • the LEDs 10R, 10B, and 10G and the wirings 28A to 28I for supplying power to the light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1 and 16G2 are formed, and the LEDs 10R and 10B are formed. , And 10G are bonded to each other.
  • the image display device 20 can efficiently manufacture the LEDs 10R, 10B, and 10G on the substrate 22 with high accuracy and efficiency.
  • the light emitting layers 12R1 and 12R2, the P layers 12P1 and 12P2 and the N layer 12N are aligned in the T direction and bonded to form a red LED 10R.
  • the LEDs 10R, 10B, and 10G can be efficiently arranged in a target arrangement by scattering of the LEDs 10R, 10B, and 10G, the image display device 20 can be manufactured efficiently.
  • the following modifications are possible.
  • the LEDs 10R, 10B, and 10G when the LEDs 10R, 10B, and 10G are scattered on the upper surface of the guide member 30 (substrate 22), the LEDs 10R, 10B, and 10G may be removed by an ionizer (not shown). This can prevent the LEDs 10R, 10B, 10G from adhering to the area other than the openings 32R, 32B, 32G of the guide member 30.
  • the light emitting layers 12R1 and 12R2 of the LEDs 10R, 10B and 10G are two layers, and the semiconductor layers of the P layers 12P1 and 12P2 and the N layer 12N are three layers.
  • the number of semiconductor layers may be (N + 1) or more.
  • the number of semiconductor layers may be (N + 1).
  • the number of semiconductor layers is (N + 1) or more.
  • LED10R, 10B, 10G is rectangular solid shape, as shown to FIG. 6 (B), cylindrical red LED11R, blue LED11B, and green LED11G can also be manufactured.
  • the red LED 11R is formed by sequentially laminating the P layer 13P1, the light emitting layer 13R1, the N layer 13N, the light emitting layer 13R2, and the P layer 13P2 in the T direction. Also in the LEDs 11R, 11B, and 11G, since the semiconductor layers are symmetrical in the T direction, the same effect as that of the above-described embodiment can be obtained.
  • the green LED 11G has the largest cross-sectional area and the lowest height
  • the blue LED 11B has the smallest cross-sectional area and the highest height
  • the red LED 11R has an intermediate cross-sectional area and an intermediate height.
  • the LEDs 11R, 11B, and 11G have different shapes from each other, and therefore, when arranging the LEDs 11R, 11B, and 11G on the substrate 22, they have openings that can accommodate the LEDs 11R, 11B, and 11G similar to the guide member 30.
  • the LEDs 11R, 11B and 11G can be efficiently arranged in a targeted arrangement.
  • FIG. 6C it is also possible to manufacture prismatic red LED 11RA whose cross-sectional shape is a regular hexagon. It is also possible to produce micro-LEDs of arbitrary cross-sectional shape.
  • the LEDs 10R, 10B, and 10G are scattered on the upper surface of the guide member 30.
  • the LED 10R, 10B, 10G can be installed in the region where the LED 10R, 10B, 10G is installed on the upper surface of the substrate 22 Recesses 22a, 22b and 22c may be formed.
  • FIG. 7B is a cross-sectional view of FIG. 7A, and as shown in FIG. 7B, in the recesses 22a, 22b and 22c, the P layer and the N layer of the LEDs 10R, 10B and 10G are respectively provided.
  • Terminal portions 26A to 26I are formed at opposing positions, and the terminal portions 26A to 26I are connected to the control unit 24 of FIG. 2A via the wiring 28A and the like.
  • the LEDs 10R, 10B and 10G can be accommodated in the recesses 22a, 22b and 22c, respectively. Therefore, when a large number of LEDs 10R, 10B and 10G are scattered on the upper surface of the substrate 22, the recesses 22a, 22b and 22c can be accommodated. Each of the LEDs 10R, 10B and 10G is accommodated. Therefore, without using the guide member 30, the LEDs 10R, 10B, and 10G can be efficiently arranged on the upper surface of the substrate 22 in a targeted arrangement.
  • the LEDs 10R, 10B, and 10G are disposed in the recessed portions 22a, 22b, and 22c such that the side surfaces thereof are in contact with the substrate 22, respectively. For this reason, an image can be displayed by the light of sufficient light intensity emitted from the side surfaces of the LEDs 10R, 10B, and 10G.
  • recesses 22d, 22e, 22f are provided on the upper surface of the substrate 22 so that the longitudinal direction (T direction) of the LEDs 10R, 10B, 10G is perpendicular to the upper surface. It is also possible. In FIG.
  • the LEDs 10R, 10B, and 10G are illustrated as being accommodated so as to project from the upper surface of the substrate 22, they are recessed according to the length in the longitudinal direction of the LEDs 10R, 10B, and 10G.
  • the length (depth) in the Z direction of 22 d, 22 e, 22 f may be set.
  • it is not necessary to set so that all the light emitting layers of LED10R, 10B, 10G may emit light, LED10R, 10B, The number of light emitting layers in contact with the substrate among the 10 G light emitting layers may be the same for the LEDs 10R, 10B, and 10G.
  • the LED 10G is inserted into the LED 10G and the recess 22d, and the recess 22d which should not be accommodated.
  • the radial length of the LED 10R, 10B, 10G is shorter than the radial length of the recess 22d, 22e, 22f, for example, the LED 10G is inserted into the LED 10G and the recess 22d, and the recess 22d which should not be accommodated.
  • the radial length of the LED 10R, 10B, 10G is shorter than the radial length of the recess 22d, 22e, 22f, for example, the LED 10G is inserted into the LED 10G and the recess 22d, and the recess 22d which should not be accommodated.
  • the LED 10G drops out of the recess 22d because the length in the radial direction is largely different. Therefore, even if LEDs (e.g., 10G) having different radial lengths are accommodated in the recesses (e.g.,
  • the side surface of the cylinder which can accommodate the LEDs 11R, 11B, 11G on the upper surface of the substrate 22 respectively.
  • the concave portions 22h, 22i and 22g may be formed in advance. In this example, when the LEDs 11R, 11B, and 11G are scattered, the LEDs 11R, 11B, and 11G are efficiently arranged in the concave portions 22h, 22i, and 22g of the substrate 22, respectively.
  • FIG. 8A shows a first micro LED unit (hereinafter referred to as an LED unit) 42 in which a plurality of micro LEDs that respectively generate red light, blue light, and green light according to the present embodiment are combined.
  • the LED unit 42 includes a first light emitting diode (hereinafter referred to as a red LED) 40R (first light emitting portion) that generates red light, and a first light emitting diode (hereinafter referred to as a blue LED) 2) a first light emitting diode (hereinafter referred to as a green LED) 40G (third light emitting unit) that generates green light, a second green LED 40G1 (a third light emitting unit), and a second blue LED 40B1 (a second light emitting unit)
  • the light emitting portion) and the second red LED 40R1 (first light emitting portion) are joined in a T direction which is a joining direction of the light emitting layer and the semiconductor layer of each LED.
  • the red LED 40R is formed by sequentially laminating the P layer 12P1 (first layer), the light emitting layer 12R1, and the N layer 12N (second layer) in the T direction, and the blue LED 40B sequentially forms the P layer 14P1 in the T direction.
  • the green LED 40G is formed by stacking the third layer, the light emitting layer 14B1, and the N layer 14N (fourth layer) in the T direction, the P layer 16P1 (fifth layer), the light emitting layer 16G1, and the N layer 14N. It is formed by laminating the layer 16N (sixth layer).
  • the green LED 40G1, the blue LED 40B1, and the red LED 40R1 are obtained by inverting the green LED 40G, the blue LED 40B, and the red LED 40R in the T direction, respectively.
  • the green LEDs 40G and 40G1 (third light emitting unit) are configured such that the N layer 16N (second semiconductor layer) is interposed between the N layer 12N (second semiconductor layer) of the green LED 40G1 and the light emitting layer 16G1 of the green LED 40G. Have. With this configuration, even if the green LEDs 40G and 40G1 are arranged at the center of the LED unit 42, the semiconductor layers and the light emitting layers of the green LEDs 40G and 40G1 can be arranged symmetrically with respect to the T direction.
  • the LED unit 42 has a rectangular cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction.
  • P layers 12P1, 14P1, 16P1, 16P1, 14P1, 12P1 and N layers 12N, 14N, 16N, 16N, 14N, 12N are respectively symmetrical (linearly symmetrical with respect to a straight line 18A centered in the T direction. ).
  • the LED unit 42 is reversed in the T direction on the substrate 22. Even when installed, the LED unit 42 emits light of three colors without changing the wiring pattern (not shown) and without changing the voltage applied to the wiring. Therefore, the LED units 42 can be efficiently arranged on the substrate 22.
  • the red, blue and green light emitting layers 12R1, 14B1, 16G1, 16G1, 14B1 and 12R1 are also symmetrical with respect to the T direction. For this reason, the color tone does not change even if the LED unit 42 is installed in reverse in the T direction. Further, at the center of the LED unit 42, green LEDs 40G and 40G1 are arranged. Among red light, blue light and green light, green light (center is 555 nm) has the highest relative visibility, and by arranging the green LEDs 40 G and 40 G 1 at the center, the center becomes bright and the balance of brightness is good.
  • the LED unit 42 can individually control the voltages supplied to the red LEDs 40R and 40R1, the blue LEDs 40B and 40B1, and the green LEDs 40G and 40G1, and the light intensities of the red LEDs 40R and 40R1 and the blue LEDs 40B and 40B1 and the green LEDs 40G and 40G1. It is not always necessary to center the green LEDs 40G and 40G1 because they can be controlled individually.
  • FIG. 8B shows a second LED unit 42A.
  • the LED unit 42A is formed by joining a first red LED 10R, a first blue LED 10B, a green LED 10G, a second blue LED 10B, and a second red LED 10R in the T direction.
  • the second blue LED 10B and the second red LED 10R are inverted in the T direction with respect to the first blue LED 10B and the first red LED 10R, respectively.
  • the semiconductor layer and the light emitting layer are symmetrical with respect to the T direction, so the second blue LED 10B and the second red LED 10R each have two P layers And the signs of the two light emitting layers are switched.
  • the P layers 12P1, 12P2, ... 12P2, 12P1 and the N layers 12N, ... 12N are symmetrical with respect to a straight line 18B that is centered in the T direction.
  • the light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B2, 14B1, 12R2, 12R1 of the three colors are symmetrical with respect to the T direction.
  • the LED unit 42A emits light of three colors without changing the voltage to be applied. Therefore, the LED units 42A can be efficiently arranged on the substrate. Furthermore, the color tone does not change.
  • FIG. 8C shows a third LED unit 42B.
  • the LED unit 42B is obtained by joining a first red LED 40R, a first blue LED 40B, a green LED 10G, a second blue LED 40B1, and a second red LED 40R1 in the T direction.
  • the P layers 12P1, 14P1, ... 14P1, 12P1 and the N layers 12N, 14N, ... 12N are symmetrical with respect to a straight line 18C that is centered in the T direction.
  • the light emitting layers 12R1, 14B1, 16G1, 16G2, 14B1 and 12R1 of the three colors are respectively symmetrical with respect to the T direction.
  • the LED unit 42B when manufacturing the image display device using the LED unit 42B, even if the LED unit 42B is installed inverted on the substrate in the T direction, it is further added to the wiring without changing the wiring pattern (not shown).
  • the LED unit 42B emits three colors of light without changing the voltage to be applied. Furthermore, the color tone does not change.
  • FIG. 8D shows a fourth LED unit 44.
  • the LED unit 44 includes a first red LED 10R, a spacer 46A, a first blue LED 10B, a spacer 46B, a green LED 10G, a spacer 46C, a second blue LED 10B, a spacer 46D, and a second red LED 10R. It is joined in the direction.
  • the spacer portions 46A to 46D having the same configuration and the same size are, for example, the base materials or portions thereof used in manufacturing the LEDs 10R, 10B, and 10G, and the spacer portions 46A to 46D are portions that do not generate light Black portion or so-called black matrix portion).
  • the blue LED 10B (second light emitting portion) arranges the P layer 12P1 (third layer), the light emitting layer 14B1, the N layer 14N (fourth layer), the light emitting layer 14B2 and the P layer 14P2 (third layer) in order in the T direction. Configuration.
  • the P layer 12P1 (third layer) and the light emitting layer 14B1 are arranged on one end side in the T direction, and the light emitting layer 14B2 and the P layer 14P2 (third layer) are arranged on the other end side.
  • the LED unit 44 is, for example, a square having a width of about 20 to 100 ⁇ m and a height (length) of about 300 to 700 ⁇ m.
  • the P layers 12P1, 12P2, ... 12P1 and the N layers 12N, 14N, ... 12N are symmetrical with respect to a straight line 18D centered in the T direction. Furthermore, in the LED unit 44, the three light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B1, 12R2, 12R1 and the spacer portions 46A to 46D are symmetrical with respect to the T direction. In this case, when manufacturing the image display device using the LED unit 44, even if the LED unit 44 is installed inverted on the substrate in the T direction, the wiring pattern is not shown and the wiring pattern is not changed. The LED unit 44 emits light of three colors without changing the applied voltage. Therefore, the LED units 44 can be efficiently arranged on the substrate. Furthermore, the color tone does not change.
  • each of the LED units 42, 42A, 42B, 44 has a rectangular cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction.
  • the outer shape of the LED units 42, 42A to 42C, 44 may be an elongated cylindrical shape or an elongated polygonal prism.
  • the LED units 42, 42A to 42C, 44 have the semiconductor layers (P layer, N layer) and The number and arrangement of light emitting layers of each color are arbitrary.
  • FIG. 9A shows a full-color image display device 20A using the LED unit 42 according to the present embodiment.
  • FIG. 9B shows a full-color image display device 20B using the LED unit 42B according to the present embodiment.
  • FIG. 10A shows a full-color image display device 20C using the LED units 44 according to the present embodiment.
  • the image display devices 20A, 20B, and 20C each have a display unit in which LED units 42, 42A, and 44 are arranged and fixed in a matrix on the upper surface of the substrates 22A, 22B, and 22C made of substantially rectangular insulators.
  • the control units 24A, 24B, and 24C individually control the on / off and the light intensity of the LED units 42, 42A, and 44, respectively.
  • the LED units 42, 42A, 44 are shown in a considerably enlarged size than the actual size for convenience of explanation. There is. Hereinafter, description will be made by taking the X axis and the Y axis along the longitudinal direction and the short direction of the substrates 22A, 22B, 22C, respectively.
  • the T direction which is the bonding direction of the LED units 42, 42A, 44 is the X direction.
  • control unit 24C can individually control the light intensities of any of the LEDs 10R, 10B, and 10G in total of five in each LED unit 44.
  • the control unit 24A can individually control the light intensities of the light emitting layers in the LEDs 40R, 40R1, 40G, 40G1, 40B, and 40B1 in the respective LED units 42.
  • the LED units 42, 42A, 44 are arranged at a predetermined pitch in the X direction along straight lines parallel to the X axis, and the two rows of LED units 42, 42A, 44 arranged in the X direction are They are arranged in a checkerboard pattern with a half pitch offset in the X direction.
  • the pitch of the arrangement of the LED units 42, 42A, 44 in the X direction is, for example, about 1.1 times the length (height) of the LED units 42, 42A, 44 in the X direction, and the LED units 42, 42A, 44
  • the pitch of the arrangement in the Y direction is, for example, about 1.5 to 2 times the width of the cross-sectional shape of the LED units 42, 42A, 44.
  • the number of arrangements of the LED units 42, 42A and 44 in the X and Y directions is about 200 and 1000, respectively.
  • the arrangement and the number of arrangements of the LED units 42, 42A, 44 are arbitrary.
  • one row of LED units 42, 42A, 44 arranged in the X direction may be arranged as they are translated in the Y direction. .
  • the P layer 12P1 of the LEDs 10R, 10B, 10G, 10B, and 10R of the LED unit 44 is provided in the area where the LED unit 44 is installed on the upper surface of the substrate 22C of the image display device 20C.
  • 12P2,... 12P2 and N layers 12N, 14N,... 12N are formed for applying a voltage.
  • the control unit 24C individually controls voltages applied to the wires 28A to 28I and the like for each of the two light emitting layers in the LEDs 10R, 10B, and 10G in the multiple LED units 44. As a result, it is possible to display an arbitrary image in full color and high definition on the display unit. Similarly, in the image display devices 20A and 20B, any image can be displayed in full color on the display unit.
  • step 102A of FIG. 11 three disk-like three types of substrates for manufacturing three types of LEDs 10R, 10B and 10G that constitute the LED unit 44 of FIG. 8D using a semiconductor element manufacturing process.
  • 16 GB and P layers 12PB, 14PB and 16PB are stacked in the T direction.
  • step 130 as shown in FIG. 12B, the five wafers 46R1, 46B1, 46G, 46B2, 46R2 are bonded together via the insulating adhesives 48A, 48B, 48C, 48D.
  • step 132 as shown in FIG. 13A, the base 48A of the lowermost red LED wafer 46R1 is separated (removed) by etching or the like to form the aggregate 50 of the large number of LED units 44. It manufactures and the dotted line cutting part 52 of the assembly 50 is cut
  • a large number of LED units 44 can be manufactured in which the LEDs 10R, 10B, and 10G and the spacer portions 46A to 46D are stacked. Parts of the substrates 48B, 48C, 48B and 48A of the wafers 46B1, 46G, 46B2 and 46R2 are spacer portions 46A to 46D, respectively. According to the method of manufacturing the LED unit 44, the LED unit 44 having a multilayer structure can be manufactured efficiently.
  • step 106A as shown in FIG. 14A, the substrate 22C of the image display device 20C, the first guide member 30A, and the second guide member 30B of FIG. 16A are manufactured.
  • Wirings 28A to 28I and terminal portions (terminals (for example, the positions are defined in advance with respect to the end portions of substrate 22C in the X direction and Y direction, respectively) in which LED units 44 on the upper surface of substrate 22C are arranged FIG. 10 (B) is formed.
  • the control unit 24C is also manufactured.
  • the guide member 30A has substantially the same size as the substrate 22C, and the guide member 30A has a plurality of rectangular openings 52 which can be accommodated in the same arrangement as the arrangement of the LED units 44 of FIG. It is formed in a matrix.
  • the openings 52 are formed slightly larger than the shape of the side surface of the corresponding LED unit 44.
  • the guide member 30A is attached to the substrate 22 as an example.
  • the guide member 30A may be removed from the substrate 22 after the LED unit 44 is attached.
  • the thickness of the guide member 30A around the opening 52 is about the width of the side of the cross section of the LED unit 44.
  • inclined portions 54A, 54B which become gradually lower in the X direction in the opening 52, Inclined portions 54C and 54D are formed at 52 gradually decreasing in the Y direction.
  • the LED units 44 are smoothly accommodated in the openings 52 by the inclined portions 54A to 54C.
  • step 134 the guide member 30A is positioned with respect to the substrate 22C so that the opening 52 of the guide member 30A faces the area 23 where the LED unit 44 of the substrate 22C is disposed, as shown in FIG.
  • the guide member 30A is disposed and fixed on the upper surface of the substrate 22C.
  • the LED units 44 are disposed on the upper surface of the substrate 22C in the multiple openings 52 of the guide member 30A such that the side surfaces thereof are in contact with the upper surface of the substrate 22C.
  • FIGS. 15B and 15C the LED units 44 at the positions B1 and B2 are smoothly accommodated in the corresponding openings 52 via the inclined portions 54A and 54B of the guide member 30A. Thereafter, the operation proceeds to step 118A of FIG.
  • the second guide member 30B has a large number of openings through which the LED units 44 arranged in the same direction as the multiple openings 52 of the first guide member 30A and whose longitudinal direction is disposed in the normal direction of the upper surface of the substrate 22C. 56 are formed.
  • the opening 56 is a shape slightly larger than the cross-sectional shape of the LED unit 44.
  • step 136 the end of the opening 56 of the second guide member 30B in the -X direction substantially coincides with the end of the opening 52 of the first guide member 30A in the -X direction, and
  • the second guide member 30B is positioned with respect to the first guide member 30A such that the distance between the bottom surface of the guide member 30B and the substrate 22C is slightly smaller than the height of the LED unit 44.
  • a driving unit 60 (not shown) that moves the second guide member 30B in the X direction, the Y direction, and the normal direction of the substrate 22C is used.
  • step 138 a large number of LED units 44 are dispersed on the top surface of the substrate 22C and the second guide member 30B disposed above the first guide member 30A.
  • the multiple LED units 44 pass through the openings 56 through the inclined portions 58A and 58B of the second guide member 30B.
  • the end of the LED unit 44 which has passed through the opening 56 comes into contact with the end of the opening 52 of the first guide member 30A in the ⁇ X direction.
  • step 140 the drive unit 60 moves the second guide member 30B relative to the first guide member 30A in the + X direction indicated by the arrow B3.
  • the movement of the second guide member 30B causes the LED units 44 in the opening 52 of the first guide member 30A to rotate clockwise, respectively, as shown in FIG. As shown in B), the LED units 44 in the openings 52 of the first guide member 30A are accommodated in the openings 52 in such a manner that the side surfaces thereof contact the substrate 22C. As a result, a large number of LED units 44 on the top surface of the substrate 22C are arranged in a target arrangement.
  • step 118A by heating the substrate 22C from the bottom surface, the terminal portion (not shown) of the substrate 22C (and the wirings 28A to 28I in FIG. 10B) correspond to the corresponding LEDs 10R, 10B, 10G of the LED unit 44.
  • the LED unit 44 is fixed to the top surface of the substrate 22C by welding to the P layer or the N layer.
  • step 124A the second guide member 30B is removed, and a cover glass covering the LED unit 44 is installed, etc., whereby the image display device 20C is manufactured.
  • the LEDs are arranged in a target arrangement in the opening 52 of the first guide member 30A on the upper surface of the substrate 22C by spraying the multiple LED units 44 on the upper surface of the second guide member 30B.
  • the units 44 can be arranged efficiently.
  • the LED units 44 have symmetrical P layers 12P1, 12P2,... 12P1 and N layers 12N, 14N,. Even in the case of being inverted and accommodated in the X direction, the LEDs 10R, 10B, and 10G of the LED unit 44 can emit light in the same manner without changing the voltage applied to the wirings 28A to 28I. Therefore, the image display device 20 can be manufactured more efficiently.
  • the three light emitting layers 12R1, 12R2, ... 12R1 of the LED unit 44 are also symmetrical with respect to the T direction, even if the LED unit 44 is accommodated in the T direction with respect to the opening 52 of the guide member 30A. , The color tone of the image display device 20C does not change.
  • the plurality of light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2 that emit red light, blue light, or green light, respectively.
  • semiconductor layers joined to the light emitting layers 12R1 to 16G2 so that light is emitted by the light emitting layers 12R1 to 16G2, and a plurality of light emitting layers
  • This is a light emitting element in which 12R1 etc., and a plurality of P layers 12P1 etc. and N layers 12N etc. (semiconductor layers) are joined in order in the T direction (junction direction).
  • the LED units 44 are efficiently arranged in a target arrangement, for example, only by scattering the LED units 44 on the upper surface of the guide member 30A or 30B on the substrate 22C. it can. Furthermore, since the light emitting layers and the semiconductor layers of the three colors of the LED unit 44 are respectively symmetrical with respect to the T direction, the wiring etc. should be changed even if the LED unit 44 is installed in the T direction on the substrate 22C. Instead, the three color lights of the LED unit 44 can be emitted in the same color tone.
  • the LED unit 44 and the wirings 28A to 28I for supplying power to the light emitting layers 12R1 and 12R2 of the LED unit 44 are formed, and the substrate 22C to which the LED unit 44 is joined And.
  • the image display device 20C can be efficiently manufactured because the LED units 44 can be efficiently arranged on the substrate 22C.
  • the light emitting layers 12R1 and 12R2 and the like, the P layers 12PA and 12PB and the N layer 12NA and the like are formed to form the three-color LEDs 10R, 10B and 10G, respectively.
  • Step 130 of bonding is performed, and step 132 of dividing the bonded wafers 46R1, 46B1 and 46G in the direction orthogonal to the T direction is performed.
  • the multi-layered three-color LED unit 44 can be efficiently manufactured with high accuracy.
  • the scattering of the LED units 44 can efficiently arrange the LED units 44 in the target arrangement, so that the image display device 20C can be manufactured efficiently.
  • the LED unit 44 emits light in three colors, but the LED unit 44 may emit light in at least one color. Also, the LED unit 44 may have a micro LED that generates white light.
  • the suction holes 22Ca are formed in the area of the substrate 22C where the LED unit 44 is installed, and the LED unit 44 is used as a terminal portion of the substrate 22C.
  • the LED unit 44 may be adsorbed via the suction holes 22Ca by a vacuum pump (not shown). Thereby, the LED unit 44 can be fixed to the substrate 22C more stably.
  • a light emission part is a light emitting diode
  • a light emission part may be a semiconductor laser etc.

Abstract

A red-light-emitting diode comprising: a plurality of light-emitting layers, each of which emits red light; and a plurality of P and N layers joined to the light-emitting layers so that the light-emitting layers emit red light when a voltage is applied. The plurality of light-emitting layers and the plurality of P and N layers are sequentially lined up in direction T and joined. When manufacturing an image display device using the red-light-emitting diodes, the red-light-emitting diodes are scattered on the upper surface of a guide member placed on the upper surface of a substrate. The invention makes it possible to efficiently arrange light-emitting elements and manufacture an image display device.

Description

発光素子及び表示装置、並びにその製造方法Light emitting element and display device, and method of manufacturing the same
 本発明は、発光素子及び表示装置、並びに発光素子及び表示装置の製造方法に関する。 The present invention relates to a light emitting element and a display device, and a method of manufacturing the light emitting element and the display device.
 発光ダイオード(Light Emitting Diode: LED)を用いる画像表示装置は、多数の小型の発光ダイオードであるいわゆるマイクロ発光ダイオード(以下、マイクロLEDという)をマトリクス状に配列して組み立てられる。従来、赤色、青色、及び緑色の発光ダイオードは、互いに基材及びこの上に成膜する材料が異なっているため、それら3色の発光ダイオードを同一の基材上に半導体素子製造プロセスを用いて形成するのは困難である。このため、フルカラーの画像表示装置を製造する場合、それら3色の多数のマイクロLEDを個別に製造した後、それらのマイクロLEDを個別に所定の配置で配列する必要があった。その配列方法の一例として、例えば、引用文献1が提案されている。 An image display apparatus using a light emitting diode (LED) is assembled by arranging a so-called micro light emitting diode (hereinafter referred to as micro LED), which is a large number of small light emitting diodes, in a matrix. Conventionally, since red, blue, and green light emitting diodes are different from each other in the base material and the material to be deposited thereon, these three color light emitting diodes are manufactured using the semiconductor element manufacturing process on the same base material It is difficult to form. For this reason, when manufacturing a full color image display device, after manufacturing many micro LED of those three colors separately, it was necessary to arrange those micro LEDs separately in a predetermined arrangement. For example, cited document 1 is proposed as an example of the arrangement method.
特開2002-368282号公報JP 2002-368282
 第1の態様によれば、それぞれ光を発光する複数の発光層と、電圧が付加されると複数の発光層でその光が発光するよう複数の発光層に接合された複数の半導体層と、を備え、複数の発光層と複数の半導体層とが所定方向に関して順に並んで接合された発光素子が提供される。 According to a first aspect, a plurality of light emitting layers each emitting light, and a plurality of semiconductor layers joined to the plurality of light emitting layers such that the light is emitted by the plurality of light emitting layers when voltage is applied, A light emitting device is provided, in which a plurality of light emitting layers and a plurality of semiconductor layers are joined in order in a predetermined direction.
 第2の態様によれば、第1の態様の発光素子と、その発光層へ電力を供給する配線が形成され、その発光素子が接合される基板と、を備える表示装置が提供される。 According to a second aspect, there is provided a display device comprising the light emitting element of the first aspect and a substrate on which a wiring for supplying power to the light emitting layer is formed and the light emitting element is joined.
 第3の態様によれば、第1の態様の発光素子を製造する製造方法であって、その発光素子を形成するよう複数の発光層と複数の半導体層とをその所定方向に関して並べて接合することと、接合されたその発光素子を、その所定方向と交差する方向に関し、切り分けることと、を含む発光素子の製造方法が提供される。 According to a third aspect, there is provided a method of manufacturing a light emitting device according to the first aspect, wherein a plurality of light emitting layers and a plurality of semiconductor layers are aligned and joined in a predetermined direction to form the light emitting device. There is provided a method of manufacturing a light emitting device, comprising: cutting the bonded light emitting device in a direction intersecting with the predetermined direction.
 第4の態様によれば、第2の態様の表示装置を製造する製造方法であって、その基板上において、複数の発光素子を散乱することと、散乱された発光素子とその基板とを接合することと、を含む表示装置の製造方法が提供される。 According to a fourth aspect, there is provided a manufacturing method of manufacturing the display device of the second aspect, wherein scattering of a plurality of light emitting elements, bonding of the scattered light emitting elements and the substrate are performed on the substrate. And providing a method of manufacturing a display device.
(A)は第1の実施形態に係る3色のマイクロLEDを示す拡大斜視図、(B)は図1(A)中の赤色のマイクロLED及びその変形例を示す図、(C)は図1(A)の赤色のマイクロLEDを基板上に配置した状態を示す拡大断面図である。(A) is an enlarged perspective view showing a three-color micro LED according to the first embodiment, (B) is a view showing a red micro LED in FIG. 1 (A) and a modification thereof, and (C) is a view It is an expanded sectional view which shows the state which arrange | positioned the red micro LED of 1 (A) on the board | substrate. (A)はその実施形態に係る画像表示装置を示す正面図、(B)は図2(A)の画像表示装置の一部を示す拡大図である。(A) is a front view which shows the image display apparatus which concerns on the embodiment, (B) is an enlarged view which shows a part of image display apparatus of FIG. 2 (A). その実施形態に係る画像表示装置の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the image display apparatus which concerns on the embodiment. (A)は基板の上方にガイド部材を配置した状態を示す斜視図、(B)はガイド部材を基板の上面に設置した状態を示す斜視図である。(A) is a perspective view which shows the state which arrange | positioned the guide member above the board | substrate, (B) is a perspective view which shows the state which installed the guide member on the upper surface of the board | substrate. (A)はガイド部材の上面に多数のマイクロLEDを散布する状態を示す斜視図、(B)は基板の上面に多数のマイクロLEDを配置した状態を示す斜視図である。(A) is a perspective view which shows the state which disperse | distributes many micro LED on the upper surface of a guide member, (B) is a perspective view which shows the state which arrange | positioned many micro LED on the upper surface of a board | substrate. (A)は基板からガイド部材を取り外した状態を示す斜視図、(B)は変形例の3色のマイクロLEDを示す拡大斜視図、(C)は別の変形例のマイクロLEDを示す拡大斜視図である。(A) is a perspective view showing a state in which the guide member is removed from the substrate, (B) is an enlarged perspective view showing the three-color micro LED of the modification, (C) is an enlarged perspective view showing the micro LED of another modification FIG. (A)はさらに別の変形例に係る画像表示装置の一部を示す拡大図、(B)は図7(A)の横断面図、(C)は図7(B)に対応する他の変形例を示す横断面図、(D)は図6(B)のマイクロLEDを使用する例の図7(B)に対応する横断面図である。(A) is an enlarged view showing a part of an image display apparatus according to still another modification, (B) is a cross-sectional view of FIG. 7 (A), and (C) is another corresponding to FIG. 7 (B) (D) is a cross-sectional view corresponding to FIG. 7 (B) of the example using the micro LED of FIG. 6 (B) which shows a modification. (A)、(B)、(C)、及び(D)はそれぞれ第2の実施形態に係る第1、第2、第3、及び第4のマイクロLEDユニットを示す側面図である。(A), (B), (C), and (D) are side views showing the first, second, third, and fourth micro LED units according to the second embodiment, respectively. (A)は第1のマイクロLEDユニットを使用する画像表示装置を示す正面図、(B)は第2のマイクロLEDユニットを使用する画像表示装置を示す正面図である。(A) is a front view which shows the image display apparatus which uses a 1st micro LED unit, (B) is a front view which shows an image display apparatus which uses a 2nd micro LED unit. (A)は第4のマイクロLEDユニットを使用する画像表示装置を示す正面図、(B)は図10(A)の一部の拡大断面図である。(A) is a front view which shows the image display apparatus which uses a 4th micro LED unit, (B) is an expanded sectional view of a part of FIG. 10 (A). 第2の実施形態に係る画像表示装置の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the image display apparatus which concerns on 2nd Embodiment. (A)は5枚の発光ダイオード用のウエハを示す拡大側面図、(B)は5枚のウエハを貼り合わせた状態を拡大側面図である。(A) is an enlarged side view showing wafers for five light emitting diodes, (B) is an enlarged side view showing a state in which five wafers are bonded. (A)は5枚のウエハから最下部の基材を分離した状態を示す拡大側面図、(B)はマイクロLEDユニットを切り出した状態を示す拡大側面図である。(A) is an enlarged side view showing a state in which the lowermost base material is separated from five wafers, and (B) is an enlarged side view showing a state in which the micro LED unit is cut out. (A)は基板の上方に第1のガイド部材を配置した状態を示す斜視図、(B)は第1のガイド部材の上面に多数のマイクロLEDユニットを散布する状態を示す斜視図である。(A) is a perspective view which shows the state which arrange | positioned the 1st guide member above the board | substrate, (B) is a perspective view which shows the state which disperse | distributes many micro LED units on the upper surface of a 1st guide member. (A)は第1のガイド部材の多数の開口にマイクロLEDユニットを配置した状態を示す斜視図、(B)は図15(A)の画像表示装置の一部を示す拡大平面図、(C)は図15(B)の一部を示す拡大横断面図である。(A) is a perspective view showing a state in which the micro LED unit is disposed in a large number of openings of the first guide member, (B) is an enlarged plan view showing a part of the image display device of FIG. Fig. 15 is an enlarged cross-sectional view showing a part of Fig. 15 (B). (A)は第1のガイド部材の上方に第2のガイド部材を配置し、この上方に複数のマイクロLEDユニットを散布した状態を示す拡大横断面図、(B)は複数のマイクロLEDユニットの端部が第1のガイド部材の開口内に収まった状態を示す拡大横断面図である。(A) is an enlarged cross-sectional view showing a state in which the second guide member is disposed above the first guide member and the plurality of micro LED units are dispersed above the first guide member; (B) is a plurality of micro LED units It is an expanded cross-sectional view which shows the state which edge part settled in opening of the 1st guide member. (A)は第1のガイド部材にたいして第2のガイド部材をX方向に相対移動する状態を示す拡大横断面図、(B)は複数のマイクロLEDユニットが第1のガイド部材の開口内に配列された状態を示す拡大横断面図である。(A) is an enlarged cross-sectional view showing relative movement of the second guide member in the X direction with respect to the first guide member, and (B) is an arrangement of a plurality of micro LED units in the opening of the first guide member FIG. 6 is an enlarged cross-sectional view showing the state of FIG.
 以下、第1の実施形態につき図1(A)~図6(A)を参照して説明する。以下では、発光ダイオードを単にLEDとも呼ぶ。
 図1(A)は、本実施形態に係る赤色光を発生する発光ダイオード(以下、赤色LEDという)10R、青色光を発生する発光ダイオード(以下、青色LEDという)10B、及び緑色光を発生する発光ダイオード(以下、緑色LEDという)10Gを示す。LED10R,10B,10Gの形状は、それぞれ断面形状が正方形で、断面の辺の長さよりも高さ(長さ)が高い直方体状である。一例として、LED10R,10B,10Gの形状は、断面の辺の長さが20~100μm程度、高さがその辺の長さの1.5倍~3倍程度である。すなわち、LED10R,10B,10GはそれぞれマイクロLEDである。さらに、赤色LED10Rは最も断面積が大きく、高さが最も低く、青色LED10Bは、断面積が赤色LED10Rより小さく高さが赤色LED10Rより高く、緑色LED10Gは、最も断面積が小さく、高さが最も高い。なお、LED10R,10B,10Gは、互いに形状が異なっていればよく、その形状は任意である。以下では、LED10R,10B,10Gの高さ(長さ)の方向をT方向として説明する。
The first embodiment will be described below with reference to FIGS. 1 (A) to 6 (A). Hereinafter, the light emitting diode is also simply referred to as an LED.
FIG. 1A generates a light emitting diode (hereinafter referred to as a red LED) 10R that generates red light, a light emitting diode (hereinafter referred to as a blue LED) 10B that generates blue light, and green light according to the present embodiment. A light emitting diode (hereinafter referred to as a green LED) 10G is shown. Each of the LEDs 10R, 10B, and 10G has a rectangular cross-sectional shape and a rectangular parallelepiped shape having a height (length) higher than the length of the side of the cross section. As an example, in the shape of the LED 10R, 10B, 10G, the side length of the cross section is about 20 to 100 μm, and the height is about 1.5 times to 3 times the side length. That is, the LEDs 10R, 10B, and 10G are each a micro LED. Furthermore, the red LED 10R has the largest cross-sectional area and the lowest height, the blue LED 10B has a smaller cross-sectional area than the red LED 10R and a higher height than the red LED 10R, and the green LED 10G has the smallest cross-sectional area and the highest height high. In addition, LED10R, 10B, 10G should just differ in a shape mutually, The shape is arbitrary. Below, the direction of height (length) of LED10R, 10B, 10G is demonstrated as T direction.
 また、赤色LED10R(赤色のマイクロLED)は、T方向に順に、第1のP型半導体層(以下、P層という)12P1(第1半導体層)、第1の発光層12R1、N型半導体層(以下、N層という)12N(第2半導体層)、第2の発光層12R2、及び第2のP層12P2(第1半導体層)を積層して形成されている。P層12P1,12P2とN層12Nとは伝導形式が異なっている。また、発光層12R1,12R2も半導体層の一部とみなすことも可能である。また、積層は複数回の接合ともいうことができる。本実施形態では、T方向が発光層及び半導体層の接合方向(積層方向)である。 The red LED 10R (red micro LED) includes, in order in the T direction, a first P-type semiconductor layer (hereinafter referred to as P layer) 12P1 (first semiconductor layer), a first light emitting layer 12R1, an N-type semiconductor layer It is formed by laminating 12 N (second semiconductor layer) (hereinafter referred to as N layer), second light emitting layer 12 R 2, and second P layer 12 P 2 (first semiconductor layer). The P layers 12P1 and 12P2 and the N layer 12N have different conduction types. The light emitting layers 12R1 and 12R2 can also be regarded as part of the semiconductor layer. Moreover, lamination can also be said to be bonding of multiple times. In the present embodiment, the T direction is the bonding direction (stacking direction) of the light emitting layer and the semiconductor layer.
 発光層12R1(12R2)は、P層12P1(12P2)からN層12Nに向かって順に、P層12P1(12P2)よりもホール(正孔)密度の低いいわゆるp-層と、N層12Nよりも電子密度が低いいわゆるn-層とを積層したものである。同様に、青色LED10B(青色のマイクロLED)は、T方向に順に、第1のP層14P1、第1の発光層14B1、N層14N、第2の発光層14B2、及び第2のP層14P2を積層して形成され、緑色LED10G(緑色のマイクロLED)は、T方向に順に、第1のP層16P1、第1の発光層16G1、N層16N、第2の発光層16G2、及び第2のP層16P2を積層して形成されている。 The light emitting layer 12R1 (12R2) includes, in order from the P layer 12P1 (12P2) to the N layer 12N, a so-called p-layer having a hole density lower than that of the P layer 12P1 (12P2) and an N layer 12N. It is a laminate of so-called n-layers with low electron density. Similarly, in the blue LED 10B (blue micro LED), the first P layer 14P1, the first light emitting layer 14B1, the N layer 14N, the second light emitting layer 14B2, and the second P layer 14P2 are sequentially arranged in the T direction. The green LED 10G (green micro LED) is formed by stacking the first P layer 16P1, the first light emitting layer 16G1, the N layer 16N, the second light emitting layer 16G2, and the second light emitting layer 16G. P layer 16P2 is laminated and formed.
 一例として、赤色LED10Rは、ガリウムリン(GaP)又はガリウムヒ素(GaAs)よりなる基材の表面に、亜鉛、酸素等を添加したガリウムリン(GaP(Zn,O))又はガリウムアルミニウムヒ素(GaAlAs)等の半導体層(P層、N層)及び発光層を形成して製造され、青色LED10Bは、サファイア又は炭化ケイ素(SiC)よりなる基材の表面に、インジウムガリウム窒素(InGaN)等の半導体層及び発光層を形成して製造され、緑色LED10Gは、サファイア又はSiCよりなる基材の表面に、窒素等を添加したガリウムリン(GaP(N))又はInGaN等の半導体層及び発光層を形成して製造される。このように、LED10RとLED10B,10Gとは、互いに基材及び半導体層、発光層の材料が異なっている。また、LED10B,10Gも、互いに基材及び半導体層、発光層の少なくとも一方の材料が異なっている場合がある。なお、LED10R,10B,10Gの基材及び半導体層、発光層の材料は任意であり、LED10R,10B,10Gの基材及び/又は半導体層、発光層の材料が互いに同じでもよい。 As an example, the red LED 10R is made of gallium phosphor (GaP (Zn, O)) or gallium aluminum arsenide (GaAlAs) in which zinc, oxygen, etc. are added to the surface of a substrate made of gallium phosphor (GaP) or gallium arsenide (GaAs). And the semiconductor layer (P layer, N layer) and the light emitting layer are formed, and the blue LED 10B is a semiconductor layer such as indium gallium nitrogen (InGaN) on the surface of the base made of sapphire or silicon carbide (SiC) And the light emitting layer are formed, and the green LED 10G is formed on the surface of the base material made of sapphire or SiC by forming the semiconductor layer and the light emitting layer such as gallium phosphorus (GaP (N)) or InGaN to which nitrogen or the like is added. Manufactured. Thus, the materials of the base, the semiconductor layer, and the light emitting layer of the LED 10R and the LEDs 10B and 10G are different from each other. Moreover, LED10B and 10G may mutually differ in the material of a base material, a semiconductor layer, and at least one of a light emitting layer mutually. The materials of the base material and the semiconductor layer of the LED 10R, 10B and 10G and the light emitting layer are arbitrary, and the materials of the base material and / or the semiconductor layer of the LED 10R, 10B and 10G and the light emitting layer may be the same.
 図1(B)に示すように、赤色LED10Rは、T方向において中心となる直線18に関して、P層12P1,12P2、及びN層12Nがそれぞれ対称(線対称)である。以下では、T方向において中心となる直線18に関して対称であることを、単にT方向に関して対称であるともいう。赤色LED10Rを用いて画像表示装置を製造するために(詳細後述)、図2(C)に示すように、基板22上のガイド部材30の中に赤色LED10Rを設置して、配線28A,28Bを介してP層12P1,12P2に正の電圧を印加して、配線28Bを介してN層12Nに負の電圧を印加する(又は接地する)と、赤色LED10Rの発光層12R1,12R2から全方向(側面方向を含む)に赤色光が発生する。この際に、赤色LED10Rの広い側面が表示方向を向いているため、表示方向に対して十分な光強度が得られる。さらに、2つの発光層12R1,12R2が同時に光るため、光強度は発光層が1つの発光ダイオードに比べて2倍になる。また、P層12P1,12P2に印加する電圧を異ならせることによって、発光層12R1,12R2から出力される赤色光の光強度のバランスを制御することもできる。 As shown in FIG. 1B, in the red LED 10R, the P layers 12P1 and 12P2 and the N layer 12N are respectively symmetrical (linearly symmetrical) with respect to a straight line 18 centered in the T direction. In the following, being symmetrical about a straight line 18 centered in the T direction is also referred to simply as being symmetrical about the T direction. In order to manufacture an image display device using the red LED 10R (described in detail later), as shown in FIG. 2C, the red LED 10R is placed in the guide member 30 on the substrate 22 to set the wires 28A and 28B. When a positive voltage is applied to the P layers 12P1 and 12P2 and a negative voltage is applied to the N layer 12N through the wiring 28B (or grounded), all directions from the light emitting layers 12R1 and 12R2 of the red LED 10R ( Red light is generated in the lateral direction). At this time, since the wide side surface of the red LED 10R faces the display direction, sufficient light intensity can be obtained in the display direction. Furthermore, since the two light emitting layers 12R1 and 12R2 simultaneously emit light, the light intensity is doubled as compared with one light emitting diode. Further, by making the voltages applied to the P layers 12P1 and 12P2 different, it is also possible to control the balance of the light intensity of the red light output from the light emitting layers 12R1 and 12R2.
 さらに、赤色LED10Rは、P層12P1,12P2及びN層12NがそれぞれT方向に関して対称であるため、基板22上に赤色LED10RをT方向に関して反転して設置しても、配線28A~28Cのパターンを変更することなく、さらに配線28A~28Cに印加する電圧を変更することなく、赤色LED10Rは方向を反転する前と同様に発光する。これは他のLED10B,10Gも同様である。このため、基板22上でのLED10R,10B,10Gの配列を効率的に行うことができる。 Furthermore, since the P layers 12P1 and 12P2 and the N layer 12N are symmetrical with respect to the T direction in the red LED 10R, even if the red LED 10R is installed on the substrate 22 with the red LED 10R inverted with respect to the T direction The red LED 10R emits light in the same manner as before reversing the direction without changing the voltage and without changing the voltage applied to the wirings 28A to 28C. The same applies to the other LEDs 10B and 10G. Therefore, the LEDs 10R, 10B, and 10G can be arranged efficiently on the substrate 22.
 なお、赤色LED10Rは、T方向に関して発光層12R1,12R2も対称である。このため、赤色LED10RをT方向に関して反転して設置しても、色調が変化しない。
 また、赤色LED10Rの代わりに、図1(B)に示すように、T方向に順に、第1のN層12N1、第1の発光層12R1、P層12P、第2の発光層12R2、及び第2のN層12N2を接合して形成された赤色LED10RAを製造(使用)することもできる。言い替えると、赤色LED10RAは、赤色LED10RのP層とN層とを入れ替えた構成である。赤色LED10RAも、T方向に関して、N層12N1,12N2、発光層12R1,12R2、及びP層12Pがそれぞれ対称である。このため、基板22上に赤色LED10RAをT方向に関して反転して設置しても、赤色LED10RAは方向を反転する前と同様に発光する。
In the red LED 10R, the light emitting layers 12R1 and 12R2 are also symmetrical with respect to the T direction. Therefore, the color tone does not change even if the red LED 10R is installed in the T direction in a reversed manner.
Also, instead of the red LED 10R, as shown in FIG. 1B, the first N layer 12N1, the first light emitting layer 12R1, the P layer 12P, the second light emitting layer 12R2, and the first light emitting layer 12R1 are sequentially arranged in the T direction. It is also possible to manufacture (use) a red LED 10RA formed by bonding two N layers 12N2. In other words, the red LED 10RA has a configuration in which the P layer and the N layer of the red LED 10R are interchanged. Also in the red LED 10RA, the N layers 12N1 and 12N2, the light emitting layers 12R1 and 12R2, and the P layer 12P are symmetrical with respect to the T direction. Therefore, even if the red LED 10RA is installed on the substrate 22 so as to be inverted with respect to the T direction, the red LED 10RA emits light as before the direction is inverted.
 次に、図2(A)は、本実施形態に係るLED10R,10B,10G(3色のマイクロLED)を用いたフルカラーの画像表示装置20を示す。画像表示装置20は、ほぼ長方形の絶縁体よりなる基板22の上面に、赤色LED10R、青色LED10B、及び緑色LED10Gをマトリクス状に配列して固定した表示部と、多数のLED10R,10B,10Gのオン/オフ及び光強度を個別に制御する制御部24とを備えている。なお、図2(A)及び以下で参照する図面では、説明の便宜上、LED10R,10B,10Gを実際の大きさよりもかなり拡大して表している。以下、基板22の長手方向及び短手方向に沿ってそれぞれX軸及びY軸を取って説明する。本実施形態では、一例として、LED10R,10B,10Gの接合方向であるT方向がX軸に平行な方向(X方向)となっている。本実施形態では、赤色LED10R、青色LED10B、及び緑色LED10GはそれぞれY軸に平行な直線に沿ってY方向に所定ピッチで配列され、一列の赤色LED10R、一列の青色LED10B、及び一列の緑色LED10GがX方向に所定ピッチで配列されている。LED10R,10B,10GのX方向、Y方向の配列のピッチは一例として100μm~200μm程度であり、LED10R,10B,10GのX方向及びY方向の配列数はそれぞれ1000程度である。なお、LED10R,10B,10Gの配列は任意であり、LED10R,10B,10Gを例えば市松模様状に配列してもよい。 Next, FIG. 2A shows a full-color image display device 20 using the LEDs 10R, 10B, and 10G (micro LEDs of three colors) according to the present embodiment. The image display device 20 includes a display unit in which red LEDs 10R, blue LEDs 10B, and green LEDs 10G are arranged in a matrix and fixed on the upper surface of a substrate 22 made of a substantially rectangular insulator, and a large number of LEDs 10R, 10B, and 10G are turned on. And a controller 24 for individually controlling the light intensity and the light intensity. In FIG. 2A and the drawings referred to below, the LEDs 10R, 10B, and 10G are shown in a considerably enlarged size than the actual size for the convenience of description. Hereinafter, the description will be made by taking the X axis and the Y axis along the longitudinal direction and the short direction of the substrate 22, respectively. In the present embodiment, as an example, the T direction, which is the bonding direction of the LEDs 10R, 10B, and 10G, is the direction (X direction) parallel to the X axis. In the present embodiment, the red LEDs 10R, the blue LEDs 10B, and the green LEDs 10G are arranged at a predetermined pitch in the Y direction along straight lines parallel to the Y axis, and one row of red LEDs 10R, one row of blue LEDs 10B, and one row of green LEDs 10G It is arranged at a predetermined pitch in the X direction. The pitch of the arrangement of the LEDs 10R, 10B and 10G in the X direction and the Y direction is, for example, about 100 μm to 200 μm, and the arrangement number of the LEDs 10R, 10B and 10G in the X direction and Y direction is about 1000, respectively. The arrangement of the LEDs 10R, 10B and 10G is arbitrary, and the LEDs 10R, 10B and 10G may be arranged in a checkered pattern, for example.
 また、図2(B)に示すように、基板22の上面のLED10R,10B,10Gが設置される領域には、LED10R,10B,10GのP層12P1,12P2,14P1,14P2及び16P1,16P2(図1(A)参照)に電圧を印加するための配線28A,28C,28D,28F,28G,28I、及びLED10R,10B,10GのN層12N,14N及び16Nに電圧を印加するための配線28B,28E,28Hが形成されている。また、配線28A~28Iの対応するP層12P1等又はN層12N等との接触部には、薄い円板状の端子部26A,26B,26C,26D,26E,26F,26G,26H,26Iが形成されている。端子部26A~26Iは、対応するP層又はN層に加熱によって溶着可能な材料(例えばハンダ等)から形成されている。なお、配線28A~28Iも溶着可能な材料から形成してもよい。制御部24は、配線28A~28Iに印加する電圧を多数のLED10R,10B,10G毎に、かつ各LED10R,10B,10G内の2つの発光層毎に個別に制御する。これによって、表示部で任意の画像をフルカラーで高精細に表示できる。なお、端子部26A~26I(及び配線28A~28I)を導電性の接着剤から形成してもよい。 Further, as shown in FIG. 2B, P layers 12P1, 12P2, 14P1, 14P2 and 16P1, 16P2 of the LEDs 10R, 10B, 10G are provided in the regions of the upper surface of the substrate 22 where the LEDs 10R, 10B, 10G are installed. Wiring 28A, 28C, 28D, 28F, 28G, 28I for applying a voltage to FIG. 1 (A), and wiring 28B for applying a voltage to N layers 12N, 14N and 16N of LEDs 10R, 10B, 10G. , 28E, 28H are formed. Further, thin disk- like terminal portions 26A, 26B, 26C, 26D, 26E, 26F, 26G, 26H, 26I are provided at the contact portions of the wires 28A to 28I with the corresponding P layer 12P1 or the like or the N layer 12N or the like. It is formed. The terminal portions 26A to 26I are formed of a material (for example, solder or the like) that can be welded to the corresponding P layer or N layer by heating. The wires 28A to 28I may also be formed of a material that can be welded. The control unit 24 individually controls the voltage applied to the wirings 28A to 28I for each of the multiple LEDs 10R, 10B, and 10G and for each of two light emitting layers in each of the LEDs 10R, 10B, and 10G. As a result, it is possible to display an arbitrary image in full color and high definition on the display unit. The terminal portions 26A to 26I (and the wires 28A to 28I) may be formed of a conductive adhesive.
 次に、本実施形態のLED10R,10B,10G(マイクロLED)及び画像表示装置20の製造方法の一例につき図3のフローチャートを参照して説明する。この製造のためには、不図示の薄膜形成装置、レジストのコータ・デベロッパ、マスクパターンを基材の表面のレジストに転写露光する露光装置、エッチング装置、検査装置、及びダイシング装置等が使用される。 Next, an example of a method of manufacturing the LEDs 10R, 10B, and 10G (micro LEDs) and the image display device 20 according to the present embodiment will be described with reference to the flowchart in FIG. For this production, a thin film forming apparatus (not shown), a coater / developer for a resist, an exposure apparatus for transferring and exposing a mask pattern onto the resist on the surface of a substrate, an etching apparatus, an inspection apparatus, a dicing apparatus, etc. are used. .
 まず、図3のステップ102において、半導体素子製造プロセスを用いて、LED10R,10B,10Gを製造するための円板状の3種類の基材(不図示)の表面にそれぞれP層、発光層、N層、発光層、及びP層を積層して3種類のウエハを製造する。そして、ステップ104において、LED10R,10B,10G用のウエハからそれぞれエッチング等によって基材部を分離(除去)し、ダイシング装置によって各色用のウエハからそれぞれ多数のLED10R,10B,10Gを切り出す。これによって、多数の赤色LED10R、青色LED10B、及び緑色LED10Gが製造される。 First, in step 102 of FIG. 3, the P layer, the light emitting layer, and the like are respectively formed on the surfaces of three types of disk-like base materials (not shown) for manufacturing the LEDs 10R, 10B and 10G using a semiconductor device manufacturing process. The N layer, the light emitting layer, and the P layer are stacked to produce three types of wafers. Then, in step 104, the substrate portions are separated (removed) from the wafers for the LEDs 10R, 10B and 10G by etching or the like, and a large number of LEDs 10R, 10B and 10G are cut out from the wafers for respective colors by a dicing apparatus. As a result, a large number of red LEDs 10R, blue LEDs 10B, and green LEDs 10G are manufactured.
 また、ステップ106において、図4(A)に示すように、画像表示装置20の基板22及びガイド部材30を製造する。基板22の上面のLED10R,10B,10Gが配置される領域23R,23B,23G(例えば基板22のX方向及びY方向の端部を基準として位置が予め規定されている)には、それぞれ配線28A~28I及び端子部26A~26I等(図2(B)参照)が形成されている。さらに、制御部24も製造される。ガイド部材30は、ほぼ基板22と同じ大きさで、ガイド部材30には、図2(A)のLED10R,10B,10Gの配列と同じ配列で、赤色LED10Rが収容可能な長方形の開口32R、青色LED10Bが収容可能な長方形の開口32B、及び緑色LED10Gが収容可能な長方形の開口32Gがマトリクス状に形成されている。開口32R,32B,32Gは対応するLED10R,10B,10Gの側面の形状よりもわずかに大きく形成されている。本実施形態では、LED10R,10B,10Gは次第に形状が細長くなっているため、LED10R,10B,10Gを側面が基板22に接するように配置するとき、開口32R,32B及び32Gにはそれぞれ赤色LED10R、青色LED10B、及び緑色LED10Gのみが収容可能である。 Further, in step 106, as shown in FIG. 4A, the substrate 22 and the guide member 30 of the image display device 20 are manufactured. In the regions 23R, 23B and 23G where the LEDs 10R, 10B and 10G are arranged on the upper surface of the substrate 22 (for example, the positions are defined in advance with respect to the ends of the substrate 22 in the X direction and Y direction) To 28I and terminal portions 26A to 26I (see FIG. 2B) are formed. Furthermore, the control unit 24 is also manufactured. The guide member 30 has substantially the same size as the substrate 22, and the guide member 30 has the same arrangement as the arrangement of the LEDs 10R, 10B, and 10G of FIG. Rectangular openings 32B that can accommodate the LEDs 10B and rectangular openings 32G that can accommodate the green LEDs 10G are formed in a matrix. The openings 32R, 32B, 32G are formed slightly larger than the shapes of the side surfaces of the corresponding LEDs 10R, 10B, 10G. In the present embodiment, since the LEDs 10R, 10B, and 10G are gradually elongated in shape, when the LEDs 10R, 10B, and 10G are disposed such that the side surfaces are in contact with the substrate 22, the openings 32R, 32B, and 32G are red LEDs 10R, respectively. Only the blue LED 10B and the green LED 10G can be accommodated.
 LED10R,10B,10Gを基板22上に配列する場合にのみガイド部材30を使用して、配列完了後にガイド部材30を取り外す場合、ガイド部材30は例えば金属(アルミニウム等)又はセラミックス等から形成してもよい。一方、ガイド部材30を基板22に取り付けたままにしておく場合、ガイド部材30は合成樹脂等から形成してもよい。開口32R,32B,32Gの周辺のガイド部材30の厚さは、最も断面積の小さい緑色LED10Gの断面の辺の長さ程度である。 When using the guide members 30 only when arranging the LEDs 10R, 10B and 10G on the substrate 22 and removing the guide members 30 after the arrangement is completed, the guide members 30 are formed of metal (aluminum etc.) or ceramics etc. It is also good. On the other hand, when the guide member 30 is attached to the substrate 22, the guide member 30 may be formed of synthetic resin or the like. The thickness of the guide member 30 around the openings 32R, 32B, 32G is about the side length of the cross section of the green LED 10G having the smallest cross sectional area.
 そして、ステップ108において、基板22のLED10R,10B,10Gが配置される領域23R,23B,23Gに、ガイド部材30の開口32R,32B,32Gが対向するように、基板22に対してガイド部材30の位置決めを行い、図4(B)に示すように、基板22の上面にガイド部材30を配置する。この際にガイド部材30の開口32R,32B,32Gは、長手方向がX方向に平行になっている。LED10R,10B,10Gの配列後にガイド部材30を基板22から取り外す場合には、ガイド部材30は、例えば不図示の支持部材によって、基板22からわずかな間隔をあけて保持してもよい。また、ガイド部材30を基板22に装着したままにする場合には、接着等でガイド部材30を基板22に固定してもよい。なお、ステップ102,104のLED10R等の製造工程、及びステップ106,108の基板等の製造工程は実質的に並行して行ってもよい。 Then, in step 108, the guide member 30 with respect to the substrate 22 such that the openings 32R, 32B and 32G of the guide member 30 face the regions 23R, 23B and 23G in which the LEDs 10R, 10B and 10G of the substrate 22 are disposed. And the guide member 30 is disposed on the upper surface of the substrate 22 as shown in FIG. 4 (B). At this time, the longitudinal directions of the openings 32R, 32B, 32G of the guide member 30 are parallel to the X direction. When the guide member 30 is removed from the substrate 22 after the arrangement of the LEDs 10R, 10B, 10G, the guide member 30 may be held slightly spaced from the substrate 22 by, for example, a support member (not shown). When the guide member 30 is attached to the substrate 22, the guide member 30 may be fixed to the substrate 22 by adhesion or the like. The steps of manufacturing the LEDs 10R and the like in steps 102 and 104 and the steps of manufacturing the substrates and the like in steps 106 and 108 may be performed substantially in parallel.
 次のステップ112において、図5(A)に示すように、基板22上に配置されたガイド部材30の上面に、不図示の多数のLED10R,10B,10Gを収容するストッカーを傾斜させる等の方法で、多数のLED10R,10B,10Gを散乱させる(散布する)。この結果、図5(B)に示すように、ガイド部材30の開口32R,32B,32Gにそれぞれ赤色LED10R、青色LED10B、及び緑色LED10Gが、その側面が基板22に接するように収容される。次のステップ114において、ガイド部材30の上面にあり、開口32R,32B,32Gに収容されていないLED10R,10B,10Gを除去する。なお、このステップ114は、後述のように基板22にLED10R,10B,10Gを固定した後で行ってもよい。そして、ステップ116において、不図示の検査装置を用いて、ガイド部材30の全部の開口32R,32B,32Gに対応するLED10R,10B,10Gが収容されているかどうかを検査する。そして、LED10R,10B,10Gが収容されていない開口32R,32B,32Gがある場合には、全部の開口32R,32B,32GにLED10R,10B,10Gが収容されるまで、ステップ112,114を繰り返す。 In the next step 112, as shown in FIG. 5A, a method of inclining a stocker accommodating a large number of LEDs 10R, 10B, 10G (not shown) on the upper surface of the guide member 30 disposed on the substrate 22 , Scatter a number of LEDs 10R, 10B, 10G. As a result, as shown in FIG. 5B, the red LED 10R, the blue LED 10B, and the green LED 10G are accommodated in the openings 32R, 32B, and 32G of the guide member 30 such that the side surfaces thereof are in contact with the substrate 22. In the next step 114, the LEDs 10R, 10B and 10G which are on the upper surface of the guide member 30 and are not accommodated in the openings 32R, 32B and 32G are removed. This step 114 may be performed after the LEDs 10R, 10B, and 10G are fixed to the substrate 22 as described later. Then, in step 116, it is checked whether the LEDs 10R, 10B and 10G corresponding to all the openings 32R, 32B and 32G of the guide member 30 are accommodated using an inspection device (not shown). Then, if there are openings 32R, 32B, 32G in which the LEDs 10R, 10B, 10G are not accommodated, the steps 112, 114 are repeated until the LEDs 10R, 10B, 10G are accommodated in all the openings 32R, 32B, 32G. .
 そして、全部の開口32R,32B,32GにLED10R,10B,10Gが収容されたときには、ステップ118に移行して、基板22を底面から加熱する。この際に、不図示の柔軟性を持つ部材を用いて、LED10R,10B,10Gの上部を基板22側に付勢していてもよい。これによって、図2(B)に示す基板22の端子部26A~26I(及び配線28A~28I)が対応するLED10R,10B,10GのP層又はN層に溶着し、LED10R,10B,10GはそれぞれP層及びN層が電気的に対応する配線28A~28I等に導通する状態で、基板22の上面に固定される。その後、ステップ120において、ガイド部材30を除去するかどうかを判定し、ガイド部材30を除去する場合にはステップ122に移行して、図6(A)に示すように、基板22からガイド部材30を取り外す。その後、ステップ124において、LED10R,10B,10Gを覆うカバーガラスの設置等を行うことで、画像表示装置20が製造される。ガイド部材30を除去しない場合には、動作はステップ120から124に移行する。なお、端子部26A~26I(及び配線28A~28I)を導電性の接着剤から形成した場合には、ステップ118の基板22の加熱工程を省略することができる。 And when LED10R, 10B, 10G is accommodated in all the opening 32R, 32B, 32G, it transfers to step 118 and heats the board | substrate 22 from a bottom face. At this time, the upper portions of the LEDs 10R, 10B, and 10G may be biased toward the substrate 22 side using a member having flexibility (not shown). By this, the terminal portions 26A to 26I (and the wirings 28A to 28I) of the substrate 22 shown in FIG. 2B are welded to the P layer or N layer of the corresponding LED 10R, 10B, 10G, and the LEDs 10R, 10B, 10G are respectively The P layer and the N layer are fixed to the upper surface of the substrate 22 in a state where they are electrically conducted to the corresponding wires 28A to 28I and the like. Thereafter, in step 120, it is determined whether or not the guide member 30 is to be removed. If the guide member 30 is to be removed, the process proceeds to step 122, and as shown in FIG. Remove Thereafter, in step 124, the image display device 20 is manufactured by installing a cover glass that covers the LEDs 10R, 10B, and 10G. If the guide member 30 is not removed, the operation moves from step 120 to step 124. When the terminal portions 26A to 26I (and the wires 28A to 28I) are formed of a conductive adhesive, the heating process of the substrate 22 in step 118 can be omitted.
 このように本実施形態では、ガイド部材30の上面に多数のLED10R,10B,10Gを散乱することによって、基板22の上面に目標とする配置で3種類のLED10R,10B,10Gを効率的に配列できる。この際に、LED10R,10B,10GはT方向に関してP層12P1,12P2等及びN層12N等(半導体層)が対称であるため、ガイド部材30の開口32R,32B,32Gに対してLED10R,10B,10GがT方向(X方向)に関して反転して収容されたとしても、配線28A~28Iに印加する電圧を変更することなく、LED10R,10B,10Gは同じように発光可能である。このため、より効率的に画像表示装置20を製造できる。 As described above, in the present embodiment, by scattering a large number of LEDs 10R, 10B, and 10G on the upper surface of the guide member 30, the three types of LEDs 10R, 10B, and 10G are efficiently arranged in the target arrangement on the upper surface of the substrate 22. it can. At this time, the LEDs 10R, 10B, 10G are symmetrical with respect to the openings 32R, 32B, 32G of the guide member 30 because the P layers 12P1, 12P2, etc. and the N layer 12N etc. (semiconductor layers) are symmetrical in the T direction. , And 10 G are accommodated in an inverted manner with respect to the T direction (X direction), the LEDs 10 R, 10 B, and 10 G can emit light in the same manner without changing the voltage applied to the wirings 28 A to 28 I. Therefore, the image display device 20 can be manufactured more efficiently.
 上述のように、本実施形態の赤色LED10R(マイクロLED)は、それぞれ赤色光を発光する複数の発光層12R1,12R2と、電圧が付加されると発光層12R1,12R2で赤色光が発光するよう発光層12R1,12R2に接合された複数のP層12P1,12P2(第1半導体層)及びN層12N(第2半導体層)と、を備え、複数の発光層12R1,12R2と、複数のP層12P1,12P2及びN層12N(半導体層)とがT方向(接合方向)に関して順に並んで接合された発光素子である。また、青色LED10B及び緑色LED10Gも同様の発光素子である。 As described above, in the red LED 10R (micro LED) of the present embodiment, the red light is emitted in the plurality of light emitting layers 12R1 and 12R2 that respectively emit red light and the light emitting layers 12R1 and 12R2 when voltage is applied. A plurality of P layers 12P1 and 12P2 (first semiconductor layer) and an N layer 12N (second semiconductor layer) joined to the light emitting layers 12R1 and 12R2, and a plurality of light emitting layers 12R1 and 12R2 and a plurality of P layers This is a light emitting element in which 12P1 and 12P2 and an N layer 12N (semiconductor layer) are joined in order in the T direction (junction direction). The blue LED 10B and the green LED 10G are also similar light emitting elements.
 LED10R,10B,10Gを用いて画像表示装置20を製造する場合、LED10R,10B,10Gを例えば基板22上のガイド部材30の上面に散乱させるのみで、LED10R,10B,10Gがガイド部材30の開口32R,32B,32Gに収容されて、LED10R,10B,10Gを目標とする配置に効率的に配列できる。なお、例えば赤色LED10RのP層12P1,12P2及びN層12N(半導体層)がT方向に関して対称でない場合には、赤色LED10Rが基板22上に設置された後で、例えば制御部24によってその赤色LED10Rの電流が流れる方向(P層12P1,12P2及びN層12Nの配列状態)を検出し、この検出結果に基づいて赤色LED10Rに供給する電圧を変更してもよい。 When manufacturing the image display device 20 using the LEDs 10R, 10B and 10G, the LEDs 10R, 10B and 10G are openings of the guide member 30 only by scattering the LEDs 10R, 10B and 10G on the upper surface of the guide member 30 on the substrate 22, for example. By being accommodated in 32R, 32B and 32G, the LEDs 10R, 10B and 10G can be efficiently arranged in a targeted arrangement. Note that, for example, when the P layers 12P1 and 12P2 and the N layer 12N (semiconductor layer) of the red LED 10R are not symmetrical with respect to the T direction, for example, after the red LED 10R is installed on the substrate 22, the red LED 10R is The direction in which the current flows (the arrangement state of the P layers 12P1 and 12P2 and the N layer 12N) may be detected, and the voltage supplied to the red LED 10R may be changed based on the detection result.
 また、本実施形態の画像表示装置20は、LED10R,10B,10Gと、それらの発光層12R1,12R2,14B1,14B2,16G1,16G2へ電力を供給する配線28A~28Iが形成され、LED10R,10B,10Gが接合される基板22と、を備えている。画像表示装置20は、基板22上でのLED10R,10B,10Gの配列を高精度にかつ効率的に行うことができるため、効率的に製造できる。 Further, in the image display device 20 according to the present embodiment, the LEDs 10R, 10B, and 10G and the wirings 28A to 28I for supplying power to the light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1 and 16G2 are formed, and the LEDs 10R and 10B are formed. , And 10G are bonded to each other. The image display device 20 can efficiently manufacture the LEDs 10R, 10B, and 10G on the substrate 22 with high accuracy and efficiency.
 また、本実施形態の赤色LED10Rの製造方法は、赤色LED10Rを形成するように、発光層12R1,12R2と、P層12P1,12P2及びN層12NとをT方向に関して並べて接合してウエハを製造するステップ102と、接合された赤色LED10Rを含むウエハをT方向と直交する方向に関し、切り分けるステップ104とを含む。この製造方法によれば、複数の発光層12R1,12R2を有する赤色LED10Rを効率的に製造できる。 In addition, in the method of manufacturing the red LED 10R of the present embodiment, the light emitting layers 12R1 and 12R2, the P layers 12P1 and 12P2 and the N layer 12N are aligned in the T direction and bonded to form a red LED 10R. Step 102; and separating 104 the wafer including the bonded red LED 10R in the direction orthogonal to the T direction. According to this manufacturing method, it is possible to efficiently manufacture the red LED 10R having the plurality of light emitting layers 12R1 and 12R2.
 また、本実施形態の画像表示装置20の製造方法は、基板22上において、複数のLED10R,10B,10Gを散乱するステップ112と、散乱されたLED10R,10B,10Gと基板22とを加熱による溶着によって接合するステップ118とを含む。この製造方法によれば、LED10R,10B,10Gの散乱によって効率的にLED10R,10B,10Gを目標とする配置で配列できるため、画像表示装置20を効率的に製造できる。 Further, in the method of manufacturing the image display device 20 according to the present embodiment, step 112 of scattering the plurality of LEDs 10R, 10B, 10G on the substrate 22, welding the scattered LEDs 10R, 10B, 10G and the substrate 22 by heating And step 118 of bonding. According to this manufacturing method, since the LEDs 10R, 10B, and 10G can be efficiently arranged in a target arrangement by scattering of the LEDs 10R, 10B, and 10G, the image display device 20 can be manufactured efficiently.
 なお、上述の実施形態では以下のような変形が可能である。
 まず、上述の実施形態において、LED10R,10B,10Gをガイド部材30(基板22)の上面に散乱する際に、LED10R,10B,10Gをイオナイザ(不図示)により除電しておいてもよい。これによって、LED10R,10B,10Gがガイド部材30の開口32R,32B,32G以外の領域に付着することを防止できる。
In the above embodiment, the following modifications are possible.
First, in the above embodiment, when the LEDs 10R, 10B, and 10G are scattered on the upper surface of the guide member 30 (substrate 22), the LEDs 10R, 10B, and 10G may be removed by an ionizer (not shown). This can prevent the LEDs 10R, 10B, 10G from adhering to the area other than the openings 32R, 32B, 32G of the guide member 30.
 また、上述の実施形態では、LED10R,10B,10Gの発光層12R1,12R2等は2層で、P層12P1,12P2及びN層12Nの半導体層は3層であるが、発光層を3層以上にしてもよい。発光層を3層以上のN層(Nは3以上の整数)にする場合、半導体層の層数は、(N+1)層以上としてもよい。発光層の層数N層(Nは4以上の偶数)にする場合は、半導体層の層数は(N+1)層としてもよい。また、発光層の層数N層(Nは3以上の奇数および/または4以上の偶数)にする場合、その半導体層は(N+1)層以上となる。 In the above-described embodiment, the light emitting layers 12R1 and 12R2 of the LEDs 10R, 10B and 10G are two layers, and the semiconductor layers of the P layers 12P1 and 12P2 and the N layer 12N are three layers. You may In the case where the light emitting layer is formed of three or more N layers (N is an integer of 3 or more), the number of semiconductor layers may be (N + 1) or more. When the number of light emitting layers is N (N is an even number of 4 or more), the number of semiconductor layers may be (N + 1). When the number of light emitting layers is N (N is an odd number of 3 or more and / or an even number of 4 or more), the number of semiconductor layers is (N + 1) or more.
 また、LED10R,10B,10Gは直方体状であるが、図6(B)に示すように、円柱状の赤色LED11R、青色LED11B、及び緑色LED11Gを製造することもできる。例えば赤色LED11Rは、T方向に順に、P層13P1、発光層13R1、N層13N、発光層13R2、及びP層13P2を積層して形成されている。LED11R,11B,11GもT方向に関して半導体層が対称であるため、上述の実施形態と同様の効果が得られる。また、一例として、緑色LED11Gは断面積が最も大きく高さが最も低く、青色LED11Bは断面積が最も小さく高さが最も高く、赤色LED11Rは断面積が中間で、高さも中間である。このようにLED11R,11B,11Gは互いに形状が異なっているため、基板22上にLED11R,11B,11Gを配列する際に、ガイド部材30と同様のLED11R,11B,11Gを収容可能な開口を有するガイド部材を使用することによって、LED11R,11B,11Gを目標とする配置に効率的に配列できる。さらに、図6(C)に示すように、断面形状が正6角形の角柱状の赤色LED11RAを製造することも可能である。また、断面形状が任意の多角形のマイクロLEDを製造することも可能である。 Moreover, although LED10R, 10B, 10G is rectangular solid shape, as shown to FIG. 6 (B), cylindrical red LED11R, blue LED11B, and green LED11G can also be manufactured. For example, the red LED 11R is formed by sequentially laminating the P layer 13P1, the light emitting layer 13R1, the N layer 13N, the light emitting layer 13R2, and the P layer 13P2 in the T direction. Also in the LEDs 11R, 11B, and 11G, since the semiconductor layers are symmetrical in the T direction, the same effect as that of the above-described embodiment can be obtained. Further, as an example, the green LED 11G has the largest cross-sectional area and the lowest height, the blue LED 11B has the smallest cross-sectional area and the highest height, and the red LED 11R has an intermediate cross-sectional area and an intermediate height. As described above, the LEDs 11R, 11B, and 11G have different shapes from each other, and therefore, when arranging the LEDs 11R, 11B, and 11G on the substrate 22, they have openings that can accommodate the LEDs 11R, 11B, and 11G similar to the guide member 30. By using the guide members, the LEDs 11R, 11B and 11G can be efficiently arranged in a targeted arrangement. Furthermore, as shown to FIG. 6C, it is also possible to manufacture prismatic red LED 11RA whose cross-sectional shape is a regular hexagon. It is also possible to produce micro-LEDs of arbitrary cross-sectional shape.
 また、上述の実施形態では、ガイド部材30の上面にLED10R,10B,10Gを散乱している。これに対して、図2(B)に対応する図7(A)に示すように、基板22の上面のLED10R,10B,10Gが設置される領域に、それぞれLED10R,10B,10Gが設置可能な凹部22a,22b,22cを形成しておいてもよい。図7(B)は図7(A)の横断面図であり、図7(B)に示すように、凹部22a,22b,22cには、それぞれLED10R,10B,10GのP層及びN層に対向する位置に端子部26A~26Iが形成され、端子部26A~26Iが配線28A等を介して図2(A)の制御部24に接続されている。この変形例では、凹部22a,22b及び22cにはそれぞれLED10R,10B及び10Gのみが収容可能であるため、基板22の上面に多数のLED10R,10B,10Gを散乱すると、凹部22a,22b及び22cにはそれぞれLED10R,10B及び10Gのみが収容される。このため、ガイド部材30を使用することなく、基板22の上面にLED10R,10B,10Gを目標とする配置で効率的に配列できる。 Further, in the above-described embodiment, the LEDs 10R, 10B, and 10G are scattered on the upper surface of the guide member 30. On the other hand, as shown in FIG. 7A corresponding to FIG. 2B, the LED 10R, 10B, 10G can be installed in the region where the LED 10R, 10B, 10G is installed on the upper surface of the substrate 22 Recesses 22a, 22b and 22c may be formed. FIG. 7B is a cross-sectional view of FIG. 7A, and as shown in FIG. 7B, in the recesses 22a, 22b and 22c, the P layer and the N layer of the LEDs 10R, 10B and 10G are respectively provided. Terminal portions 26A to 26I are formed at opposing positions, and the terminal portions 26A to 26I are connected to the control unit 24 of FIG. 2A via the wiring 28A and the like. In this modification, only the LEDs 10R, 10B and 10G can be accommodated in the recesses 22a, 22b and 22c, respectively. Therefore, when a large number of LEDs 10R, 10B and 10G are scattered on the upper surface of the substrate 22, the recesses 22a, 22b and 22c can be accommodated. Each of the LEDs 10R, 10B and 10G is accommodated. Therefore, without using the guide member 30, the LEDs 10R, 10B, and 10G can be efficiently arranged on the upper surface of the substrate 22 in a targeted arrangement.
 この変形例では、凹部22a,22b及び22c内でLED10R,10B,10Gはそれぞれ側面が基板22に接するように配置されている。このため、LED10R,10B,10Gの側面から放出される十分な光強度の光で画像を表示できる。また、図7(C)に示すように、基板22の上面にそれぞれLED10R,10B,10Gを長手方向(T方向)がその上面に垂直になるように収容可能な凹部22d,22e,22fを設けることも可能である。なお、図7(C)では、LED10R,10B,10Gが基板22の上面から突出して収容されているように図示されているが、LED10R,10B,10Gの長手方向の長さに合わせて、凹部22d,22e,22fのZ方向の長さ(深さ)を設定するようにしても良い。また、凹部22d,22e,22fのZ方向の長さ(深さ)を設定する際には、LED10R,10B,10Gの発光層すべてが発光するように設定しなくてもよく、LED10R,10B,10Gの発光層のうち基板に接する発光層の数がLED10R,10B,10Gで同じになるようにすれば良い。なお、LED10R,10B,10Gの径方向の長さが凹部22d,22e,22fの径方向の長さよりも短い場合、たとえば、LED10Gと凹部22d、収容されるべきでない凹部22dにLED10Gが挿入されることがある。しかしこの場合、たとえ、径方向の長さが大きく異なるため、凹部22d内のLED10Gが基板22と接する可能性が低く、LED10Gは発光しない。また、仮に凹部22dにLED10Gが挿入されたとしても、径方向の長さが大きく異なるため凹部22dからLED10Gが抜け落ちる。よって、収容されるべきでない凹部(たとえば凹部22d)に径方向の長さが異なるLED(たとえば10G)が収容されたとしても、LEDが発光する可能性はほぼない。 In this modification, the LEDs 10R, 10B, and 10G are disposed in the recessed portions 22a, 22b, and 22c such that the side surfaces thereof are in contact with the substrate 22, respectively. For this reason, an image can be displayed by the light of sufficient light intensity emitted from the side surfaces of the LEDs 10R, 10B, and 10G. Further, as shown in FIG. 7C, recesses 22d, 22e, 22f are provided on the upper surface of the substrate 22 so that the longitudinal direction (T direction) of the LEDs 10R, 10B, 10G is perpendicular to the upper surface. It is also possible. In FIG. 7C, although the LEDs 10R, 10B, and 10G are illustrated as being accommodated so as to project from the upper surface of the substrate 22, they are recessed according to the length in the longitudinal direction of the LEDs 10R, 10B, and 10G. The length (depth) in the Z direction of 22 d, 22 e, 22 f may be set. Moreover, when setting the length (depth) of the Z direction of recessed part 22d, 22e, 22f, it is not necessary to set so that all the light emitting layers of LED10R, 10B, 10G may emit light, LED10R, 10B, The number of light emitting layers in contact with the substrate among the 10 G light emitting layers may be the same for the LEDs 10R, 10B, and 10G. When the radial length of the LED 10R, 10B, 10G is shorter than the radial length of the recess 22d, 22e, 22f, for example, the LED 10G is inserted into the LED 10G and the recess 22d, and the recess 22d which should not be accommodated. Sometimes. However, in this case, since the length in the radial direction is largely different, the possibility that the LED 10G in the recess 22d contacts the substrate 22 is low, and the LED 10G does not emit light. Even if the LED 10G is inserted into the recess 22d, the LED 10G drops out of the recess 22d because the length in the radial direction is largely different. Therefore, even if LEDs (e.g., 10G) having different radial lengths are accommodated in the recesses (e.g., the recesses 22d) that should not be accommodated, there is almost no possibility that the LEDs emit light.
 また、図7(D)に示すように、図6(B)の円柱状のLED11R,11B,11Gを使用する場合、基板22の上面にはそれぞれLED11R,11B,11Gを収容可能な円柱の側面状の凹部22h,22i,22gを形成しておいてもよい。この例では、LED11R,11B,11Gを散乱すると、LED11R,11B,11Gがそれぞれ基板22の凹部22h,22i,22gに効率的に配列される。 Further, as shown in FIG. 7D, in the case of using the cylindrical LEDs 11R, 11B, 11G of FIG. 6B, the side surface of the cylinder which can accommodate the LEDs 11R, 11B, 11G on the upper surface of the substrate 22 respectively. The concave portions 22h, 22i and 22g may be formed in advance. In this example, when the LEDs 11R, 11B, and 11G are scattered, the LEDs 11R, 11B, and 11G are efficiently arranged in the concave portions 22h, 22i, and 22g of the substrate 22, respectively.
 次に、第2の実施形態につき図8(A)~図17(B)を参照して説明する。なお、図8(A)~図17(B)において図1(A)~図6(A)に対応する部分には同一の符号を付してその詳細な説明を省略する。
 図8(A)は、本実施形態に係る赤色光、青色光、及び緑色光をそれぞれ発生する複数のマイクロLEDを結合した第1のマイクロLEDのユニット(以下、LEDユニットという)42を示す。LEDユニット42は、赤色光を発生する第1の発光ダイオード(以下、赤色LEDという)40R(第1発光部)、青色光を発生する第1の発光ダイオード(以下、青色LEDという)40B(第2発光部)、緑色光を発生する第1の発光ダイオード(以下、緑色LEDという)40G(第3発光部)、第2の緑色LED40G1(第3発光部)、第2の青色LED40B1(第2発光部)、及び第2の赤色LED40R1(第1発光部)を、各LEDの発光層と半導体層との接合方向であるT方向に接合したものである。赤色LED40Rは、T方向に順に、P層12P1(第1層)、発光層12R1、及びN層12N(第2層)を積層して形成され、青色LED40Bは、T方向に順に、P層14P1(第3層)、発光層14B1、及びN層14N(第4層)を積層して形成され、緑色LED40Gは、T方向に順に、P層16P1(第5層)、発光層16G1、及びN層16N(第6層)を積層して形成されている。
Next, a second embodiment will be described with reference to FIGS. 8 (A) to 17 (B). In FIGS. 8 (A) to 17 (B), the parts corresponding to FIGS. 1 (A) to 6 (A) are assigned the same reference numerals and detailed explanations thereof will be omitted.
FIG. 8A shows a first micro LED unit (hereinafter referred to as an LED unit) 42 in which a plurality of micro LEDs that respectively generate red light, blue light, and green light according to the present embodiment are combined. The LED unit 42 includes a first light emitting diode (hereinafter referred to as a red LED) 40R (first light emitting portion) that generates red light, and a first light emitting diode (hereinafter referred to as a blue LED) 2) a first light emitting diode (hereinafter referred to as a green LED) 40G (third light emitting unit) that generates green light, a second green LED 40G1 (a third light emitting unit), and a second blue LED 40B1 (a second light emitting unit) The light emitting portion) and the second red LED 40R1 (first light emitting portion) are joined in a T direction which is a joining direction of the light emitting layer and the semiconductor layer of each LED. The red LED 40R is formed by sequentially laminating the P layer 12P1 (first layer), the light emitting layer 12R1, and the N layer 12N (second layer) in the T direction, and the blue LED 40B sequentially forms the P layer 14P1 in the T direction. The green LED 40G is formed by stacking the third layer, the light emitting layer 14B1, and the N layer 14N (fourth layer) in the T direction, the P layer 16P1 (fifth layer), the light emitting layer 16G1, and the N layer 14N. It is formed by laminating the layer 16N (sixth layer).
 また、緑色LED40G1、青色LED40B1、及び赤色LED40R1は、それぞれ緑色LED40G、青色LED40B、及び赤色LED40RをT方向に関して反転したものである。LEDユニット42において、緑色LED40G,40G1(第3発光部)は、緑色LED40G1のN層12N(第2半導体層)と緑色LED40Gの発光層16G1との間にN層16N(第2半導体層)を有する。この構成で、緑色LED40G,40G1をLEDユニット42の中央に配置しても、緑色LED40G,40G1の半導体層及び発光層をT方向に関して対称に配置できる。 In addition, the green LED 40G1, the blue LED 40B1, and the red LED 40R1 are obtained by inverting the green LED 40G, the blue LED 40B, and the red LED 40R in the T direction, respectively. In the LED unit 42, the green LEDs 40G and 40G1 (third light emitting unit) are configured such that the N layer 16N (second semiconductor layer) is interposed between the N layer 12N (second semiconductor layer) of the green LED 40G1 and the light emitting layer 16G1 of the green LED 40G. Have. With this configuration, even if the green LEDs 40G and 40G1 are arranged at the center of the LED unit 42, the semiconductor layers and the light emitting layers of the green LEDs 40G and 40G1 can be arranged symmetrically with respect to the T direction.
 LEDユニット42は、断面形状が正方形でT方向に細長い直方体状である。また、LEDユニット42は、T方向において中心となる直線18Aに関して、P層12P1,14P1,16P1,16P1,14P1,12P1及びN層12N,14N,16N,16N,14N,12Nがそれぞれ対称(線対称)である。この場合、LEDユニット42を用いて画像表示装置を製造するために、LEDユニット42を基板22A(図9(A)参照)上に設置する場合、基板22上にLEDユニット42をT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42は3色の光を発光する。このため、基板22上でのLEDユニット42の配列を効率的に行うことができる。 The LED unit 42 has a rectangular cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction. In the LED unit 42, P layers 12P1, 14P1, 16P1, 16P1, 14P1, 12P1 and N layers 12N, 14N, 16N, 16N, 14N, 12N are respectively symmetrical (linearly symmetrical with respect to a straight line 18A centered in the T direction. ). In this case, when the LED unit 42 is installed on the substrate 22A (see FIG. 9A) in order to manufacture the image display device using the LED unit 42, the LED unit 42 is reversed in the T direction on the substrate 22. Even when installed, the LED unit 42 emits light of three colors without changing the wiring pattern (not shown) and without changing the voltage applied to the wiring. Therefore, the LED units 42 can be efficiently arranged on the substrate 22.
 また、LEDユニット42は、T方向に関して、赤色、青色、及び緑色の発光層12R1,14B1,16G1,16G1,14B1,12R1もそれぞれ対称である。このため、LEDユニット42をT方向に関して反転して設置しても、色調が変化しない。また、LEDユニット42の中央には緑色LED40G,40G1が配置されている。赤色、青色、緑色の光のうちで緑色光(中心が555nm)は比視感度が最も高いため、緑色LED40G,40G1を中央に配置することによって、中央が明るくなり、明るさのバランスが良い。ただし、LEDユニット42は、赤色LED40R,40R1、青色LED40B、40B1、及び緑色LED40G,40G1に供給する電圧を個別に制御でき、赤色LED40R,40R1、青色LED40B、40B1、及び緑色LED40G,40G1の光強度を個別に制御できるため、必ずしも緑色LED40G,40G1を中央に配置する必要はない。 In the LED unit 42, the red, blue and green light emitting layers 12R1, 14B1, 16G1, 16G1, 14B1 and 12R1 are also symmetrical with respect to the T direction. For this reason, the color tone does not change even if the LED unit 42 is installed in reverse in the T direction. Further, at the center of the LED unit 42, green LEDs 40G and 40G1 are arranged. Among red light, blue light and green light, green light (center is 555 nm) has the highest relative visibility, and by arranging the green LEDs 40 G and 40 G 1 at the center, the center becomes bright and the balance of brightness is good. However, the LED unit 42 can individually control the voltages supplied to the red LEDs 40R and 40R1, the blue LEDs 40B and 40B1, and the green LEDs 40G and 40G1, and the light intensities of the red LEDs 40R and 40R1 and the blue LEDs 40B and 40B1 and the green LEDs 40G and 40G1. It is not always necessary to center the green LEDs 40G and 40G1 because they can be controlled individually.
 次に、図8(B)は、第2のLEDユニット42Aを示す。LEDユニット42Aは、第1の赤色LED10R、第1の青色LED10B、緑色LED10G、第2の青色LED10B、及び第2の赤色LED10RをT方向に接合したものである。ただし、第2の青色LED10B、及び第2の赤色LED10Rは、それぞれ第1の青色LED10B、及び第1の赤色LED10Rに対してT方向に反転している。なお、赤色LED10R及び青色LED10Bは第1の実施形態で説明したように半導体層及び発光層がT方向に関して対称であるため、第2の青色LED10B、及び第2の赤色LED10Rはそれぞれ2つのP層及び2つの発光層の符号が入れ替わっている。 Next, FIG. 8B shows a second LED unit 42A. The LED unit 42A is formed by joining a first red LED 10R, a first blue LED 10B, a green LED 10G, a second blue LED 10B, and a second red LED 10R in the T direction. However, the second blue LED 10B and the second red LED 10R are inverted in the T direction with respect to the first blue LED 10B and the first red LED 10R, respectively. In the red LED 10R and the blue LED 10B, as described in the first embodiment, the semiconductor layer and the light emitting layer are symmetrical with respect to the T direction, so the second blue LED 10B and the second red LED 10R each have two P layers And the signs of the two light emitting layers are switched.
 LEDユニット42Aは、T方向において中心となる直線18Bに関して、P層12P1,12P2,…12P2,12P1及びN層12N,…12Nがそれぞれ対称である。さらに、LEDユニット42Aは、T方向に関して、3色の発光層12R1,12R2,14B1,14B2,16G1,16G2,14B2,14B1,12R2,12R1がそれぞれ対称である。この場合、LEDユニット42Aを用いて画像表示装置を製造する際に、基板上にLEDユニット42AをT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42Aは3色の光を発光する。このため、基板上でのLEDユニット42Aの配列を効率的に行うことができる。さらに、色調が変化しない。 In the LED unit 42A, the P layers 12P1, 12P2, ... 12P2, 12P1 and the N layers 12N, ... 12N are symmetrical with respect to a straight line 18B that is centered in the T direction. Further, in the LED unit 42A, the light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B2, 14B1, 12R2, 12R1 of the three colors are symmetrical with respect to the T direction. In this case, when manufacturing the image display device using the LED unit 42A, even if the LED unit 42A is installed inverted on the substrate with respect to the T direction, the wiring pattern is not shown and the wiring pattern is not changed. The LED unit 42A emits light of three colors without changing the voltage to be applied. Therefore, the LED units 42A can be efficiently arranged on the substrate. Furthermore, the color tone does not change.
 また、図8(C)は、第3のLEDユニット42Bを示す。LEDユニット42Bは、第1の赤色LED40R、第1の青色LED40B、緑色LED10G、第2の青色LED40B1、及び第2の赤色LED40R1をT方向に接合したものである。LEDユニット42Bも、T方向において中心となる直線18Cに関して、P層12P1,14P1,…14P1,12P1及びN層12N,14N,…12Nがそれぞれ対称である。さらに、LEDユニット42Bは、T方向に関して、3色の発光層12R1,14B1,16G1,16G2,14B1,12R1がそれぞれ対称である。この場合、LEDユニット42Bを用いて画像表示装置を製造する際に、基板上にLEDユニット42BをT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42Bは3色の光を発光する。さらに、色調が変化しない。 Further, FIG. 8C shows a third LED unit 42B. The LED unit 42B is obtained by joining a first red LED 40R, a first blue LED 40B, a green LED 10G, a second blue LED 40B1, and a second red LED 40R1 in the T direction. Also in the LED unit 42B, the P layers 12P1, 14P1, ... 14P1, 12P1 and the N layers 12N, 14N, ... 12N are symmetrical with respect to a straight line 18C that is centered in the T direction. Further, in the LED unit 42B, the light emitting layers 12R1, 14B1, 16G1, 16G2, 14B1 and 12R1 of the three colors are respectively symmetrical with respect to the T direction. In this case, when manufacturing the image display device using the LED unit 42B, even if the LED unit 42B is installed inverted on the substrate in the T direction, it is further added to the wiring without changing the wiring pattern (not shown). The LED unit 42B emits three colors of light without changing the voltage to be applied. Furthermore, the color tone does not change.
 また、図8(D)は、第4のLEDユニット44を示す。LEDユニット44は、第1の赤色LED10R、スペーサ部46A、第1の青色LED10B、スペーサ部46B、緑色LED10G、スペーサ部46C、第2の青色LED10B、スペーサ部46D、及び第2の赤色LED10RをT方向に接合したものである。互いに同じ構成で同じ大きさのスペーサ部46A~46Dは、例えばLED10R,10B,10Gを製造する際に使用される基材又はその一部であり、スペーサ部46A~46Dは光を発生しない部分(黒色部又はいわゆるブラックマトリクス部)である。また、第2の青色LED10B、及び第2の赤色LED10Rは、それぞれ第1の青色LED10B、及び第1の赤色LED10Rに対して2つのP層及び2つの発光層の符号が入れ替わっている。青色LED10B(第2発光部)は、P層12P1(第3層)、発光層14B1、N層14N(第4層)、発光層14B2、P層14P2(第3層)をT方向に順に並べた構成である。また、青色LED10Bは、T方向の一端側にP層12P1(第3層)、発光層14B1が配列され、他端側に発光層14B2、P層14P2(第3層)が配列されている。LEDユニット44は、断面が例えば20~100μm程度の幅の正方形で、高さ(長さ)が300~700μm程度の四角柱状である。 Further, FIG. 8D shows a fourth LED unit 44. The LED unit 44 includes a first red LED 10R, a spacer 46A, a first blue LED 10B, a spacer 46B, a green LED 10G, a spacer 46C, a second blue LED 10B, a spacer 46D, and a second red LED 10R. It is joined in the direction. The spacer portions 46A to 46D having the same configuration and the same size are, for example, the base materials or portions thereof used in manufacturing the LEDs 10R, 10B, and 10G, and the spacer portions 46A to 46D are portions that do not generate light Black portion or so-called black matrix portion). Further, in the second blue LED 10B and the second red LED 10R, the codes of the two P layers and the two light emitting layers are switched with respect to the first blue LED 10B and the first red LED 10R, respectively. The blue LED 10B (second light emitting portion) arranges the P layer 12P1 (third layer), the light emitting layer 14B1, the N layer 14N (fourth layer), the light emitting layer 14B2 and the P layer 14P2 (third layer) in order in the T direction. Configuration. In the blue LED 10B, the P layer 12P1 (third layer) and the light emitting layer 14B1 are arranged on one end side in the T direction, and the light emitting layer 14B2 and the P layer 14P2 (third layer) are arranged on the other end side. The LED unit 44 is, for example, a square having a width of about 20 to 100 μm and a height (length) of about 300 to 700 μm.
 LEDユニット44は、T方向において中心となる直線18Dに関して、P層12P1,12P2,…12P1及びN層12N,14N,…12Nがそれぞれ対称である。さらに、LEDユニット44は、T方向に関して、3色の発光層12R1,12R2,14B1,14B2,16G1,16G2,14B2,14B1,12R2,12R1及びスペーサ部46A~46Dがそれぞれ対称である。この場合、LEDユニット44を用いて画像表示装置を製造する際に、基板上にLEDユニット44をT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット44は3色の光を発光する。このため、基板上でのLEDユニット44の配列を効率的に行うことができる。さらに、色調が変化しない。 In the LED unit 44, the P layers 12P1, 12P2, ... 12P1 and the N layers 12N, 14N, ... 12N are symmetrical with respect to a straight line 18D centered in the T direction. Furthermore, in the LED unit 44, the three light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B1, 12R2, 12R1 and the spacer portions 46A to 46D are symmetrical with respect to the T direction. In this case, when manufacturing the image display device using the LED unit 44, even if the LED unit 44 is installed inverted on the substrate in the T direction, the wiring pattern is not shown and the wiring pattern is not changed. The LED unit 44 emits light of three colors without changing the applied voltage. Therefore, the LED units 44 can be efficiently arranged on the substrate. Furthermore, the color tone does not change.
 上述のようにLEDユニット42,42A,42B,44は、それぞれ断面形状が正方形でT方向に細長い直方体状である。なお、LEDユニット42,42A~42C,44の外形を、細長い円柱状、又は細長い多角柱状にしてもよい。また、LEDユニット42,42A~42C,44は、T方向に関して半導体層(P層、N層)及び各色の発光層が対称に配置されていれば、その半導体層(P層、N層)及び各色の発光層の数及び配置は任意である。 As described above, each of the LED units 42, 42A, 42B, 44 has a rectangular cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction. The outer shape of the LED units 42, 42A to 42C, 44 may be an elongated cylindrical shape or an elongated polygonal prism. In addition, if the semiconductor layers (P layer, N layer) and the light emitting layers of each color are symmetrically arranged in the T direction, the LED units 42, 42A to 42C, 44 have the semiconductor layers (P layer, N layer) and The number and arrangement of light emitting layers of each color are arbitrary.
 図9(A)は、それぞれ本実施形態に係るLEDユニット42を用いたフルカラーの画像表示装置20Aを示す。図9(B)は、それぞれ本実施形態に係るLEDユニット42Bを、用いたフルカラーの画像表示装置20Bを示す。図10(A)は、それぞれ本実施形態に係るLEDユニット44を用いたフルカラーの画像表示装置20Cを示す。画像表示装置20A,20B,20Cは、それぞれほぼ長方形の絶縁体よりなる基板22A,22B,22Cの上面に、LEDユニット42,42A,44をマトリクス状に配列して固定した表示部と、多数のLEDユニット42,42A,44のオン/オフ及び光強度を個別に制御する制御部24A,24B,24Cとを備えている。なお、図9(A)、図9(B)、図10(A)及び以下で参照する図面では、説明の便宜上、LEDユニット42,42A,44を実際の大きさよりもかなり拡大して表している。以下、基板22A,22B,22Cの長手方向及び短手方向に沿ってそれぞれX軸及びY軸を取って説明する。本実施形態では、一例として、LEDユニット42,42A,44の接合方向であるT方向がX方向となっている。 FIG. 9A shows a full-color image display device 20A using the LED unit 42 according to the present embodiment. FIG. 9B shows a full-color image display device 20B using the LED unit 42B according to the present embodiment. FIG. 10A shows a full-color image display device 20C using the LED units 44 according to the present embodiment. The image display devices 20A, 20B, and 20C each have a display unit in which LED units 42, 42A, and 44 are arranged and fixed in a matrix on the upper surface of the substrates 22A, 22B, and 22C made of substantially rectangular insulators. The control units 24A, 24B, and 24C individually control the on / off and the light intensity of the LED units 42, 42A, and 44, respectively. 9 (A), 9 (B), 10 (A) and the drawings referred to below, the LED units 42, 42A, 44 are shown in a considerably enlarged size than the actual size for convenience of explanation. There is. Hereinafter, description will be made by taking the X axis and the Y axis along the longitudinal direction and the short direction of the substrates 22A, 22B, 22C, respectively. In the present embodiment, as an example, the T direction which is the bonding direction of the LED units 42, 42A, 44 is the X direction.
 例えば制御部24Cは、各LEDユニット44内の計5個あるLED10R,10B,10G内の任意のLEDの光強度も個別に制御できる。制御部24Aは、それぞれ各LEDユニット42内のLED40R,40R1,40G,40G1,40B,40B1内の発光層の光強度を個別に制御できる。 For example, the control unit 24C can individually control the light intensities of any of the LEDs 10R, 10B, and 10G in total of five in each LED unit 44. The control unit 24A can individually control the light intensities of the light emitting layers in the LEDs 40R, 40R1, 40G, 40G1, 40B, and 40B1 in the respective LED units 42.
 本実施形態では、LEDユニット42,42A,44はそれぞれX軸に平行な直線に沿ってX方向に所定ピッチで配列され、X方向に配列された2列のLEDユニット42,42A,44は、X方向に半ピッチずれて市松模様状に配置されている。LEDユニット42,42A,44のX方向の配列のピッチは、例えばLEDユニット42,42A,44のX方向の長さ(高さ)の1.1倍程度であり、LEDユニット42,42A,44のY方向の配列のピッチは、例えばLEDユニット42,42A,44の断面形状の幅の1.5~2倍程度である。LEDユニット42,42A,44のX方向及びY方向の配列数はそれぞれ200及び1000程度である。なお、LEDユニット42,42A,44の配列及び配列数は任意であり、例えばX方向に配列された1列のLEDユニット42,42A,44をそのままY方向に平行移動する状態の配列としてもよい。 In this embodiment, the LED units 42, 42A, 44 are arranged at a predetermined pitch in the X direction along straight lines parallel to the X axis, and the two rows of LED units 42, 42A, 44 arranged in the X direction are They are arranged in a checkerboard pattern with a half pitch offset in the X direction. The pitch of the arrangement of the LED units 42, 42A, 44 in the X direction is, for example, about 1.1 times the length (height) of the LED units 42, 42A, 44 in the X direction, and the LED units 42, 42A, 44 The pitch of the arrangement in the Y direction is, for example, about 1.5 to 2 times the width of the cross-sectional shape of the LED units 42, 42A, 44. The number of arrangements of the LED units 42, 42A and 44 in the X and Y directions is about 200 and 1000, respectively. The arrangement and the number of arrangements of the LED units 42, 42A, 44 are arbitrary. For example, one row of LED units 42, 42A, 44 arranged in the X direction may be arranged as they are translated in the Y direction. .
 また、図10(B)に示すように、画像表示装置20Cの基板22Cの上面のLEDユニット44が設置される領域には、LEDユニット44のLED10R,10B,10G,10B,10RのP層12P1,12P2,…12P2及びN層12N,14N,…12N(図8(D)参照)に電圧を印加するための配線28A~28I及び28F~28Aが形成されている。また、配線28A~28Iと対応するLED10R,10B,10Gとの間には図2(B)の端子部26A~26Iと同様の加熱によって溶着可能な材料又は導電性の接着剤よりなる端子部(不図示)が形成されている。制御部24Cは、配線28A~28I等に印加する電圧を多数のLEDユニット44内のLED10R,10B,10G内の2つの発光層毎に個別に制御する。これによって、表示部で任意の画像をフルカラーで高精細に表示できる。同様に、画像表示装置20A,20Bにおいても、表示部で任意の画像をフルカラーで表示できる。 Further, as shown in FIG. 10B, the P layer 12P1 of the LEDs 10R, 10B, 10G, 10B, and 10R of the LED unit 44 is provided in the area where the LED unit 44 is installed on the upper surface of the substrate 22C of the image display device 20C. , 12P2,... 12P2 and N layers 12N, 14N,... 12N (see FIG. 8D), wirings 28A-28I and 28F-28A are formed for applying a voltage. In addition, between the wires 28A to 28I and the corresponding LEDs 10R, 10B, and 10G, a terminal portion made of a material or a conductive adhesive that can be welded by heating similar to the terminal portions 26A to 26I of FIG. Not shown). The control unit 24C individually controls voltages applied to the wires 28A to 28I and the like for each of the two light emitting layers in the LEDs 10R, 10B, and 10G in the multiple LED units 44. As a result, it is possible to display an arbitrary image in full color and high definition on the display unit. Similarly, in the image display devices 20A and 20B, any image can be displayed in full color on the display unit.
 次に、本実施形態のLEDユニット44及び画像表示装置20Cの製造方法の一例につき図11のフローチャートを参照して説明する。この製造のためには、第1の実施形態と同様の製造装置(不図示)が使用される。なお、LEDユニット42,42A,42B及び画像表示装置20A、20Bも同様の工程で製造できる。 Next, an example of a method of manufacturing the LED unit 44 and the image display device 20C according to the present embodiment will be described with reference to the flowchart of FIG. For this production, the same production apparatus (not shown) as that of the first embodiment is used. The LED units 42, 42A, 42B and the image display devices 20A, 20B can also be manufactured by the same process.
 まず、図11のステップ102Aにおいて、半導体素子製造プロセスを用いて、図8(D)のLEDユニット44を構成する3種類のLED10R,10B,10Gを製造する
ための円板状の3種類の基材48A,48B,48Cの表面に、図12(A)に示すように、それぞれP層12PA,14PA,16PA、発光層12RA,14BA,16GA、N層12NA,14NA,16NA、発光層12RB,14BB,16GB、及びP層12PB,14PB,16PBをT方向に積層する。これによって、赤色のマイクロLED用の2枚のウエハ46R1,46R2(第1基板)、青色のマイクロLED用の2枚のウエハ46B1,46B2(第2基板)、及び緑色のマイクロLED用の1枚のウエハ46G(第3基板)が製造される。
First, in step 102A of FIG. 11, three disk-like three types of substrates for manufacturing three types of LEDs 10R, 10B and 10G that constitute the LED unit 44 of FIG. 8D using a semiconductor element manufacturing process. As shown in FIG. 12A, P layers 12PA, 14PA, 16PA, light emitting layers 12RA, 14BA, 16GA, N layers 12NA, 14NA, 16NA, light emitting layers 12RB, 14BB on the surfaces of the materials 48A, 48B, 48C. , 16 GB and P layers 12PB, 14PB and 16PB are stacked in the T direction. Thus, two wafers 46R1 and 46R2 (first substrate) for red micro LEDs, two wafers 46B1 and 46B2 (second substrates) for blue micro LEDs, and one wafer for green micro LEDs Wafers 46G (third substrate) are manufactured.
 そして、ステップ130において、図12(B)に示すように、5枚のウエハ46R1,46B1,46G、46B2,46R2を絶縁性の接着剤48A,48B,48C,48Dを介して貼り合わせる。さらに、ステップ132において、図13(A)に示すように、最下部の赤色LED用のウエハ46R1の基材48Aをエッチング等によって分離(除去)して、多数のLEDユニット44の集合体50を製造し、ダイシング装置(不図示)によって集合体50の点線の切断部52を切断する。これによって、図13(B)に示すように、LED10R,10B,10G及びスペーサ部46A~46Dを積層した構成の多数のLEDユニット44が製造できる。ウエハ46B1,46G,46B2,46R2の基材48B,48C,48B,48Aの一部がそれぞれスペーサ部46A~46Dとなっている。このLEDユニット44の製造方法によれば、多層構成のLEDユニット44を効率的に製造できる。 Then, in step 130, as shown in FIG. 12B, the five wafers 46R1, 46B1, 46G, 46B2, 46R2 are bonded together via the insulating adhesives 48A, 48B, 48C, 48D. Further, in step 132, as shown in FIG. 13A, the base 48A of the lowermost red LED wafer 46R1 is separated (removed) by etching or the like to form the aggregate 50 of the large number of LED units 44. It manufactures and the dotted line cutting part 52 of the assembly 50 is cut | disconnected with a dicing apparatus (not shown). As a result, as shown in FIG. 13B, a large number of LED units 44 can be manufactured in which the LEDs 10R, 10B, and 10G and the spacer portions 46A to 46D are stacked. Parts of the substrates 48B, 48C, 48B and 48A of the wafers 46B1, 46G, 46B2 and 46R2 are spacer portions 46A to 46D, respectively. According to the method of manufacturing the LED unit 44, the LED unit 44 having a multilayer structure can be manufactured efficiently.
 そして、ステップ106Aにおいて、図14(A)に示すように、画像表示装置20Cの基板22C、第1のガイド部材30A、及び図16(A)の第2のガイド部材30Bを製造する。基板22Cの上面のLEDユニット44が配置される領域23(例えば基板22CのX方向及びY方向の端部を基準として位置が予め規定されている)には、それぞれ配線28A~28I及び端子部(図10(B)参照)が形成されている。さらに、制御部24Cも製造される。ガイド部材30Aは、ほぼ基板22Cと同じ大きさで、ガイド部材30Aには、図10(A)のLEDユニット44の配列と同じ配列で、LEDユニット44が収容可能な複数の長方形の開口52がマトリクス状に形成されている。開口52は対応するLEDユニット44の側面の形状よりもわずかに大きく形成されている。 Then, in step 106A, as shown in FIG. 14A, the substrate 22C of the image display device 20C, the first guide member 30A, and the second guide member 30B of FIG. 16A are manufactured. Wirings 28A to 28I and terminal portions (terminals (for example, the positions are defined in advance with respect to the end portions of substrate 22C in the X direction and Y direction, respectively) in which LED units 44 on the upper surface of substrate 22C are arranged FIG. 10 (B) is formed. Furthermore, the control unit 24C is also manufactured. The guide member 30A has substantially the same size as the substrate 22C, and the guide member 30A has a plurality of rectangular openings 52 which can be accommodated in the same arrangement as the arrangement of the LED units 44 of FIG. It is formed in a matrix. The openings 52 are formed slightly larger than the shape of the side surface of the corresponding LED unit 44.
 本実施形態では、一例としてガイド部材30Aを基板22に取り付けたままにしておくものとする。なお、LEDユニット44の装着後にガイド部材30Aを基板22から取り外すようにしてもよい。開口52の周辺のガイド部材30Aの厚さは、LEDユニット44の断面の辺の幅程度である。また、ガイド部材30Aの隣接する2つの開口52の間には、図15(B)及び(C)に示すように、開口52にX方向に向かって次第に低くなる傾斜部54A,54Bと、開口52にY方向に向かって次第に低くなる傾斜部54C,54Dとが形成されている。傾斜部54A~54Cによって、LEDユニット44は円滑に開口52に収容される。 In this embodiment, the guide member 30A is attached to the substrate 22 as an example. The guide member 30A may be removed from the substrate 22 after the LED unit 44 is attached. The thickness of the guide member 30A around the opening 52 is about the width of the side of the cross section of the LED unit 44. Further, between the two adjacent openings 52 of the guide member 30A, as shown in FIGS. 15 (B) and 15 (C), inclined portions 54A, 54B which become gradually lower in the X direction in the opening 52, Inclined portions 54C and 54D are formed at 52 gradually decreasing in the Y direction. The LED units 44 are smoothly accommodated in the openings 52 by the inclined portions 54A to 54C.
 そして、ステップ134において、基板22CのLEDユニット44が配置される領域23に、ガイド部材30Aの開口52が対向するように、基板22Cに対してガイド部材30Aの位置決めを行い、図14(B)に示すように、基板22Cの上面にガイド部材30Aを配置して固定する。一例として、後述の第2のガイド部材30Bを使用しない場合には、図3のステップ112~116と同様に、図14(B)に示すように、ガイド部材30Aの上面に多数のLEDユニット44を散布すると、図15(A)に示すように、ガイド部材30Aの多数の開口52内の基板22Cの上面に、それぞれLEDユニット44がその側面が基板22Cの上面に接するように配置される。図15(B)、(C)に示すように、位置B1及びB2にあるLEDユニット44はそれぞれガイド部材30Aの傾斜部54A,54Bを介して対応する開口52内に円滑に収容される。その後、動作は図11のステップ118Aに移行する。 Then, in step 134, the guide member 30A is positioned with respect to the substrate 22C so that the opening 52 of the guide member 30A faces the area 23 where the LED unit 44 of the substrate 22C is disposed, as shown in FIG. As shown in FIG. 5, the guide member 30A is disposed and fixed on the upper surface of the substrate 22C. As an example, in the case where the second guide member 30B described later is not used, as shown in FIG. 14B, as in the steps 112 to 116 of FIG. As shown in FIG. 15A, the LED units 44 are disposed on the upper surface of the substrate 22C in the multiple openings 52 of the guide member 30A such that the side surfaces thereof are in contact with the upper surface of the substrate 22C. As shown in FIGS. 15B and 15C, the LED units 44 at the positions B1 and B2 are smoothly accommodated in the corresponding openings 52 via the inclined portions 54A and 54B of the guide member 30A. Thereafter, the operation proceeds to step 118A of FIG.
 ここでは、ガイド部材30Aの開口52内により効率的にLEDユニット44を収容させるために、図16(A)に示すように、第2のガイド部材30Bを使用する場合につき説明する。第2のガイド部材30Bには、第1のガイド部材30Aの多数の開口52と同じ配列で、基板22Cの上面の法線方向に長手方向が配置されたLEDユニット44が通過可能な多数の開口56が形成されている。言い替えると、開口56は、LEDユニット44の断面形状よりもわずかに大きい形状である。また、第2のガイド部材30Bの上面の開口56に隣接する領域にも、開口56に向かって次第に低下する傾斜部58A,58Bが形成され、第2のガイド部材30Bの底面(基板22Cに対向する面)の開口56に隣接する領域には、傾斜部58A,58Bより小さい傾斜部58C,58D(面取り部でもよい)が形成されている。 Here, in order to accommodate the LED unit 44 more efficiently in the opening 52 of the guide member 30A, as shown in FIG. 16A, the case of using the second guide member 30B will be described. The second guide member 30B has a large number of openings through which the LED units 44 arranged in the same direction as the multiple openings 52 of the first guide member 30A and whose longitudinal direction is disposed in the normal direction of the upper surface of the substrate 22C. 56 are formed. In other words, the opening 56 is a shape slightly larger than the cross-sectional shape of the LED unit 44. In the region adjacent to the opening 56 on the upper surface of the second guide member 30B, inclined portions 58A and 58B that gradually decrease toward the opening 56 are formed, and the bottom surface of the second guide member 30B (facing the substrate 22C) Slopes 58C and 58D (may be chamfers) smaller than the slopes 58A and 58B are formed in the region adjacent to the opening 56).
 このとき、ステップ136において、第2のガイド部材30Bの開口56の-X方向の端部が第1のガイド部材30Aの開口52の-X方向の端部にほぼ一致するように、かつ第2のガイド部材30Bの底面と基板22Cとの間隔がLEDユニット44の高さよりもわずかに小さくなるように、第1のガイド部材30Aに対して第2のガイド部材30Bを位置決めする。この際に、第2のガイド部材30BをX方向、Y方向、及び基板22Cの法線方向に移動する駆動部60(不図示)が使用される。 At this time, in step 136, the end of the opening 56 of the second guide member 30B in the -X direction substantially coincides with the end of the opening 52 of the first guide member 30A in the -X direction, and The second guide member 30B is positioned with respect to the first guide member 30A such that the distance between the bottom surface of the guide member 30B and the substrate 22C is slightly smaller than the height of the LED unit 44. At this time, a driving unit 60 (not shown) that moves the second guide member 30B in the X direction, the Y direction, and the normal direction of the substrate 22C is used.
 次のステップ138において、図16(A)に示すように、基板22C及び第1のガイド部材30Aの上方に配置された第2のガイド部材30Bの上面に、多数のLEDユニット44を散布する。この結果、多数のLEDユニット44は第2のガイド部材30Bの傾斜部58A,58Bを介してそれぞれ開口56を通過する。図16(B)に示すように、開口56を通過したLEDユニット44の端部が、それぞれ第1のガイド部材30Aの開口52の-X方向の端部に接触する。この状態で、ステップ140において、駆動部60によって第2のガイド部材30Bを第1のガイド部材30Aに対して矢印B3で示す+X方向に相対移動する。そして、第2のガイド部材30Bの移動によって、図17(A)に示すように、第1のガイド部材30Aの開口52内のLEDユニット44はそれぞれ時計回りに回転し、最終的に図17(B)に示すように、第1のガイド部材30Aの開口52内のLEDユニット44は、それぞれ側面が基板22Cに接触する姿勢で開口52内に収容される。これによって、基板22Cの上面での多数のLEDユニット44が目標とする配置で配列される。 In the next step 138, as shown in FIG. 16A, a large number of LED units 44 are dispersed on the top surface of the substrate 22C and the second guide member 30B disposed above the first guide member 30A. As a result, the multiple LED units 44 pass through the openings 56 through the inclined portions 58A and 58B of the second guide member 30B. As shown in FIG. 16B, the end of the LED unit 44 which has passed through the opening 56 comes into contact with the end of the opening 52 of the first guide member 30A in the −X direction. In this state, in step 140, the drive unit 60 moves the second guide member 30B relative to the first guide member 30A in the + X direction indicated by the arrow B3. Then, the movement of the second guide member 30B causes the LED units 44 in the opening 52 of the first guide member 30A to rotate clockwise, respectively, as shown in FIG. As shown in B), the LED units 44 in the openings 52 of the first guide member 30A are accommodated in the openings 52 in such a manner that the side surfaces thereof contact the substrate 22C. As a result, a large number of LED units 44 on the top surface of the substrate 22C are arranged in a target arrangement.
 次のステップ118Aにおいて、基板22Cを底面から加熱することで、基板22Cの端子部(不図示)(及び図10(B)の配線28A~28I)がLEDユニット44の対応するLED10R,10B,10GのP層又はN層に溶着し、LEDユニット44が基板22Cの上面に固定される。その後、ステップ124Aにおいて、第2のガイド部材30Bを除去し、LEDユニット44を覆うカバーガラスの設置等を行うことで、画像表示装置20Cが製造される。 In the next step 118A, by heating the substrate 22C from the bottom surface, the terminal portion (not shown) of the substrate 22C (and the wirings 28A to 28I in FIG. 10B) correspond to the corresponding LEDs 10R, 10B, 10G of the LED unit 44. The LED unit 44 is fixed to the top surface of the substrate 22C by welding to the P layer or the N layer. Thereafter, in step 124A, the second guide member 30B is removed, and a cover glass covering the LED unit 44 is installed, etc., whereby the image display device 20C is manufactured.
 このように本実施形態では、第2のガイド部材30Bの上面に多数のLEDユニット44を散布することによって、基板22Cの上面の第1のガイド部材30Aの開口52内に目標とする配置でLEDユニット44を効率的に配列できる。この際に、LEDユニット44はT方向に関してP層12P1,12P2,…12P1及びN層12N,14N,…12Nが対称であるため、ガイド部材30Aの開口52に対してLEDユニット44がT方向(X方向)に反転して収容されたとしても、配線28A~28Iに印加する電圧を変更することなく、LEDユニット44のLED10R,10B,10Gは同じように発光可能である。このため、より効率的に画像表示装置20を製造できる。 As described above, in the present embodiment, the LEDs are arranged in a target arrangement in the opening 52 of the first guide member 30A on the upper surface of the substrate 22C by spraying the multiple LED units 44 on the upper surface of the second guide member 30B. The units 44 can be arranged efficiently. At this time, since the LED units 44 have symmetrical P layers 12P1, 12P2,... 12P1 and N layers 12N, 14N,. Even in the case of being inverted and accommodated in the X direction, the LEDs 10R, 10B, and 10G of the LED unit 44 can emit light in the same manner without changing the voltage applied to the wirings 28A to 28I. Therefore, the image display device 20 can be manufactured more efficiently.
 さらに、LEDユニット44は3色の発光層12R1,12R2,…12R1もT方向に関して対称であるため、ガイド部材30Aの開口52に対してLEDユニット44がT方向に反転して収容されたとしても、画像表示装置20Cの色調が変化しない。
 上述のように、本実施形態のLEDユニット44は、それぞれ赤色光、青色光、又は緑色光を発光する複数の発光層12R1,12R2,14B1,14B2,16G1,16G2と、電圧が付加されると発光層12R1,…16G2で光が発光するよう発光層12R1,…16G2に接合された複数のP層12P1,12P2等及びN層12N,14N等(半導体層)と、を備え、複数の発光層12R1等と、複数のP層12P1等及びN層12N等(半導体層)とがT方向(接合方向)に関して順に並んで接合された発光素子である。
Further, since the three light emitting layers 12R1, 12R2, ... 12R1 of the LED unit 44 are also symmetrical with respect to the T direction, even if the LED unit 44 is accommodated in the T direction with respect to the opening 52 of the guide member 30A. , The color tone of the image display device 20C does not change.
As described above, when a voltage is applied to the LED unit 44 of the present embodiment, the plurality of light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2 that emit red light, blue light, or green light, respectively. A plurality of P layers 12P1 and 12P2 etc. and N layers 12N and 14N etc. (semiconductor layers) joined to the light emitting layers 12R1 to 16G2 so that light is emitted by the light emitting layers 12R1 to 16G2, and a plurality of light emitting layers This is a light emitting element in which 12R1 etc., and a plurality of P layers 12P1 etc. and N layers 12N etc. (semiconductor layers) are joined in order in the T direction (junction direction).
 LEDユニット44を用いて画像表示装置20Cを製造する場合、LEDユニット44を例えば基板22C上のガイド部材30A又は30Bの上面に散乱させるのみで、LEDユニット44を目標とする配置に効率的に配列できる。さらに、LEDユニット44は3色の発光層、及び半導体層がそれぞれT方向に関して対称であるため、LEDユニット44を基板22C上でT方向に反転して設置しても、配線等を変更することなく、同じ色調でLEDユニット44の3色の光を発光させることができる。 When the image display device 20C is manufactured using the LED unit 44, the LED units 44 are efficiently arranged in a target arrangement, for example, only by scattering the LED units 44 on the upper surface of the guide member 30A or 30B on the substrate 22C. it can. Furthermore, since the light emitting layers and the semiconductor layers of the three colors of the LED unit 44 are respectively symmetrical with respect to the T direction, the wiring etc. should be changed even if the LED unit 44 is installed in the T direction on the substrate 22C. Instead, the three color lights of the LED unit 44 can be emitted in the same color tone.
 また、本実施形態の画像表示装置20Cは、LEDユニット44と、LEDユニット44の発光層12R1,12R2等へ電力を供給する配線28A~28Iが形成され、LEDユニット44が接合される基板22Cと、を備えている。画像表示装置20Cは、基板22C上でのLEDユニット44の配列を効率的に行うことができるため、効率的に製造できる。 Further, in the image display device 20C of the present embodiment, the LED unit 44 and the wirings 28A to 28I for supplying power to the light emitting layers 12R1 and 12R2 of the LED unit 44 are formed, and the substrate 22C to which the LED unit 44 is joined And. The image display device 20C can be efficiently manufactured because the LED units 44 can be efficiently arranged on the substrate 22C.
 また、本実施形態のLEDユニット44の製造方法は、3色のLED10R,10B,10Gをそれぞれ形成するように、発光層12R1,12R2等と、P層12PA,12PB等及びN層12NA等とをT方向に関して並べて接合して赤色LED、青色LED、及び緑色LEDのウエハ46R1,46B1,46Gを製造するステップ102Aと、ウエハ46R1,46B1,46GをT方向に並べて絶縁性の接着剤48A,48Bを介して貼り合わせるステップ130と、貼り合わせたウエハ46R1,46B1,46GをT方向と直交する方向に関して切り分けるステップ132とを有する。この製造方法によれば、多層で3色のLEDユニット44を効率的に高精度に製造できる。 In the method of manufacturing the LED unit 44 according to this embodiment, the light emitting layers 12R1 and 12R2 and the like, the P layers 12PA and 12PB and the N layer 12NA and the like are formed to form the three- color LEDs 10R, 10B and 10G, respectively. Step 102A of manufacturing wafers 46R1, 46B1 and 46G of red LEDs, blue LEDs and green LEDs by arranging and bonding in the direction of T, and insulating adhesives 48A and 48B by arranging the wafers 46R1, 46B1 and 46G in the direction of T Step 130 of bonding is performed, and step 132 of dividing the bonded wafers 46R1, 46B1 and 46G in the direction orthogonal to the T direction is performed. According to this manufacturing method, the multi-layered three-color LED unit 44 can be efficiently manufactured with high accuracy.
 また、本実施形態の画像表示装置20Cの製造方法は、基板22C上において、複数のLEDユニット44を散乱するステップ138と、散乱されたLEDユニット44と基板22Cとを加熱による溶着によって接合するステップ118Aとを含む。この製造方法によれば、LEDユニット44の散乱によって効率的にLEDユニット44を目標とする配置で配列できるため、画像表示装置20Cを効率的に製造できる。 In the method of manufacturing the image display device 20C according to the present embodiment, the step 138 of scattering the plurality of LED units 44 on the substrate 22C, and the step of bonding the scattered LED units 44 and the substrate 22C by welding. And 118A. According to this manufacturing method, the scattering of the LED units 44 can efficiently arrange the LED units 44 in the target arrangement, so that the image display device 20C can be manufactured efficiently.
 なお、上述の実施形態では以下のような変形が可能である。
 まず、上述の実施形態では、LEDユニット44は3色で発光するが、LEDユニット44は少なくとも1色で発光してもよい。また、LEDユニット44は、白色光を発生するマイクロLEDを有してもよい。
In the above embodiment, the following modifications are possible.
First, in the above embodiment, the LED unit 44 emits light in three colors, but the LED unit 44 may emit light in at least one color. Also, the LED unit 44 may have a micro LED that generates white light.
 また、上述の実施形態において、図10(B)に点線で示すように、基板22CのLEDユニット44が設置される領域に吸引孔22Caを形成し、LEDユニット44を基板22Cの端子部等に固定(溶着)する際に、不図示の真空ポンプによって、LEDユニット44を吸引孔22Caを介して吸着していてもよい。これによって、より安定にLEDユニット44を基板22Cに固定できる。
 また、上述の実施形態では、発光部は発光ダイオードであるが、発光部は半導体レーザ等であってもよい。
Further, in the above embodiment, as shown by the dotted line in FIG. 10B, the suction holes 22Ca are formed in the area of the substrate 22C where the LED unit 44 is installed, and the LED unit 44 is used as a terminal portion of the substrate 22C. When fixing (welding), the LED unit 44 may be adsorbed via the suction holes 22Ca by a vacuum pump (not shown). Thereby, the LED unit 44 can be fixed to the substrate 22C more stably.
Moreover, in the above-mentioned embodiment, although a light emission part is a light emitting diode, a light emission part may be a semiconductor laser etc.
 10R,40R…赤色LED、10B,40B…青色LED、10G,40G…緑色LED、12P1,12P2,14P1,14P2,16P1,16P2…P層、12N,14N,16N…N層、12R1,12R2,14B1,14B2,16G1,16G2…発光層、20,20A~20C…画像表示装置、22,22A~22C…基板、26A~26I…端子部、28A~28I…配線、30,30A,30B…ガイド部材、42,42A,42B,44…LEDユニット、46R1,46R2…赤色LEDのウエハ、46B1,46B2…青色LEDのウエハ、46G…緑色LEDのウエハ 10R, 40R ... red LED, 10B, 40B ... blue LED, 10G, 40G ... green LED, 12P1, 12P2, 14P1, 14P2, 16P1, 16P2 ... P layer, 12N, 14N, 16N ... N layer, 12R1, 12R2, 14B1 , 14B2, 16G1, 16G2 ... light emitting layer, 20, 20A to 20C ... image display device 22, 22A to 22C ... substrate, 26A to 26I ... terminal portion, 28A to 28I ... wiring, 30, 30A, 30B ... guide member, 42, 42A, 42B, 44: LED unit, 46R1, 46R2: wafer of red LED, 46B1, 46B2: wafer of blue LED, 46G: wafer of green LED

Claims (28)

  1.  それぞれ光を発光する複数の発光層と、
     電圧が付加されると複数の前記発光層で前記光が発光するよう複数の前記発光層に接合された複数の半導体層と、を備え、
     複数の前記発光層と複数の前記半導体層とが所定方向に関して順に並んで接合された発光素子。
    A plurality of light emitting layers each emitting light;
    And a plurality of semiconductor layers joined to the plurality of light emitting layers such that the light is emitted in the plurality of light emitting layers when a voltage is applied,
    A light emitting element in which a plurality of the light emitting layers and a plurality of the semiconductor layers are joined in order in a predetermined direction.
  2.  複数の前記半導体層の数は、複数の前記発光層の数よりも多い請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the number of the plurality of semiconductor layers is larger than the number of the plurality of light emitting layers.
  3.  複数の前記半導体層の数は、複数の前記発光層の数よりも1つ多い請求項1又は2に記載の発光素子。 The light emitting device according to claim 1, wherein the number of the plurality of semiconductor layers is one more than the number of the plurality of light emitting layers.
  4.  複数の前記半導体層は、伝導形式が互いに異なる第1半導体層及び第2半導体層を有し、
     前記第1半導体層及び前記第2半導体層は、それぞれ前記所定方向に関して対称に配列される請求項2又は3に記載の発光素子。
    The plurality of semiconductor layers have a first semiconductor layer and a second semiconductor layer different in conductivity type from each other,
    The light emitting device according to claim 2, wherein the first semiconductor layer and the second semiconductor layer are arranged symmetrically with respect to the predetermined direction.
  5.  複数の前記半導体層は、伝導形式が互いに異なる第1半導体層及び第2半導体層を有し、
     複数の前記発光層と複数の前記半導体層とは、前記所定方向に関し、前記第1半導体層、前記発光層、前記第2半導体層、前記発光層、及び前記第1半導体層の順に配列された発光部を形成する請求項2から4の何れか一項に記載の発光素子。
    The plurality of semiconductor layers have a first semiconductor layer and a second semiconductor layer different in conductivity type from each other,
    The plurality of light emitting layers and the plurality of semiconductor layers are arranged in the order of the first semiconductor layer, the light emitting layer, the second semiconductor layer, the light emitting layer, and the first semiconductor layer in the predetermined direction. The light emitting element as described in any one of Claim 2 to 4 which forms a light emission part.
  6.  前記発光部は、前記第2半導体層と前記発光層との間に、前記第2半導体層をさらに有する請求項5に記載の発光素子。 The light emitting device according to claim 5, wherein the light emitting unit further includes the second semiconductor layer between the second semiconductor layer and the light emitting layer.
  7.  複数の前記発光層は、互いに異なる波長の光を発光する第1発光層及び第2発光層を有し、
     前記第1半導体層は、前記第1発光層に接合される第1層及び前記第2発光層に接合される第3層を有し、前記第2半導体層は、前記第1発光層に接合される第2層及び前記第2発光層に接合される第4層を有し、
     前記発光部は、それぞれ第1発光層及び第2発光層を含む第1発光部及び第2発光部を有し、
     前記第1発光層及び前記第2発光層は、前記所定方向に関して対称に配列される請求項4から6の何れか一項に記載の発光素子。
    The plurality of light emitting layers have a first light emitting layer and a second light emitting layer that emit light of different wavelengths,
    The first semiconductor layer has a first layer joined to the first light emitting layer and a third layer joined to the second light emitting layer, and the second semiconductor layer is joined to the first light emitting layer And a fourth layer bonded to the second light emitting layer,
    The light emitting unit includes a first light emitting unit and a second light emitting unit including a first light emitting layer and a second light emitting layer, respectively.
    The light emitting device according to any one of claims 4 to 6, wherein the first light emitting layer and the second light emitting layer are arranged symmetrically with respect to the predetermined direction.
  8.  複数の前記発光層は、互いに異なる波長の光を発光する第1発光層及び第2発光層を有し、
     前記第1半導体層は、前記第1発光層に接合される第1層、及び前記第2発光層に接合される第3層を有し、前記第2半導体層は、前記第1発光層に接合される第2層、及び前記第2発光層に接合される第4層を有し、
     前記発光部は、それぞれ第1発光層及び第2発光層を含む第1発光部及び第2発光部を有し、
     前記第2発光部は、前記所定方向に関して、前記第3層、前記第2発光層、前記第4層、前記第2発光層、及び前記第3層を順に並べて配列して形成される請求項4から6の何れか一項に記載の発光素子。
    The plurality of light emitting layers have a first light emitting layer and a second light emitting layer that emit light of different wavelengths,
    The first semiconductor layer has a first layer joined to the first light emitting layer, and a third layer joined to the second light emitting layer, and the second semiconductor layer is formed on the first light emitting layer. A second layer to be joined, and a fourth layer to be joined to the second light emitting layer,
    The light emitting unit includes a first light emitting unit and a second light emitting unit including a first light emitting layer and a second light emitting layer, respectively.
    The second light emitting unit is formed by arranging the third layer, the second light emitting layer, the fourth layer, the second light emitting layer, and the third layer in order in the predetermined direction. The light-emitting element according to any one of 4 to 6.
  9.  前記第2発光部は、前記所定方向に関して、一端側に前記第3層及び前記第2発光層が配列され、他端側に前記第2発光層及び前記第3層が配列される請求項8に記載の発光素子。 In the second light emitting unit, the third layer and the second light emitting layer are arranged on one end side with respect to the predetermined direction, and the second light emitting layer and the third layer are arranged on the other end side. The light emitting element as described in.
  10.  複数の前記発光層は、前記第1及び第2発光層と異なる波長の光を発光する第3発光層を有し、
     前記第1半導体層は、前記第3発光層に接合される第5層を有し、前記第2半導体層は、前記第3発光層に接合される第6層を有し、
     前記発光部は、前記第3発光層を含む第3発光部を有し、
     前記第1発光部、前記第2発光部、及び前記第3発光部は、前記所定方向に関して対称に配列される請求項8又は9に記載の発光素子。
    The plurality of light emitting layers have a third light emitting layer that emits light of a wavelength different from that of the first and second light emitting layers,
    The first semiconductor layer has a fifth layer joined to the third light emitting layer, and the second semiconductor layer has a sixth layer joined to the third light emitting layer.
    The light emitting unit includes a third light emitting unit including the third light emitting layer,
    The light emitting device according to claim 8, wherein the first light emitting unit, the second light emitting unit, and the third light emitting unit are arranged symmetrically with respect to the predetermined direction.
  11.  前記発光部は、対応する前記発光層において発光する前記光の色に応じて、大きさが異なる請求項7から10の何れか一項に記載の発光素子。 The light emitting element according to any one of claims 7 to 10, wherein the size of the light emitting unit differs according to the color of the light emitted in the corresponding light emitting layer.
  12.  前記第1又は第2発光部の少なくとも一方は、円もしくは多角形の底面と、前記所定方向の高さとを有する円柱もしくは多角柱である請求項7から11の何れか一項に記載の発光素子。 The light emitting device according to any one of claims 7 to 11, wherein at least one of the first and second light emitting units is a cylinder or a polygonal prism having a bottom of a circle or a polygon and a height in the predetermined direction. .
  13.  前記第1又は第2発光部の少なくとも一方は、対応する前記発光層において発光する前記光の色に応じて、前記底面又は前記高さの少なくとも一方が異なる請求項12に記載の発光素子。 The light emitting device according to claim 12, wherein at least one of the first and second light emitting units has at least one of the bottom surface and the height different depending on a color of the light emitted in the corresponding light emitting layer.
  14.  複数の前記発光層は、緑色の波長の光を発光する緑色発光層を有し、前記所定方向に関して前記緑色発光層が中心に配列される請求項1から13の何れか一項に記載の発光素子。 The light emission according to any one of claims 1 to 13, wherein the plurality of light emitting layers have a green light emitting layer that emits light of a green wavelength, and the green light emitting layer is aligned at the center with respect to the predetermined direction. element.
  15.  請求項1から14の何れか一項に記載の発光素子と、
     前記発光層へ電力を供給する配線が形成され、前記発光素子が接合される基板と、を備える表示装置。
    A light emitting device according to any one of claims 1 to 14,
    A wiring on which power is supplied to the light emitting layer is formed, and a substrate to which the light emitting element is bonded.
  16.  前記発光素子と前記配線とが接続される所定位置に前記発光素子を誘導するガイド部、を備える請求項15に記載の表示装置。 The display device according to claim 15, further comprising: a guide unit that guides the light emitting element at a predetermined position where the light emitting element and the wiring are connected.
  17.  前記ガイド部は、前記発光素子の側面が前記基板と接触するように形成される請求項16に記載の表示装置。 The display device according to claim 16, wherein the guide portion is formed such that a side surface of the light emitting element is in contact with the substrate.
  18.  前記ガイド部は、前記発光素子の底面が前記基板と接触するように形成される請求項16に記載の表示装置。 The display device according to claim 16, wherein the guide portion is formed such that a bottom surface of the light emitting element is in contact with the substrate.
  19.  請求項1から14の何れか一項に記載の発光素子を製造する製造方法であって、
     前記発光素子を形成するよう複数の前記発光層と複数の前記半導体層とを前記所定方向に関して並べて接合することと、
     接合された前記発光素子を、前記所定方向と交差する方向に関し、切り分けることと、を含む発光素子の製造方法。
    It is a manufacturing method which manufactures a light emitting element according to any one of claims 1 to 14,
    Arranging and joining the plurality of light emitting layers and the plurality of semiconductor layers in the predetermined direction so as to form the light emitting element;
    And D. cutting the joined light emitting elements in a direction intersecting with the predetermined direction.
  20.  複数の前記発光層は、互いに異なる波長の光を発光する第1発光層、第2発光層、及び第3発光層を有し、
     前記半導体層は、それぞれ前記第1発光層、前記第2発光層、及び前記第3発光層に接合される複数の層を有し、
     前記接合することは、
     前記第1発光層、前記第2発光層、及び前記第3発光層と、対応する前記半導体層の層とを接合して第1発光部、第2発光部、及び第3発光部が形成された第1基板、第2基板、及び第3基板を製造することと、
     前記第1基板、前記第2基板、及び前記第3基板を前記所定方向に関して並べて絶縁性の接着剤を介して貼り合わせることと、を含む請求項19に記載の発光素子の製造方法。
    The plurality of light emitting layers have a first light emitting layer that emits light of different wavelengths, a second light emitting layer, and a third light emitting layer.
    The semiconductor layer has a plurality of layers joined to the first light emitting layer, the second light emitting layer, and the third light emitting layer, respectively.
    Said joining is
    A first light emitting portion, a second light emitting portion, and a third light emitting portion are formed by joining the first light emitting layer, the second light emitting layer, the third light emitting layer, and the corresponding layers of the semiconductor layer. Manufacturing a first substrate, a second substrate, and a third substrate;
    20. The method according to claim 19, further comprising: aligning the first substrate, the second substrate, and the third substrate in the predetermined direction, and bonding the first substrate, the second substrate, and the third substrate with an insulating adhesive.
  21.  請求項15から18の何れか一項に記載の表示装置を製造する製造方法であって、
     前記基板上において、複数の前記発光素子を散乱することと、
     散乱された前記発光素子と前記基板とを接合することと、を含む表示装置の製造方法。
    A method of manufacturing a display device according to any one of claims 15 to 18, wherein
    Scattering a plurality of the light emitting elements on the substrate;
    Bonding the scattered light emitting element and the substrate.
  22.  前記散乱することは、互いに異なる大きさを有する複数の前記発光素子を前記基板上に散乱することを含む請求項21に記載の表示装置の製造方法。 The method according to claim 21, wherein the scattering includes scattering a plurality of the light emitting elements having different sizes on the substrate.
  23.  前記発光素子と前記配線とが接続される所定位置に前記発光素子を収容可能な複数の開口が形成されたガイド部を前記基板に沿って配置することを含み、
     前記散乱することは、前記ガイド部の複数の前記開口にそれぞれ前記発光素子が収容されるように、複数の前記発光素子を前記ガイド部上に散乱することを含む請求項21又は22に記載の表示装置の製造方法。
    And disposing, along the substrate, a guide portion in which a plurality of openings capable of accommodating the light emitting element are formed at predetermined positions where the light emitting element and the wiring are connected,
    The scattering according to claim 21 or 22, wherein the scattering includes scattering the plurality of light emitting elements on the guide portion such that the light emitting elements are respectively accommodated in the plurality of openings of the guide portion. Method of manufacturing a display device
  24.  前記散乱することは、前記所定位置に位置する前記発光素子がずれないように前記基板が有する吸引孔を介して、前記基板上に前記発光素子を固定することを含む請求項23に記載の表示装置の製造方法。 The display according to claim 23, wherein the scattering includes fixing the light emitting element on the substrate via a suction hole which the substrate has so that the light emitting element located at the predetermined position does not shift. Device manufacturing method.
  25.  前記ガイド部は、前記発光素子の底面が前記基板と接触するように前記発光素子を誘導する第1ガイド部と、前記第1ガイド部により前記底面と前記基板とが接触した前記発光素子の側面が前記基板と接触するように移動可能で前記開口が形成された第2ガイド部とを有し、
     前記散乱することは、前記第1ガイド部を介して前記発光素子の前記底面が前記基板と接触するように前記発光素子を前記第2ガイド部の前記開口に誘導することと、前記発光素子の側面が前記基板と接触するように前記第2ガイド部を移動させることと、を含む請求項23又は24に記載の表示装置の製造方法。
    The guide portion is a first guide portion that guides the light emitting element such that the bottom surface of the light emitting element contacts the substrate, and the side surface of the light emitting element in which the bottom surface contacts the substrate by the first guide portion And a second guide portion movable to contact the substrate and having the opening formed therein;
    In the scattering, guiding the light emitting element to the opening of the second guide portion such that the bottom surface of the light emitting element is in contact with the substrate through the first guide portion; 25. The method according to claim 23, further comprising moving the second guide portion such that a side surface contacts the substrate.
  26.  前記発光素子と前記基板とが接合された後、前記ガイド部を前記基板上から取り除くことを含む請求項23から25の何れか一項に記載の表示装置の製造方法。 The method for manufacturing a display device according to any one of claims 23 to 25, further comprising removing the guide portion from above the substrate after the light emitting element and the substrate are joined.
  27.  前記接合することは、前記発光素子と前記基板とを熱処理により接合することを含む請求項21から26の何れか一項に記載の表示装置の製造方法。 The method for manufacturing a display device according to any one of claims 21 to 26, wherein the bonding includes bonding the light emitting element and the substrate by heat treatment.
  28.  前記散乱することは、イオナイザにより除電された前記発光素子を前記基板上に散乱することを含む請求項21から27の何れか一項に記載の表示装置の製造方法。 The method for manufacturing a display device according to any one of claims 21 to 27, wherein the scattering includes scattering the light emitting element which has been neutralized by an ionizer onto the substrate.
PCT/JP2018/042613 2017-11-27 2018-11-19 Light-emitting element and display device, and method for manufacturing same WO2019102955A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880076745.2A CN111418077A (en) 2017-11-27 2018-11-19 Light emitting element, display device and manufacturing method thereof
JP2019555292A JPWO2019102955A1 (en) 2017-11-27 2018-11-19 Light emitting element and display device, and their manufacturing method
KR1020207015071A KR20200088347A (en) 2017-11-27 2018-11-19 Light-emitting element and display device, and manufacturing method thereof
JP2023127536A JP2023156400A (en) 2017-11-27 2023-08-04 Light emitting element and display, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226750 2017-11-27
JP2017-226750 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019102955A1 true WO2019102955A1 (en) 2019-05-31

Family

ID=66630957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042613 WO2019102955A1 (en) 2017-11-27 2018-11-19 Light-emitting element and display device, and method for manufacturing same

Country Status (5)

Country Link
JP (2) JPWO2019102955A1 (en)
KR (1) KR20200088347A (en)
CN (1) CN111418077A (en)
TW (2) TW202046382A (en)
WO (1) WO2019102955A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220054480A (en) * 2020-10-23 2022-05-03 삼성디스플레이 주식회사 Light emitting element and display device comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143678A (en) * 1983-12-29 1985-07-29 Fujitsu Ltd Light emitting transistor
JPH08172219A (en) * 1994-12-20 1996-07-02 Sharp Corp Multi-color led element, led display unit using the element and manufacture of the element
JP2003216052A (en) * 2002-01-17 2003-07-30 Sony Corp Method for arraying element, method for manufacturing display device and display device
US20060220030A1 (en) * 2005-03-16 2006-10-05 Ra-Min Tain Lighting device with flipped side-structure of LEDs
JP2008257420A (en) * 2007-04-04 2008-10-23 Hallys Corp Method for manufacturing electronic component and semiconductor device
JP2009510762A (en) * 2005-09-30 2009-03-12 ソウル オプト デバイス カンパニー リミテッド Light emitting device having vertically stacked light emitting diodes
US20110273410A1 (en) * 2010-05-07 2011-11-10 Snu R&Db Foundation Led display apparatus having active devices and fabrication method thereof
JP2014204118A (en) * 2013-04-09 2014-10-27 東貝光電科技股▲ふん▼有限公司 One-chip, two-light-source light emitting element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652806B2 (en) * 1986-03-31 1994-07-06 圭弘 浜川 Method for manufacturing semiconductor light emitting device
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
JPH11163397A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led element and its manufacture
JP3829594B2 (en) * 2000-06-30 2006-10-04 セイコーエプソン株式会社 Device mounting method and optical transmission device
JP3890921B2 (en) 2001-06-05 2007-03-07 ソニー株式会社 Element arrangement method and image display device manufacturing method
JP3844061B2 (en) * 2002-01-16 2006-11-08 ソニー株式会社 Electronic component placement method and apparatus
JP2006173326A (en) * 2004-12-15 2006-06-29 Nippon Leiz Co Ltd Optical source apparatus
TWI279165B (en) * 2005-08-09 2007-04-11 Au Optronics Corp White organic light emitting diode
JP2007227682A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light emitting device
KR101191869B1 (en) * 2011-06-08 2012-10-16 주식회사 프로텍 Method of manufacturing led device
TWI493751B (en) * 2012-03-30 2015-07-21 華夏光股份有限公司 Stacked bonded light emitting diode
TW201344955A (en) * 2012-04-27 2013-11-01 Phostek Inc Light emitting diode device
US10510973B2 (en) * 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
CN105977392A (en) * 2016-05-24 2016-09-28 深圳市华星光电技术有限公司 Three-primary-color white-light OLED device structure, electroluminescent device, and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143678A (en) * 1983-12-29 1985-07-29 Fujitsu Ltd Light emitting transistor
JPH08172219A (en) * 1994-12-20 1996-07-02 Sharp Corp Multi-color led element, led display unit using the element and manufacture of the element
JP2003216052A (en) * 2002-01-17 2003-07-30 Sony Corp Method for arraying element, method for manufacturing display device and display device
US20060220030A1 (en) * 2005-03-16 2006-10-05 Ra-Min Tain Lighting device with flipped side-structure of LEDs
JP2009510762A (en) * 2005-09-30 2009-03-12 ソウル オプト デバイス カンパニー リミテッド Light emitting device having vertically stacked light emitting diodes
JP2008257420A (en) * 2007-04-04 2008-10-23 Hallys Corp Method for manufacturing electronic component and semiconductor device
US20110273410A1 (en) * 2010-05-07 2011-11-10 Snu R&Db Foundation Led display apparatus having active devices and fabrication method thereof
JP2014204118A (en) * 2013-04-09 2014-10-27 東貝光電科技股▲ふん▼有限公司 One-chip, two-light-source light emitting element

Also Published As

Publication number Publication date
TW202046382A (en) 2020-12-16
JPWO2019102955A1 (en) 2021-01-14
CN111418077A (en) 2020-07-14
TWI697035B (en) 2020-06-21
JP2023156400A (en) 2023-10-24
KR20200088347A (en) 2020-07-22
TW201937556A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
CN113261118B (en) Light emitting element package, display device, and light emitting element package module
US10615313B2 (en) Display device
TWI515927B (en) Semiconductor light emitting device and method for manufacturing same
TWI453944B (en) Sub-mount, light emitting device including sub-mount and methods of manufacturing such sub-mount and/or light emitting device
JP2021504959A (en) Light emitting diode for display and display device having it
KR20190006176A (en) High-density pixel type multi-LED, device including the same, and manufacturing method thereof
JP5408414B2 (en) Light emitting module
KR102385059B1 (en) Light-emitting module and display device comprising same
US10381400B2 (en) Method of manufacturing light emitting device
US10658423B2 (en) Method of manufacturing light emitting device
JP2009302542A (en) Light emitting element, light emitting device including light emitting element, method for manufacturing light emitting element, and method for manufacturing light emitting device including light emitting element
KR20220063118A (en) Multi-color LED pixel unit and micro-LED display panel
JP2023156400A (en) Light emitting element and display, and method for manufacturing the same
KR20220061911A (en) Multi-color LED pixel unit and micro-LED display panel
KR20210116456A (en) Light emitting element transfer method for display and display device
JP2015050270A (en) Semiconductor light-emitting device
JP2017112166A (en) Semiconductor light-emitting element array and vehicle lighting fixture
KR20220061913A (en) Multi-color LED pixel unit and micro-LED display panel
JP2005072323A (en) Semiconductor device
JP5131549B2 (en) Self-luminous display device, manufacturing method thereof, and illumination device
JP2012502489A (en) LED projector
WO2021049211A1 (en) Method for manufacturing display device, and display device
KR20110057084A (en) Illumination means
US9478587B1 (en) Multi-layer circuit board for mounting multi-color LED chips into a uniform light emitter
JP7389331B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881362

Country of ref document: EP

Kind code of ref document: A1