JP2023156400A - Light emitting element and display, and method for manufacturing the same - Google Patents

Light emitting element and display, and method for manufacturing the same Download PDF

Info

Publication number
JP2023156400A
JP2023156400A JP2023127536A JP2023127536A JP2023156400A JP 2023156400 A JP2023156400 A JP 2023156400A JP 2023127536 A JP2023127536 A JP 2023127536A JP 2023127536 A JP2023127536 A JP 2023127536A JP 2023156400 A JP2023156400 A JP 2023156400A
Authority
JP
Japan
Prior art keywords
light emitting
substrate
layer
manufacturing
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023127536A
Other languages
Japanese (ja)
Inventor
晃一 坂田
Koichi Sakata
義隆 小菅
Yoshitaka KOSUGE
洋佑 岩▲崎▼
Yosuke Iwasaki
靖和 藤岡
Yasukazu Fujioka
篤史 原
Atsushi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2023156400A publication Critical patent/JP2023156400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)

Abstract

To efficiently array light-emitting elements and manufacture image display.SOLUTION: A red light-emitting diode comprises a plurality of light-emitting layers each emitting red light, a plurality of P layers and N layers bonded to the light-emitting layers so that red light is emitted by the light-emitting layers when voltage is applied, the plurality of light-emitting layers and the plurality of P layers and N layers being bonded in sequence with respect to the T direction. When manufacturing an image display using a red light-emitting diode, the red light-emitting diode is scattered on the top surface of a guide member placed on the top surface of a substrate.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子及び表示装置、並びに発光素子及び表示装置の製造方法に関する。 The present invention relates to a light emitting element and a display device, and a method for manufacturing the light emitting element and display device.

発光ダイオード(Light Emitting Diode: LED)を用いる画像表示装置は、多数の小型の発光ダイオードであるいわゆるマイクロ発光ダイオード(以下、マイクロLEDという)をマトリクス状に配列して組み立てられる。従来、赤色、青色、及び緑色の発光ダイオードは、互いに基材及びこの上に成膜する材料が異なっているため、それら3色の発光ダイオードを同一の基材上に半導体素子製造プロセスを用いて形成するのは困難である。このため、フルカラーの画像表示装置を製造する場合、それら3色の多数のマイクロLEDを個別に製造した後、それらのマイクロLEDを個別に所定の配置で配列する必要があった。その配列方法の一例として、例えば、特許文献1が提案されている。 An image display device using light emitting diodes (LEDs) is assembled by arranging a large number of small light emitting diodes, so-called micro light emitting diodes (hereinafter referred to as micro LEDs) in a matrix. Conventionally, red, blue, and green light-emitting diodes have different base materials and materials deposited on them, so these three color light-emitting diodes have been fabricated on the same base material using a semiconductor device manufacturing process. It is difficult to form. For this reason, when manufacturing a full-color image display device, it is necessary to individually manufacture a large number of micro-LEDs of these three colors and then individually arrange the micro-LEDs in a predetermined arrangement. As an example of the arrangement method, for example, Patent Document 1 has been proposed.

特開2002-368282号公報Japanese Patent Application Publication No. 2002-368282

第1の態様によれば、第1の色の光を発光する複数の第1発光層と、前記第1の色とは異なる第2の色の光を発光する複数の第2発光層とを有する発光層と、前記第1発光層および前記第2発光層のそれぞれを所定方向に挟むように設けられる複数の半導体層と、を備え、前記複数の第1発光層と前記複数の第2発光層と前記複数の半導体層のそれぞれが、前記所定方向の中心線に関して線対称になるよう順に並んで接合された、発光素子が提供される。
第2の態様によれば、それぞれ異なる波長の光を発光する複数の第1発光層と複数の第2発光層とを有する発光層と、電圧が付加されると前記発光層で前記光が発光するよう前記発光層に接合された複数の半導体層と、を備え、複数の前記半導体層は、所定方向に関して、前記第1発光層を挟むように設けられ、伝導形式が互いに異なる第1半導体層及び第2半導体層を有し、複数の前記半導体層は、前記所定方向に関して、前記第2発光層を挟むように設けられ、伝導形式が互いに異なる第3半導体層及び第4半導体層を有し、前記発光層と複数の前記半導体層とは、前記所定方向に関して、前記第1半導体層、前記第1発光層、前記第2半導体層、前記第3半導体層、前記第2発光層、前記第4半導体層、前記第2発光層、前記第3半導体層、前記第2半導体層、前記第1発光層、前記第1半導体層の順に並んで接合された発光部を形成する発光素子が提供される。
第3の態様によれば、それぞれ光を発光する複数の発光層と、電圧が付加されると複数の発光層でその光が発光するよう複数の発光層に接合された複数の半導体層と、を備え、複数の発光層と複数の半導体層とが所定方向に関して順に並んで接合された発光素子が提供される。
According to the first aspect, a plurality of first light emitting layers that emit light of a first color and a plurality of second light emitting layers that emit light of a second color different from the first color are provided. and a plurality of semiconductor layers provided to sandwich each of the first light emitting layer and the second light emitting layer in a predetermined direction, the plurality of first light emitting layers and the plurality of second light emitting layers. A light emitting element is provided in which the layer and each of the plurality of semiconductor layers are sequentially lined up and bonded so as to be line symmetrical with respect to a center line in the predetermined direction.
According to the second aspect, the light emitting layer includes a plurality of first light emitting layers and a plurality of second light emitting layers, each of which emits light of a different wavelength, and when a voltage is applied, the light emitting layer emits the light. a plurality of semiconductor layers bonded to the light-emitting layer so that the plurality of semiconductor layers are provided to sandwich the first light-emitting layer in a predetermined direction, and first semiconductor layers having mutually different conduction types; and a second semiconductor layer, the plurality of semiconductor layers are provided to sandwich the second light emitting layer in the predetermined direction, and include a third semiconductor layer and a fourth semiconductor layer having different conduction types. , the light-emitting layer and the plurality of semiconductor layers include the first semiconductor layer, the first light-emitting layer, the second semiconductor layer, the third semiconductor layer, the second light-emitting layer, and the first semiconductor layer with respect to the predetermined direction. A light-emitting element is provided in which a light-emitting portion is formed in which four semiconductor layers, the second light-emitting layer, the third semiconductor layer, the second semiconductor layer, the first light-emitting layer, and the first semiconductor layer are arranged and bonded in this order. Ru.
According to the third aspect, a plurality of light-emitting layers each emitting light; a plurality of semiconductor layers bonded to the plurality of light-emitting layers so that the light is emitted by the plurality of light-emitting layers when a voltage is applied; Provided is a light emitting element in which a plurality of light emitting layers and a plurality of semiconductor layers are sequentially lined up and bonded in a predetermined direction.

第4の態様によれば、第1から第3の態様の発光素子と、その発光層へ電力を供給する配線が形成され、その発光素子が接合される基板と、を備える表示装置が提供される。 According to a fourth aspect, there is provided a display device comprising the light emitting elements of the first to third aspects and a substrate on which wiring for supplying power to the light emitting layer is formed and to which the light emitting elements are bonded. Ru.

第5の態様によれば、第1から第3の態様の発光素子を製造する製造方法であって、その発光素子を形成するよう複数の発光層と複数の半導体層とをその所定方向に関して並べて接合することと、接合されたその発光素子を、その所定方向と交差する方向に関し、切り分けることと、を含む発光素子の製造方法が提供される。 According to a fifth aspect, there is provided a manufacturing method for manufacturing the light emitting device according to any one of the first to third aspects, comprising arranging a plurality of light emitting layers and a plurality of semiconductor layers in a predetermined direction to form the light emitting device. A method for manufacturing a light emitting element is provided, which includes joining the joined light emitting element, and cutting the joined light emitting element in a direction intersecting a predetermined direction.

第6の態様によれば、第4の態様の表示装置を製造する製造方法であって、その基板上において、複数の発光素子を散乱することと、散乱された発光素子とその基板とを接合することと、を含む表示装置の製造方法が提供される。 According to a sixth aspect, there is provided a manufacturing method for manufacturing the display device according to the fourth aspect, comprising scattering a plurality of light emitting elements on the substrate, and bonding the scattered light emitting elements and the substrate. A method of manufacturing a display device is provided, which includes the following steps.

(A)は第1の実施形態に係る3色のマイクロLEDを示す拡大斜視図、(B)は図1(A)中の赤色のマイクロLED及びその変形例を示す図、(C)は図1(A)の赤色のマイクロLEDを基板上に配置した状態を示す拡大断面図である。(A) is an enlarged perspective view showing the three-color micro-LED according to the first embodiment, (B) is a view showing the red micro-LED in FIG. 1(A) and a modification thereof, and (C) is a diagram. 1(A) is an enlarged cross-sectional view showing a state in which the red micro-LEDs of FIG. 1(A) are arranged on a substrate. (A)はその実施形態に係る画像表示装置を示す正面図、(B)は図2(A)の画像表示装置の一部を示す拡大図である。(A) is a front view showing an image display device according to the embodiment, and (B) is an enlarged view showing a part of the image display device in FIG. 2(A). その実施形態に係る画像表示装置の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the image display apparatus based on the embodiment. (A)は基板の上方にガイド部材を配置した状態を示す斜視図、(B)はガイド部材を基板の上面に設置した状態を示す斜視図である。(A) is a perspective view showing a state in which a guide member is placed above the substrate, and (B) is a perspective view showing a state in which the guide member is placed on the top surface of the substrate. (A)はガイド部材の上面に多数のマイクロLEDを散布する状態を示す斜視図、(B)は基板の上面に多数のマイクロLEDを配置した状態を示す斜視図である。(A) is a perspective view showing a state in which a large number of micro LEDs are scattered on the upper surface of a guide member, and (B) is a perspective view showing a state in which a large number of micro LEDs are arranged on an upper surface of a substrate. (A)は基板からガイド部材を取り外した状態を示す斜視図、(B)は変形例の3色のマイクロLEDを示す拡大斜視図、(C)は別の変形例のマイクロLEDを示す拡大斜視図である。(A) is a perspective view showing the guide member removed from the board, (B) is an enlarged perspective view showing a modified three-color micro LED, and (C) is an enlarged perspective view showing another modified micro LED. It is a diagram. (A)はさらに別の変形例に係る画像表示装置の一部を示す拡大図、(B)は図7(A)の横断面図、(C)は図7(B)に対応する他の変形例を示す横断面図、(D)は図6(B)のマイクロLEDを使用する例の図7(B)に対応する横断面図である。(A) is an enlarged view showing a part of an image display device according to yet another modification, (B) is a cross-sectional view of FIG. 7(A), and (C) is another diagram corresponding to FIG. 7(B). A cross-sectional view showing a modified example, (D) is a cross-sectional view corresponding to FIG. 7(B) of an example using the micro LED of FIG. 6(B). (A)、(B)、(C)、及び(D)はそれぞれ第2の実施形態に係る第1、第2、第3、及び第4のマイクロLEDユニットを示す側面図である。(A), (B), (C), and (D) are side views showing the first, second, third, and fourth micro LED units, respectively, according to the second embodiment. (A)は第1のマイクロLEDユニットを使用する画像表示装置を示す正面図、(B)は第2のマイクロLEDユニットを使用する画像表示装置を示す正面図である。(A) is a front view showing an image display device using a first micro LED unit, and (B) is a front view showing an image display device using a second micro LED unit. (A)は第4のマイクロLEDユニットを使用する画像表示装置を示す正面図、(B)は図10(A)の一部の拡大断面図である。(A) is a front view showing an image display device using a fourth micro LED unit, and (B) is an enlarged cross-sectional view of a part of FIG. 10(A). 第2の実施形態に係る画像表示装置の製造方法の一例を示すフローチャートである。7 is a flowchart illustrating an example of a method for manufacturing an image display device according to a second embodiment. (A)は5枚の発光ダイオード用のウエハを示す拡大側面図、(B)は5枚のウエハを貼り合わせた状態を拡大側面図である。(A) is an enlarged side view showing five wafers for light emitting diodes, and (B) is an enlarged side view showing a state in which the five wafers are bonded together. (A)は5枚のウエハから最下部の基材を分離した状態を示す拡大側面図、(B)はマイクロLEDユニットを切り出した状態を示す拡大側面図である。(A) is an enlarged side view showing a state in which the lowermost base material is separated from five wafers, and (B) is an enlarged side view showing a state in which a micro LED unit is cut out. (A)は基板の上方に第1のガイド部材を配置した状態を示す斜視図、(B)は第1のガイド部材の上面に多数のマイクロLEDユニットを散布する状態を示す斜視図である。(A) is a perspective view showing a state in which the first guide member is arranged above the substrate, and (B) is a perspective view showing a state in which a large number of micro LED units are scattered on the upper surface of the first guide member. (A)は第1のガイド部材の多数の開口にマイクロLEDユニットを配置した状態を示す斜視図、(B)は図15(A)の画像表示装置の一部を示す拡大平面図、(C)は図15(B)の一部を示す拡大横断面図である。(A) is a perspective view showing a state in which micro LED units are arranged in a large number of openings of the first guide member, (B) is an enlarged plan view showing a part of the image display device in FIG. 15(A), (C ) is an enlarged cross-sectional view showing a part of FIG. 15(B). (A)は第1のガイド部材の上方に第2のガイド部材を配置し、この上方に複数のマイクロLEDユニットを散布した状態を示す拡大横断面図、(B)は複数のマイクロLEDユニットの端部が第1のガイド部材の開口内に収まった状態を示す拡大横断面図である。(A) is an enlarged cross-sectional view showing a state in which a second guide member is arranged above the first guide member and a plurality of micro LED units are scattered above the second guide member, and (B) is an enlarged cross-sectional view of the plurality of micro LED units. FIG. 7 is an enlarged cross-sectional view showing a state in which the end portion is accommodated within the opening of the first guide member. (A)は第1のガイド部材にたいして第2のガイド部材をX方向に相対移動する状態を示す拡大横断面図、(B)は複数のマイクロLEDユニットが第1のガイド部材の開口内に配列された状態を示す拡大横断面図である。(A) is an enlarged cross-sectional view showing a state in which the second guide member is moved relative to the first guide member in the X direction, and (B) is a plurality of micro LED units arranged in the opening of the first guide member. FIG. 3 is an enlarged cross-sectional view showing a state in which

以下、第1の実施形態につき図1(A)~図6(A)を参照して説明する。以下では、発光ダイオードを単にLEDとも呼ぶ。
図1(A)は、本実施形態に係る赤色光を発生する発光ダイオード(以下、赤色LEDという)10R、青色光を発生する発光ダイオード(以下、青色LEDという)10B、及び緑色光を発生する発光ダイオード(以下、緑色LEDという)10Gを示す。LED10R,10B,10Gの形状は、それぞれ断面形状が正方形で、断面の辺の長さよりも高さ(長さ)が高い直方体状である。一例として、LED10R,10B,10Gの形状は、断面の辺の長さが20~100μm程度、高さがその辺の長さの1.5倍~3倍程度である。すなわち、LED10R,10B,10GはそれぞれマイクロLEDである。さらに、赤色LED10Rは最も断面積が大きく、高さが最も低く、青色LED10Bは、断面積が赤色LED10Rより小さく高さが赤色LED10Rより高く、緑色LED10Gは、最も断面積が小さく、高さが最も高い。なお、LED10R,10B,10Gは、互いに形状が異なっていればよく、その形状は任意である。以下では、LED10R,10B,10Gの高さ(長さ)の方向をT方向として説明する。
The first embodiment will be described below with reference to FIGS. 1(A) to 6(A). Hereinafter, a light emitting diode will also simply be referred to as an LED.
FIG. 1A shows a light emitting diode (hereinafter referred to as red LED) 10R that generates red light according to the present embodiment, a light emitting diode (hereinafter referred to as blue LED) 10B that generates blue light, and a light emitting diode (hereinafter referred to as blue LED) 10B that generates green light. A light emitting diode (hereinafter referred to as green LED) 10G is shown. The shapes of the LEDs 10R, 10B, and 10G are each a rectangular parallelepiped with a square cross-sectional shape and a height (length) higher than the length of the side of the cross-section. As an example, the shape of the LEDs 10R, 10B, and 10G has a cross-sectional side length of about 20 to 100 μm, and a height of about 1.5 to 3 times the length of the side. That is, the LEDs 10R, 10B, and 10G are each micro LEDs. Furthermore, the red LED 10R has the largest cross-sectional area and the lowest height, the blue LED 10B has a smaller cross-sectional area and the highest height than the red LED 10R, and the green LED 10G has the smallest cross-sectional area and the lowest height. expensive. Note that the LEDs 10R, 10B, and 10G may have any shape as long as they have different shapes. In the following description, the height (length) direction of the LEDs 10R, 10B, and 10G is assumed to be the T direction.

また、赤色LED10R(赤色のマイクロLED)は、T方向に順に、第1のP型半導体層(以下、P層という)12P1(第1半導体層)、第1の発光層12R1、N型半導体層(以下、N層という)12N(第2半導体層)、第2の発光層12R2、及び第2のP層12P2(第1半導体層)を積層して形成されている。P層12P1,12P2とN層12Nとは伝導形式が異なっている。また、発光層12R1,12R2も半導体層の一部とみなすことも可能である。また、積層は複数回の接合ともいうことができる。本実施形態では、T方向が発光層及び半導体層の接合方向(積層方向)である。 In addition, the red LED 10R (red micro LED) includes, in order in the T direction, a first P-type semiconductor layer (hereinafter referred to as P layer) 12P1 (first semiconductor layer), a first light emitting layer 12R1, and an N-type semiconductor layer. It is formed by laminating 12N (hereinafter referred to as an N layer) (second semiconductor layer), a second light emitting layer 12R2, and a second P layer 12P2 (first semiconductor layer). The P layers 12P1 and 12P2 and the N layer 12N have different conduction types. Further, the light emitting layers 12R1 and 12R2 can also be considered as part of the semiconductor layer. Furthermore, lamination can also be referred to as joining multiple times. In this embodiment, the T direction is the bonding direction (stacking direction) of the light emitting layer and the semiconductor layer.

発光層12R1(12R2)は、P層12P1(12P2)からN層12Nに向かって順に、P層12P1(12P2)よりもホール(正孔)密度の低いいわゆるp-層と、N層12Nよりも電子密度が低いいわゆるn-層とを積層したものである。同様に、青色LED10B(青色のマイクロLED)は、T方向に順に、第1のP層14P1、第1の発光層14B1、N層14N、第2の発光層14B2、及び第2のP層14P2を積層して形成され、緑色LED10G(緑色のマイクロLED)は、T方向に順に、第1のP層16P1、第1の発光層16G1、N層16N、第2の発光層16G2、及び第2のP層16P2を積層して形成されている。 The light-emitting layer 12R1 (12R2) has, in order from the P layer 12P1 (12P2) toward the N layer 12N, a so-called p- layer, which has a lower hole density than the P layer 12P1 (12P2), and a so-called p- layer, which has a lower hole density than the N layer 12N. This is a stack of so-called n-layers with low electron density. Similarly, the blue LED 10B (blue micro LED) includes, in order in the T direction, a first P layer 14P1, a first light emitting layer 14B1, an N layer 14N, a second light emitting layer 14B2, and a second P layer 14P2. The green LED 10G (green micro LED) includes, in order in the T direction, a first P layer 16P1, a first light emitting layer 16G1, an N layer 16N, a second light emitting layer 16G2, and a second light emitting layer 16G2. It is formed by laminating P layers 16P2.

一例として、赤色LED10Rは、ガリウムリン(GaP)又はガリウムヒ素(GaAs)よりなる基材の表面に、亜鉛、酸素等を添加したガリウムリン(GaP(Zn,O))又はガリウムアルミニウムヒ素(GaAlAs)等の半導体層(P層、N層)及び発光層を形成して製造され、青色LED10Bは、サファイア又は炭化ケイ素(SiC)よりなる基材の表面に、インジウムガリウム窒素(InGaN)等の半導体層及び発光層を形成して製造され、緑色LED10Gは、サファイア又はSiCよりなる基材の表面に、窒素等を添加したガリウムリン(GaP(N))又はInGaN等の半導体層及び発光層を形成して製造される。このように、LED10RとLED10B,10Gとは、互いに基材及び半導体層、発光層の材料が異なっている。また、LED10B,10Gも、互いに基材及び半導体層、発光層の少なくとも一方の材料が異なっている場合がある。なお、LED10R,10B,10Gの基材及び半導体層、発光層の材料は任意であり、LED10R,10B,10Gの基材及び/又は半導体層、発光層の材料が互いに同じでもよい。 As an example, the red LED 10R is made of gallium phosphide (GaP (Zn, O)) or gallium aluminum arsenide (GaAlAs), which is made by adding zinc, oxygen, etc. to the surface of a base material made of gallium phosphide (GaP) or gallium arsenide (GaAs). The blue LED 10B is manufactured by forming a semiconductor layer (P layer, N layer) and a light emitting layer such as a semiconductor layer (P layer, N layer) and a light emitting layer. The green LED 10G is manufactured by forming a semiconductor layer such as gallium phosphide (GaP(N)) or InGaN doped with nitrogen or the like and a light emitting layer on the surface of a base material made of sapphire or SiC. Manufactured by In this way, the LED 10R and the LEDs 10B and 10G have different materials for the base material, semiconductor layer, and light emitting layer. Furthermore, the LEDs 10B and 10G may also have different materials for at least one of the base material, semiconductor layer, and light emitting layer. Note that the materials of the base material, semiconductor layer, and light emitting layer of the LEDs 10R, 10B, and 10G are arbitrary, and the materials of the base material, semiconductor layer, and light emitting layer of the LEDs 10R, 10B, and 10G may be the same.

図1(B)に示すように、赤色LED10Rは、T方向において中心となる直線18に関して、P層12P1,12P2、及びN層12Nがそれぞれ対称(線対称)である。以下では、T方向において中心となる直線18に関して対称であることを、単にT方向に関して対称であるともいう。赤色LED10Rを用いて画像表示装置を製造するために(詳細後述)、図2(C)に示すように、基板22上のガイド部材30の中に赤色LED10Rを設置して、配線28A,28Bを介してP層12P1,12P2に正の電圧を印加して、配線28Bを介してN層12Nに負の電圧を印加する(又は接地する)と、赤色LED10Rの発光層12R1,12R2から全方向(側面方向を含む)に赤色光が発生する。この際に、赤色LED10Rの広い側面が表示方向を向いているため、表示方向に対して十分な光強度が得られる。さらに、2つの発光層12R1,12R2が同時に光るため、光強度は発光層が1つの発光ダイオードに比べて2倍になる。また、P層12P1,12P2に印加する電圧を異ならせることによって、発光層12R1,12R2から出力される赤色光の光強度のバランスを制御することもできる。 As shown in FIG. 1(B), in the red LED 10R, the P layers 12P1, 12P2, and the N layer 12N are symmetrical (line symmetric) with respect to the straight line 18 that is the center in the T direction. Below, being symmetrical with respect to the straight line 18 that is the center in the T direction is also simply referred to as being symmetrical with respect to the T direction. In order to manufacture an image display device using the red LED 10R (details will be described later), as shown in FIG. When a positive voltage is applied to the P layers 12P1 and 12P2 through the wiring 28B and a negative voltage is applied to the N layer 12N (or grounded) through the wiring 28B, the light emitting layers 12R1 and 12R2 of the red LED 10R emit light in all directions ( Red light is generated in the direction (including the side direction). At this time, since the wide side surface of the red LED 10R faces the display direction, sufficient light intensity can be obtained in the display direction. Furthermore, since the two light-emitting layers 12R1 and 12R2 emit light at the same time, the light intensity is twice that of a light-emitting diode with one light-emitting layer. Furthermore, by varying the voltages applied to the P layers 12P1 and 12P2, it is also possible to control the balance of the light intensity of the red light output from the light emitting layers 12R1 and 12R2.

さらに、赤色LED10Rは、P層12P1,12P2及びN層12NがそれぞれT方向に関して対称であるため、基板22上に赤色LED10RをT方向に関して反転して設置しても、配線28A~28Cのパターンを変更することなく、さらに配線28A~28Cに印加する電圧を変更することなく、赤色LED10Rは方向を反転する前と同様に発光する。これは他のLED10B,10Gも同様である。このため、基板22上でのLED10R,10B,10Gの配列を効率的に行うことができる。 Furthermore, in the red LED 10R, since the P layers 12P1, 12P2 and the N layer 12N are symmetrical with respect to the T direction, even if the red LED 10R is installed on the substrate 22 inverted with respect to the T direction, the patterns of the wirings 28A to 28C will not be changed. Without any changes, and without changing the voltages applied to the wires 28A-28C, the red LED 10R emits light as before reversing direction. This also applies to the other LEDs 10B and 10G. Therefore, the LEDs 10R, 10B, and 10G can be efficiently arranged on the substrate 22.

なお、赤色LED10Rは、T方向に関して発光層12R1,12R2も対称である。このため、赤色LED10RをT方向に関して反転して設置しても、色調が変化しない。
また、赤色LED10Rの代わりに、図1(B)に示すように、T方向に順に、第1のN層12N1、第1の発光層12R1、P層12P、第2の発光層12R2、及び第2のN層12N2を接合して形成された赤色LED10RAを製造(使用)することもできる。言い替えると、赤色LED10RAは、赤色LED10RのP層とN層とを入れ替えた構成である。赤色LED10RAも、T方向に関して、N層12N1,12N2、発光層12R1,12R2、及びP層12Pがそれぞれ対称である。このため、基板22上に赤色LED10RAをT方向に関して反転して設置しても、赤色LED10RAは方向を反転する前と同様に発光する。
Note that in the red LED 10R, the light emitting layers 12R1 and 12R2 are also symmetrical with respect to the T direction. For this reason, even if the red LED 10R is installed inverted with respect to the T direction, the color tone does not change.
In addition, instead of the red LED 10R, as shown in FIG. It is also possible to manufacture (use) a red LED 10RA formed by bonding two N layers 12N2 together. In other words, the red LED 10RA has a configuration in which the P layer and the N layer of the red LED 10R are exchanged. In the red LED 10RA, the N layers 12N1 and 12N2, the light emitting layers 12R1 and 12R2, and the P layer 12P are also symmetrical with respect to the T direction. Therefore, even if the red LED 10RA is installed on the substrate 22 in a reversed manner with respect to the T direction, the red LED 10RA emits light in the same manner as before the direction is reversed.

次に、図2(A)は、本実施形態に係るLED10R,10B,10G(3色のマイクロLED)を用いたフルカラーの画像表示装置20を示す。画像表示装置20は、ほぼ長方形の絶縁体よりなる基板22の上面に、赤色LED10R、青色LED10B、及び緑色LED10Gをマトリクス状に配列して固定した表示部と、多数のLED10R,10B,10Gのオン/オフ及び光強度を個別に制御する制御部24とを備えている。なお、図2(A)及び以下で参照する図面では、説明の便宜上、LED10R,10B,10Gを実際の大きさよりもかなり拡大して表している。以下、基板22の長手方向及び短手方向に沿ってそれぞれX軸及びY軸を取って説明する。本実施形態では、一例として、LED10R,10B,10Gの接合方向であるT方向がX軸に平行な方向(X方向)となっている。本実施形態では、赤色LED10R、青色LED10B、及び緑色LED10GはそれぞれY軸に平行な直線に沿ってY方向に所定ピッチで配列され、一列の赤色LED10R、一列の青色LED10B、及び一列の緑色LED10GがX方向に所定ピッチで配列されている。LED10R,10B,10GのX方向、Y方向の配列のピッチは一例として100μm~200μm程度であり、LED10R,10B,10GのX方向及びY方向の配列数はそれぞれ1000程度である。なお、LED10R,10B,10Gの配列は任意であり、LED10R,10B,10Gを例えば市松模様状に配列してもよい。 Next, FIG. 2(A) shows a full-color image display device 20 using LEDs 10R, 10B, and 10G (three-color micro-LEDs) according to this embodiment. The image display device 20 includes a display section in which a red LED 10R, a blue LED 10B, and a green LED 10G are arranged and fixed in a matrix on the upper surface of a substrate 22 made of a substantially rectangular insulator, and a large number of LEDs 10R, 10B, and 10G are turned on. / off and a control section 24 that individually controls light intensity. Note that in FIG. 2A and the drawings referred to below, the LEDs 10R, 10B, and 10G are shown much larger than their actual sizes for convenience of explanation. Hereinafter, the description will be made by taking the X-axis and Y-axis along the longitudinal direction and the lateral direction of the substrate 22, respectively. In this embodiment, as an example, the T direction, which is the joining direction of the LEDs 10R, 10B, and 10G, is parallel to the X axis (X direction). In this embodiment, the red LED 10R, the blue LED 10B, and the green LED 10G are each arranged at a predetermined pitch in the Y direction along a straight line parallel to the Y axis, and one row of red LEDs 10R, one row of blue LEDs 10B, and one row of green LEDs 10G They are arranged at a predetermined pitch in the X direction. The pitch of the arrangement of the LEDs 10R, 10B, and 10G in the X direction and the Y direction is, for example, about 100 μm to 200 μm, and the number of the arrangement of the LEDs 10R, 10B, and 10G in the X direction and the Y direction is about 1000, respectively. Note that the arrangement of the LEDs 10R, 10B, and 10G is arbitrary, and the LEDs 10R, 10B, and 10G may be arranged, for example, in a checkered pattern.

また、図2(B)に示すように、基板22の上面のLED10R,10B,10Gが設置される領域には、LED10R,10B,10GのP層12P1,12P2,14P1,14P2及び16P1,16P2(図1(A)参照)に電圧を印加するための配線28A,28C,28D,28F,28G,28I、及びLED10R,10B,10GのN層12N,14N及び16Nに電圧を印加するための配線28B,28E,28Hが形成されている。また、配線28A~28Iの対応するP層12P1等又はN層12N等との接触部には、薄い円板状の端子部26A,26B,26C,26D,26E,26F,26G,26H,26Iが形成されている。端子部26A~26Iは、対応するP層又はN層に加熱によって溶着可能な材料(例えばハンダ等)から形成されている。なお、配線28A~28Iも溶着可能な材料から形成してもよい。制御部24は、配線28A~28Iに印加する電圧を多数のLED10R,10B,10G毎に、かつ各LED10R,10B,10G内の2つの発光層毎に個別に制御する。これによって、表示部で任意の画像をフルカラーで高精細に表示できる。なお、端子部26A~26I(及び配線28A~28I)を導電性の接着剤から形成してもよい。 Further, as shown in FIG. 2(B), the P layers 12P1, 12P2, 14P1, 14P2 and 16P1, 16P2 ( Wirings 28A, 28C, 28D, 28F, 28G, 28I for applying a voltage to (see FIG. 1(A)) and a wiring 28B for applying a voltage to the N layers 12N, 14N, and 16N of the LEDs 10R, 10B, and 10G. , 28E, 28H are formed. In addition, thin disk-shaped terminal portions 26A, 26B, 26C, 26D, 26E, 26F, 26G, 26H, 26I are provided at the contact portions of the wirings 28A to 28I with the corresponding P layer 12P1, etc. or the N layer 12N, etc. It is formed. The terminal portions 26A to 26I are made of a material (for example, solder) that can be welded to the corresponding P layer or N layer by heating. Note that the wirings 28A to 28I may also be formed from a material that can be welded. The control unit 24 individually controls the voltage applied to the wirings 28A to 28I for each of the large number of LEDs 10R, 10B, and 10G, and for each of the two light emitting layers within each LED 10R, 10B, and 10G. This allows any image to be displayed in full color and in high definition on the display unit. Note that the terminal portions 26A to 26I (and the wirings 28A to 28I) may be formed from a conductive adhesive.

次に、本実施形態のLED10R,10B,10G(マイクロLED)及び画像表示装置20の製造方法の一例につき図3のフローチャートを参照して説明する。この製造のためには、不図示の薄膜形成装置、レジストのコータ・デベロッパ、マスクパターンを基材の表面のレジストに転写露光する露光装置、エッチング装置、検査装置、及びダイシング装置等が使用される。 Next, an example of a method for manufacturing the LEDs 10R, 10B, and 10G (micro LEDs) and the image display device 20 of this embodiment will be described with reference to the flowchart in FIG. 3. For this manufacturing, a thin film forming device (not shown), a resist coater/developer, an exposure device that transfers and exposes the mask pattern onto the resist on the surface of the base material, an etching device, an inspection device, a dicing device, etc. are used. .

まず、図3のステップ102において、半導体素子製造プロセスを用いて、LED10R,10B,10Gを製造するための円板状の3種類の基材(不図示)の表面にそれぞれP層、発光層、N層、発光層、及びP層を積層して3種類のウエハを製造する。そして、ステップ104において、LED10R,10B,10G用のウエハからそれぞれエッチング等によって基材部を分離(除去)し、ダイシング装置によって各色用のウエハからそれぞれ多数のLED10R,10B,10Gを切り出す。これによって、多数の赤色LED10R、青色LED10B、及び緑色LED10Gが製造される。 First, in step 102 of FIG. 3, a P layer, a light emitting layer, Three types of wafers are manufactured by laminating an N layer, a light emitting layer, and a P layer. Then, in step 104, the base material portions are separated (removed) from the wafers for the LEDs 10R, 10B, and 10G by etching or the like, and a large number of LEDs 10R, 10B, and 10G are cut out from the wafers for each color using a dicing device. As a result, a large number of red LEDs 10R, blue LEDs 10B, and green LEDs 10G are manufactured.

また、ステップ106において、図4(A)に示すように、画像表示装置20の基板22及びガイド部材30を製造する。基板22の上面のLED10R,10B,10Gが配置される領域23R,23B,23G(例えば基板22のX方向及びY方向の端部を基準として位置が予め規定されている)には、それぞれ配線28A~28I及び端子部26A~26I等(図2(B)参照)が形成されている。さらに、制御部24も製造される。ガイド部材30は、ほぼ基板22と同じ大きさで、ガイド部材30には、図2(A)のLED10R,10B,10Gの配列と同じ配列で、赤色LED10Rが収容可能な長方形の開口32R、青色LED10Bが収容可能な長方形の開口32B、及び緑色LED10Gが収容可能な長方形の開口32Gがマトリクス状に形成されている。開口32R,32B,32Gは対応するLED10R,10B,10Gの側面の形状よりもわずかに大きく形成されている。本実施形態では、LED10R,10B,10Gは次第に形状が細長くなっているため、LED10R,10B,10Gを側面が基板22に接するように配置するとき、開口32R,32B及び32Gにはそれぞれ赤色LED10R、青色LED10B、及び緑色LED10Gのみが収容可能である。 Furthermore, in step 106, the substrate 22 and guide member 30 of the image display device 20 are manufactured, as shown in FIG. 4(A). In areas 23R, 23B, and 23G on the upper surface of the board 22 where the LEDs 10R, 10B, and 10G are arranged (for example, the positions are predefined with reference to the ends of the board 22 in the X direction and the Y direction), there are wirings 28A, respectively. 28I, terminal portions 26A to 26I, etc. (see FIG. 2(B)) are formed. Furthermore, the control section 24 is also manufactured. The guide member 30 has approximately the same size as the substrate 22, and includes a rectangular opening 32R that can accommodate the red LED 10R and a blue LED in the same arrangement as the LED 10R, 10B, and 10G in FIG. 2(A). A rectangular opening 32B that can accommodate the LED 10B and a rectangular opening 32G that can accommodate the green LED 10G are formed in a matrix. The openings 32R, 32B, and 32G are formed slightly larger than the side shapes of the corresponding LEDs 10R, 10B, and 10G. In this embodiment, the LEDs 10R, 10B, and 10G have gradually elongated shapes, so when the LEDs 10R, 10B, and 10G are arranged so that their side surfaces are in contact with the substrate 22, the openings 32R, 32B, and 32G have the red LED 10R, Only the blue LED 10B and the green LED 10G can be accommodated.

LED10R,10B,10Gを基板22上に配列する場合にのみガイド部材30を使用して、配列完了後にガイド部材30を取り外す場合、ガイド部材30は例えば金属(アルミニウム等)又はセラミックス等から形成してもよい。一方、ガイド部材30を基板22に取り付けたままにしておく場合、ガイド部材30は合成樹脂等から形成してもよい。開口32R,32B,32Gの周辺のガイド部材30の厚さは、最も断面積の小さい緑色LED10Gの断面の辺の長さ程度である。 When the guide member 30 is used only when arranging the LEDs 10R, 10B, and 10G on the substrate 22, and when the guide member 30 is removed after the arrangement is completed, the guide member 30 may be made of, for example, metal (aluminum, etc.) or ceramics. Good too. On the other hand, when the guide member 30 is left attached to the substrate 22, the guide member 30 may be made of synthetic resin or the like. The thickness of the guide member 30 around the openings 32R, 32B, and 32G is approximately the length of the side of the cross section of the green LED 10G, which has the smallest cross-sectional area.

そして、ステップ108において、基板22のLED10R,10B,10Gが配置される領域23R,23B,23Gに、ガイド部材30の開口32R,32B,32Gが対向するように、基板22に対してガイド部材30の位置決めを行い、図4(B)に示すように、基板22の上面にガイド部材30を配置する。この際にガイド部材30の開口32R,32B,32Gは、長手方向がX方向に平行になっている。LED10R,10B,10Gの配列後にガイド部材30を基板22から取り外す場合には、ガイド部材30は、例えば不図示の支持部材によって、基板22からわずかな間隔をあけて保持してもよい。また、ガイド部材30を基板22に装着したままにする場合には、接着等でガイド部材30を基板22に固定してもよい。なお、ステップ102,104のLED10R等の製造工程、及びステップ106,108の基板等の製造工程は実質的に並行して行ってもよい。 Then, in step 108, the guide member 30 is moved relative to the board 22 so that the openings 32R, 32B, 32G of the guide member 30 are opposed to the regions 23R, 23B, 23G of the board 22 where the LEDs 10R, 10B, 10G are arranged. Then, as shown in FIG. 4(B), the guide member 30 is placed on the upper surface of the substrate 22. At this time, the longitudinal directions of the openings 32R, 32B, and 32G of the guide member 30 are parallel to the X direction. When removing the guide member 30 from the substrate 22 after arranging the LEDs 10R, 10B, and 10G, the guide member 30 may be held at a slight distance from the substrate 22 by, for example, a support member (not shown). Further, when the guide member 30 is left attached to the substrate 22, the guide member 30 may be fixed to the substrate 22 by adhesive or the like. Note that the steps 102 and 104 for manufacturing the LED 10R, etc. and the steps 106 and 108 for manufacturing the substrate and the like may be performed substantially in parallel.

次のステップ112において、図5(A)に示すように、基板22上に配置されたガイド部材30の上面に、不図示の多数のLED10R,10B,10Gを収容するストッカーを傾斜させる等の方法で、多数のLED10R,10B,10Gを散乱させる(散布する)。この結果、図5(B)に示すように、ガイド部材30の開口32R,32B,32Gにそれぞれ赤色LED10R、青色LED10B、及び緑色LED10Gが、その側面が基板22に接するように収容される。次のステップ114において、ガイド部材30の上面にあり、開口32R,32B,32Gに収容されていないLED10R,10B,10Gを除去する。なお、このステップ114は、後述のように基板22にLED10R,10B,10Gを固定した後で行ってもよい。そして、ステップ116において、不図示の検査装置を用いて、ガイド部材30の全部の開口32R,32B,32Gに対応するLED10R,10B,10Gが収容されているかどうかを検査する。そして、LED10R,10B,10Gが収容されていない開口32R,32B,32Gがある場合には、全部の開口32R,32B,32GにLED10R,10B,10Gが収容されるまで、ステップ112,114を繰り返す。 In the next step 112, as shown in FIG. 5(A), a method such as tilting a stocker for accommodating a large number of LEDs 10R, 10B, and 10G (not shown) on the upper surface of the guide member 30 arranged on the substrate 22. Then, a large number of LEDs 10R, 10B, and 10G are scattered (dispersed). As a result, as shown in FIG. 5(B), the red LED 10R, the blue LED 10B, and the green LED 10G are housed in the openings 32R, 32B, and 32G of the guide member 30, respectively, with their side surfaces in contact with the substrate 22. In the next step 114, the LEDs 10R, 10B, 10G on the upper surface of the guide member 30 and not accommodated in the openings 32R, 32B, 32G are removed. Note that this step 114 may be performed after the LEDs 10R, 10B, and 10G are fixed to the board 22 as described later. Then, in step 116, an inspection device (not shown) is used to inspect whether the LEDs 10R, 10B, 10G corresponding to all the openings 32R, 32B, 32G of the guide member 30 are accommodated. If there are openings 32R, 32B, and 32G that do not accommodate LEDs 10R, 10B, and 10G, steps 112 and 114 are repeated until all of the openings 32R, 32B, and 32G accommodate LEDs 10R, 10B, and 10G. .

そして、全部の開口32R,32B,32GにLED10R,10B,10Gが収容されたときには、ステップ118に移行して、基板22を底面から加熱する。この際に、不図示の柔軟性を持つ部材を用いて、LED10R,10B,10Gの上部を基板22側に付勢していてもよい。これによって、図2(B)に示す基板22の端子部26A~26I(及び配線28A~28I)が対応するLED10R,10B,10GのP層又はN層に溶着し、LED10R,10B,10GはそれぞれP層及びN層が電気的に対応する配線28A~28I等に導通する状態で、基板22の上面に固定される。その後、ステップ120において、ガイド部材30を除去するかどうかを判定し、ガイド部材30を除去する場合にはステップ122に移行して、図6(A)に示すように、基板22からガイド部材30を取り外す。その後、ステップ124において、LED10R,10B,10Gを覆うカバーガラスの設置等を行うことで、画像表示装置20が製造される。ガイド部材30を除去しない場合には、動作はステップ120から124に移行する。なお、端子部26A~26I(及び配線28A~28I)を導電性の接着剤から形成した場合には、ステップ118の基板22の加熱工程を省略することができる。 When the LEDs 10R, 10B, and 10G are accommodated in all the openings 32R, 32B, and 32G, the process moves to step 118, and the substrate 22 is heated from the bottom surface. At this time, the upper portions of the LEDs 10R, 10B, and 10G may be biased toward the substrate 22 using a flexible member (not shown). As a result, the terminal portions 26A to 26I (and wirings 28A to 28I) of the substrate 22 shown in FIG. The P layer and the N layer are fixed to the upper surface of the substrate 22 while being electrically connected to the corresponding wirings 28A to 28I. Thereafter, in step 120, it is determined whether or not to remove the guide member 30. If the guide member 30 is to be removed, the process proceeds to step 122, and as shown in FIG. 6(A), the guide member 30 is removed from the substrate 22. Remove. After that, in step 124, the image display device 20 is manufactured by installing a cover glass to cover the LEDs 10R, 10B, and 10G. If guide member 30 is not removed, operation proceeds from steps 120 to 124. Note that if the terminal portions 26A to 26I (and the wirings 28A to 28I) are formed from a conductive adhesive, the step of heating the substrate 22 in step 118 can be omitted.

このように本実施形態では、ガイド部材30の上面に多数のLED10R,10B,10Gを散乱することによって、基板22の上面に目標とする配置で3種類のLED10R,10B,10Gを効率的に配列できる。この際に、LED10R,10B,10GはT方向に関してP層12P1,12P2等及びN層12N等(半導体層)が対称であるため、ガイド部材30の開口32R,32B,32Gに対してLED10R,10B,10GがT方向(X方向)に関して反転して収容されたとしても、配線28A~28Iに印加する電圧を変更することなく、LED10R,10B,10Gは同じように発光可能である。このため、より効率的に画像表示装置20を製造できる。 As described above, in this embodiment, by scattering a large number of LEDs 10R, 10B, and 10G on the upper surface of the guide member 30, three types of LEDs 10R, 10B, and 10G are efficiently arranged in a targeted arrangement on the upper surface of the substrate 22. can. At this time, since the P layers 12P1, 12P2, etc. and the N layers 12N, etc. (semiconductor layers) of the LEDs 10R, 10B, 10G are symmetrical with respect to the T direction, the LEDs 10R, 10B, etc. , 10G are housed inverted with respect to the T direction (X direction), the LEDs 10R, 10B, and 10G can emit light in the same way without changing the voltages applied to the wirings 28A to 28I. Therefore, the image display device 20 can be manufactured more efficiently.

上述のように、本実施形態の赤色LED10R(マイクロLED)は、それぞれ赤色光を発光する複数の発光層12R1,12R2と、電圧が付加されると発光層12R1,12R2で赤色光が発光するよう発光層12R1,12R2に接合された複数のP層12P1,12P2(第1半導体層)及びN層12N(第2半導体層)と、を備え、複数の発光層12R1,12R2と、複数のP層12P1,12P2及びN層12N(半導体層)とがT方向(接合方向)に関して順に並んで接合された発光素子である。また、青色LED10B及び緑色LED10Gも同様の発光素子である。 As described above, the red LED 10R (micro LED) of this embodiment includes a plurality of light emitting layers 12R1 and 12R2, each of which emits red light, and a structure in which the light emitting layers 12R1 and 12R2 emit red light when a voltage is applied. A plurality of P layers 12P1, 12P2 (first semiconductor layer) and an N layer 12N (second semiconductor layer) bonded to light emitting layers 12R1, 12R2; This is a light emitting element in which 12P1, 12P2 and an N layer 12N (semiconductor layer) are lined up and bonded in order in the T direction (junction direction). Moreover, the blue LED 10B and the green LED 10G are also similar light emitting elements.

LED10R,10B,10Gを用いて画像表示装置20を製造する場合、LED10R,10B,10Gを例えば基板22上のガイド部材30の上面に散乱させるのみで、LED10R,10B,10Gがガイド部材30の開口32R,32B,32Gに収容されて、LED10R,10B,10Gを目標とする配置に効率的に配列できる。なお、例えば赤色LED10RのP層12P1,12P2及びN層12N(半導体層)がT方向に関して対称でない場合には、赤色LED10Rが基板22上に設置された後で、例えば制御部24によってその赤色LED10Rの電流が流れる方向(P層12P1,12P2及びN層12Nの配列状態)を検出し、この検出結果に基づいて赤色LED10Rに供給する電圧を変更してもよい。 When manufacturing the image display device 20 using the LEDs 10R, 10B, and 10G, the LEDs 10R, 10B, and 10G are simply scattered on the upper surface of the guide member 30 on the substrate 22, and the LEDs 10R, 10B, and 10G are connected to the opening of the guide member 30. 32R, 32B, and 32G, the LEDs 10R, 10B, and 10G can be efficiently arranged in a targeted arrangement. Note that, for example, if the P layers 12P1, 12P2 and the N layer 12N (semiconductor layer) of the red LED 10R are not symmetrical with respect to the T direction, after the red LED 10R is installed on the substrate 22, the controller 24 controls the red LED 10R. The direction in which the current flows (the arrangement state of the P layers 12P1, 12P2 and the N layer 12N) may be detected, and the voltage supplied to the red LED 10R may be changed based on the detection result.

また、本実施形態の画像表示装置20は、LED10R,10B,10Gと、それらの発光層12R1,12R2,14B1,14B2,16G1,16G2へ電力を供給する配線28A~28Iが形成され、LED10R,10B,10Gが接合される基板22と、を備えている。画像表示装置20は、基板22上でのLED10R,10B,10Gの配列を高精度にかつ効率的に行うことができるため、効率的に製造できる。 Further, in the image display device 20 of the present embodiment, wirings 28A to 28I for supplying power to the LEDs 10R, 10B, and 10G and their light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, and 16G2 are formed, and the LEDs 10R, 10B, and , 10G are bonded to each other. The image display device 20 can be efficiently manufactured because the LEDs 10R, 10B, and 10G can be arranged on the substrate 22 with high precision and efficiency.

また、本実施形態の赤色LED10Rの製造方法は、赤色LED10Rを形成するように、発光層12R1,12R2と、P層12P1,12P2及びN層12NとをT方向に関して並べて接合してウエハを製造するステップ102と、接合された赤色LED10Rを含むウエハをT方向と直交する方向に関し、切り分けるステップ104とを含む。この製造方法によれば、複数の発光層12R1,12R2を有する赤色LED10Rを効率的に製造できる。 Further, the method for manufacturing the red LED 10R of this embodiment includes manufacturing a wafer by arranging and bonding the light emitting layers 12R1 and 12R2, the P layers 12P1 and 12P2, and the N layer 12N in the T direction so as to form the red LED 10R. The process includes step 102 and step 104 of cutting the wafer including the bonded red LEDs 10R in a direction perpendicular to the T direction. According to this manufacturing method, the red LED 10R having a plurality of light emitting layers 12R1 and 12R2 can be efficiently manufactured.

また、本実施形態の画像表示装置20の製造方法は、基板22上において、複数のLED10R,10B,10Gを散乱するステップ112と、散乱されたLED10R,10B,10Gと基板22とを加熱による溶着によって接合するステップ118とを含む。この製造方法によれば、LED10R,10B,10Gの散乱によって効率的にLED10R,10B,10Gを目標とする配置で配列できるため、画像表示装置20を効率的に製造できる。 Further, the method for manufacturing the image display device 20 of this embodiment includes a step 112 of scattering a plurality of LEDs 10R, 10B, 10G on the substrate 22, and welding the scattered LEDs 10R, 10B, 10G and the substrate 22 by heating. and step 118 of joining by. According to this manufacturing method, since the LEDs 10R, 10B, and 10G can be efficiently arranged in a targeted arrangement by scattering the LEDs 10R, 10B, and 10G, the image display device 20 can be manufactured efficiently.

なお、上述の実施形態では以下のような変形が可能である。
まず、上述の実施形態において、LED10R,10B,10Gをガイド部材30(基板22)の上面に散乱する際に、LED10R,10B,10Gをイオナイザ(不図示)により除電しておいてもよい。これによって、LED10R,10B,10Gがガイド部材30の開口32R,32B,32G以外の領域に付着することを防止できる。
Note that the above-described embodiment can be modified as follows.
First, in the embodiment described above, when scattering the LEDs 10R, 10B, and 10G on the upper surface of the guide member 30 (substrate 22), the LEDs 10R, 10B, and 10G may be neutralized by an ionizer (not shown). This can prevent the LEDs 10R, 10B, and 10G from adhering to areas other than the openings 32R, 32B, and 32G of the guide member 30.

また、上述の実施形態では、LED10R,10B,10Gの発光層12R1,12R2等は2層で、P層12P1,12P2及びN層12Nの半導体層は3層であるが、発光層を3層以上にしてもよい。発光層を3層以上のN層(Nは3以上の整数)にする場合、半導体層の層数は、(N+1)層以上としてもよい。発光層の層数N層(Nは4以上の偶数)にする場合は、半導体層の層数は(N+1)層としてもよい。また、発光層の層数N層(Nは3以上の奇数および/または4以上の偶数)にする場合、その半導体層は(N+1)層以上となる。 Further, in the above embodiment, the light emitting layers 12R1, 12R2, etc. of the LEDs 10R, 10B, 10G are two layers, and the semiconductor layers of the P layers 12P1, 12P2 and the N layer 12N are three layers, but the light emitting layers are three or more layers. You can also do this. When the light emitting layer is composed of three or more N layers (N is an integer of three or more), the number of semiconductor layers may be (N+1) or more. When the number of light emitting layers is N (N is an even number of 4 or more), the number of semiconductor layers may be (N+1). Further, when the number of layers of the light emitting layer is N (N is an odd number of 3 or more and/or an even number of 4 or more), the number of semiconductor layers is (N+1) or more.

また、LED10R,10B,10Gは直方体状であるが、図6(B)に示すように、円柱状の赤色LED11R、青色LED11B、及び緑色LED11Gを製造することもできる。例えば赤色LED11Rは、T方向に順に、P層13P1、発光層13R1、N層13N、発光層13R2、及びP層13P2を積層して形成されている。LED11R,11B,11GもT方向に関して半導体層が対称であるため、上述の実施形態と同様の効果が得られる。また、一例として、緑色LED11Gは断面積が最も大きく高さが最も低く、青色LED11Bは断面積が最も小さく高さが最も高く、赤色LED11Rは断面積が中間で、高さも中間である。このようにLED11R,11B,11Gは互いに形状が異なっているため、基板22上にLED11R,11B,11Gを配列する際に、ガイド部材30と同様のLED11R,11B,11Gを収容可能な開口を有するガイド部材を使用することによって、LED11R,11B,11Gを目標とする配置に効率的に配列できる。さらに、図6(C)に示すように、断面形状が正6角形の角柱状の赤色LED11RAを製造することも可能である。また、断面形状が任意の多角形のマイクロLEDを製造することも可能である。 Further, although the LEDs 10R, 10B, and 10G have a rectangular parallelepiped shape, it is also possible to manufacture a cylindrical red LED 11R, blue LED 11B, and green LED 11G, as shown in FIG. 6(B). For example, the red LED 11R is formed by stacking a P layer 13P1, a light emitting layer 13R1, an N layer 13N, a light emitting layer 13R2, and a P layer 13P2 in order in the T direction. Since the semiconductor layers of the LEDs 11R, 11B, and 11G are also symmetrical with respect to the T direction, the same effects as in the above embodiment can be obtained. Further, as an example, the green LED 11G has the largest cross-sectional area and the lowest height, the blue LED 11B has the smallest cross-sectional area and the highest height, and the red LED 11R has an intermediate cross-sectional area and an intermediate height. In this way, since the LEDs 11R, 11B, and 11G have different shapes, when arranging the LEDs 11R, 11B, and 11G on the substrate 22, the guide member 30 has an opening that can accommodate the LEDs 11R, 11B, and 11G. By using the guide member, the LEDs 11R, 11B, and 11G can be efficiently arranged in a targeted arrangement. Furthermore, as shown in FIG. 6(C), it is also possible to manufacture a prismatic red LED 11RA having a regular hexagonal cross-sectional shape. Furthermore, it is also possible to manufacture micro-LEDs having an arbitrary polygonal cross-sectional shape.

また、上述の実施形態では、ガイド部材30の上面にLED10R,10B,10Gを散乱している。これに対して、図2(B)に対応する図7(A)に示すように、基板22の上面のLED10R,10B,10Gが設置される領域に、それぞれLED10R,10B,10Gが設置可能な凹部22a,22b,22cを形成しておいてもよい。図7(B)は図7(A)の横断面図であり、図7(B)に示すように、凹部22a,22b,22cには、それぞれLED10R,10B,10GのP層及びN層に対向する位置に端子部26A~26Iが形成され、端子部26A~26Iが配線28A等を介して図2(A)の制御部24に接続されている。この変形例では、凹部22a,22b及び22cにはそれぞれLED10R,10B及び10Gのみが収容可能であるため、基板22の上面に多数のLED10R,10B,10Gを散乱すると、凹部22a,22b及び22cにはそれぞれLED10R,10B及び10Gのみが収容される。このため、ガイド部材30を使用することなく、基板22の上面にLED10R,10B,10Gを目標とする配置で効率的に配列できる。 Furthermore, in the embodiment described above, the LEDs 10R, 10B, and 10G are scattered on the upper surface of the guide member 30. On the other hand, as shown in FIG. 7(A) corresponding to FIG. 2(B), LEDs 10R, 10B, and 10G can be installed in the areas on the top surface of the board 22 where LEDs 10R, 10B, and 10G are installed, respectively. Recesses 22a, 22b, and 22c may be formed in advance. FIG. 7(B) is a cross-sectional view of FIG. 7(A), and as shown in FIG. 7(B), the recesses 22a, 22b, 22c have the P layer and N layer of the LEDs 10R, 10B, and 10G, respectively. Terminal portions 26A to 26I are formed at opposing positions, and the terminal portions 26A to 26I are connected to the control portion 24 in FIG. 2A via wiring 28A and the like. In this modification, only the LEDs 10R, 10B, and 10G can be accommodated in the recesses 22a, 22b, and 22c, respectively. Therefore, when a large number of LEDs 10R, 10B, and 10G are scattered on the upper surface of the substrate 22, the recesses 22a, 22b, and 22c accommodates only LEDs 10R, 10B and 10G, respectively. Therefore, the LEDs 10R, 10B, and 10G can be efficiently arranged on the upper surface of the substrate 22 in a targeted arrangement without using the guide member 30.

この変形例では、凹部22a,22b及び22c内でLED10R,10B,10Gはそれぞれ側面が基板22に接するように配置されている。このため、LED10R,10B,10Gの側面から放出される十分な光強度の光で画像を表示できる。また、図7(C)に示すように、基板22の上面にそれぞれLED10R,10B,10Gを長手方向(T方向)がその上面に垂直になるように収容可能な凹部22d,22e,22fを設けることも可能である。なお、図7(C)では、LED10R,10B,10Gが基板22の上面から突出して収容されているように図示されているが、LED10R,10B,10Gの長手方向の長さに合わせて、凹部22d,22e,22fのZ方向の長さ(深さ)を設定するようにしても良い。また、凹部22d,22e,22fのZ方向の長さ(深さ)を設定する際には、LED10R,10B,10Gの発光層すべてが発光するように設定しなくてもよく、LED10R,10B,10Gの発光層のうち基板に接する発光層の数がLED10R,10B,10Gで同じになるようにすれば良い。なお、LED10R,10B,10Gの径方向の長さが凹部22d,22e,22fの径方向の長さよりも短い場合、たとえば、LED10Gと凹部22d、収容されるべきでない凹部22dにLED10Gが挿入されることがある。しかしこの場合、たとえ、径方向の長さが大きく異なるため、凹部22d内のLED10Gが基板22と接する可能性が低く、LED10Gは発光しない。また、仮に凹部22dにLED10Gが挿入されたとしても、径方向の長さが大きく異なるため凹部22dからLED10Gが抜け落ちる。よって、収容されるべきでない凹部(たとえば凹部22d)に径方向の長さが異なるLED(たとえば10G)が収容されたとしても、LEDが発光する可能性はほぼない。 In this modification, the LEDs 10R, 10B, and 10G are arranged in the recesses 22a, 22b, and 22c so that their respective side surfaces are in contact with the substrate 22. Therefore, an image can be displayed with light of sufficient intensity emitted from the side surfaces of the LEDs 10R, 10B, and 10G. Further, as shown in FIG. 7(C), recesses 22d, 22e, and 22f are provided on the upper surface of the substrate 22 to accommodate the LEDs 10R, 10B, and 10G, respectively, so that the longitudinal direction (T direction) is perpendicular to the upper surface. It is also possible. Note that in FIG. 7C, the LEDs 10R, 10B, and 10G are shown protruding from the top surface of the board 22 and housed, but the recesses are formed in accordance with the longitudinal lengths of the LEDs 10R, 10B, and 10G. The lengths (depths) in the Z direction of 22d, 22e, and 22f may be set. Furthermore, when setting the lengths (depths) in the Z direction of the recesses 22d, 22e, and 22f, it is not necessary to set them so that all the light emitting layers of the LEDs 10R, 10B, and 10G emit light; Of the 10G light emitting layers, the number of light emitting layers in contact with the substrate may be the same for LEDs 10R, 10B, and 10G. Note that when the radial lengths of the LEDs 10R, 10B, and 10G are shorter than the radial lengths of the recesses 22d, 22e, and 22f, for example, the LED 10G and the recess 22d are inserted into the recess 22d that should not be accommodated. Sometimes. However, in this case, even if the radial lengths are greatly different, there is a low possibility that the LED 10G in the recess 22d will come into contact with the substrate 22, and the LED 10G will not emit light. Further, even if the LED 10G is inserted into the recess 22d, the LED 10G falls out from the recess 22d because the radial lengths are greatly different. Therefore, even if an LED having a different radial length (eg, 10G) is accommodated in a recess that should not be accommodated (eg, the recess 22d), there is almost no possibility that the LED will emit light.

また、図7(D)に示すように、図6(B)の円柱状のLED11R,11B,11Gを使用する場合、基板22の上面にはそれぞれLED11R,11B,11Gを収容可能な円柱の側面状の凹部22h,22i,22gを形成しておいてもよい。この例では、LED11R,11B,11Gを散乱すると、LED11R,11B,11Gがそれぞれ基板22の凹部22h,22i,22gに効率的に配列される。 In addition, as shown in FIG. 7(D), when using the cylindrical LEDs 11R, 11B, and 11G shown in FIG. It is also possible to form recesses 22h, 22i, and 22g. In this example, when the LEDs 11R, 11B, and 11G are scattered, the LEDs 11R, 11B, and 11G are efficiently arranged in the recesses 22h, 22i, and 22g of the substrate 22, respectively.

次に、第2の実施形態につき図8(A)~図17(B)を参照して説明する。なお、図8(A)~図17(B)において図1(A)~図6(A)に対応する部分には同一の符号を付してその詳細な説明を省略する。
図8(A)は、本実施形態に係る赤色光、青色光、及び緑色光をそれぞれ発生する複数のマイクロLEDを結合した第1のマイクロLEDのユニット(以下、LEDユニットという)42を示す。LEDユニット42は、赤色光を発生する第1の発光ダイオード(以下、赤色LEDという)40R(第1発光部)、青色光を発生する第1の発光ダイオード(以下、青色LEDという)40B(第2発光部)、緑色光を発生する第1の発光ダイオード(以下、緑色LEDという)40G(第3発光部)、第2の緑色LED40G1(第3発光部)、第2の青色LED40B1(第2発光部)、及び第2の赤色LED40R1(第1発光部)を、各LEDの発光層と半導体層との接合方向であるT方向に接合したものである。赤色LED40Rは、T方向に順に、P層12P1(第1層)、発光層12R1、及びN層12N(第2層)を積層して形成され、青色LED40Bは、T方向に順に、P層14P1(第3層)、発光層14B1、及びN層14N(第4層)を積層して形成され、緑色LED40Gは、T方向に順に、P層16P1(第5層)、発光層16G1、及びN層16N(第6層)を積層して形成されている。
Next, a second embodiment will be described with reference to FIGS. 8(A) to 17(B). Note that in FIGS. 8(A) to 17(B), parts corresponding to those in FIGS. 1(A) to 6(A) are designated by the same reference numerals, and detailed explanation thereof will be omitted.
FIG. 8A shows a first micro LED unit (hereinafter referred to as an LED unit) 42 in which a plurality of micro LEDs that respectively generate red light, blue light, and green light are combined according to this embodiment. The LED unit 42 includes a first light emitting diode (hereinafter referred to as red LED) 40R (first light emitting unit) that generates red light, and a first light emitting diode (hereinafter referred to as blue LED) 40B (first light emitting unit) that generates blue light. 2 light emitting section), a first light emitting diode (hereinafter referred to as green LED) 40G that generates green light (third light emitting section), a second green LED 40G1 (third light emitting section), a second blue LED 40B1 (second A light emitting part) and a second red LED 40R1 (first light emitting part) are bonded in the T direction, which is the bonding direction between the light emitting layer and the semiconductor layer of each LED. The red LED 40R is formed by stacking a P layer 12P1 (first layer), a light emitting layer 12R1, and an N layer 12N (second layer) in order in the T direction, and the blue LED 40B is formed by stacking a P layer 14P1 in order in the T direction. (third layer), a light emitting layer 14B1, and an N layer 14N (fourth layer). It is formed by laminating layers 16N (sixth layer).

また、緑色LED40G1、青色LED40B1、及び赤色LED40R1は、それぞれ緑色LED40G、青色LED40B、及び赤色LED40RをT方向に関して反転したものである。LEDユニット42において、緑色LED40G,40G1(第3発光部)は、緑色LED40G1のN層12N(第2半導体層)と緑色LED40Gの発光層16G1との間にN層16N(第2半導体層)を有する。この構成で、緑色LED40G,40G1をLEDユニット42の中央に配置しても、緑色LED40G,40G1の半導体層及び発光層をT方向に関して対称に配置できる。 Further, the green LED 40G1, the blue LED 40B1, and the red LED 40R1 are obtained by inverting the green LED 40G, the blue LED 40B, and the red LED 40R with respect to the T direction, respectively. In the LED unit 42, the green LEDs 40G and 40G1 (third light emitting section) have an N layer 16N (second semiconductor layer) between the N layer 12N (second semiconductor layer) of the green LED 40G1 and the light emitting layer 16G1 of the green LED 40G. have With this configuration, even if the green LEDs 40G and 40G1 are arranged at the center of the LED unit 42, the semiconductor layers and light emitting layers of the green LEDs 40G and 40G1 can be arranged symmetrically with respect to the T direction.

LEDユニット42は、断面形状が正方形でT方向に細長い直方体状である。また、LEDユニット42は、T方向において中心となる直線18Aに関して、P層12P1,14P1,16P1,16P1,14P1,12P1及びN層12N,14N,16N,16N,14N,12Nがそれぞれ対称(線対称)である。この場合、LEDユニット42を用いて画像表示装置を製造するために、LEDユニット42を基板22A(図9(A)参照)上に設置する場合、基板22上にLEDユニット42をT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42は3色の光を発光する。このため、基板22上でのLEDユニット42の配列を効率的に行うことができる。 The LED unit 42 has a square cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction. In addition, in the LED unit 42, the P layers 12P1, 14P1, 16P1, 16P1, 14P1, 12P1 and the N layers 12N, 14N, 16N, 16N, 14N, 12N are symmetrical (line symmetrical) with respect to the straight line 18A that is the center in the T direction. ). In this case, when installing the LED unit 42 on the substrate 22A (see FIG. 9(A)) in order to manufacture an image display device using the LED unit 42, the LED unit 42 is inverted with respect to the T direction on the substrate 22. Even when installed, the LED unit 42 emits light in three colors without changing the wiring pattern (not shown) or changing the voltage applied to the wiring. Therefore, the LED units 42 can be efficiently arranged on the substrate 22.

また、LEDユニット42は、T方向に関して、赤色、青色、及び緑色の発光層12R1,14B1,16G1,16G1,14B1,12R1もそれぞれ対称である。このため、LEDユニット42をT方向に関して反転して設置しても、色調が変化しない。また、LEDユニット42の中央には緑色LED40G,40G1が配置されている。赤色、青色、緑色の光のうちで緑色光(中心が555nm)は比視感度が最も高いため、緑色LED40G,40G1を中央に配置することによって、中央が明るくなり、明るさのバランスが良い。ただし、LEDユニット42は、赤色LED40R,40R1、青色LED40B、40B1、及び緑色LED40G,40G1に供給する電圧を個別に制御でき、赤色LED40R,40R1、青色LED40B、40B1、及び緑色LED40G,40G1の光強度を個別に制御できるため、必ずしも緑色LED40G,40G1を中央に配置する必要はない。 Further, in the LED unit 42, the red, blue, and green light emitting layers 12R1, 14B1, 16G1, 16G1, 14B1, and 12R1 are also symmetrical with respect to the T direction. For this reason, even if the LED unit 42 is installed inverted with respect to the T direction, the color tone does not change. Furthermore, green LEDs 40G and 40G1 are arranged at the center of the LED unit 42. Among red, blue, and green lights, green light (centered at 555 nm) has the highest relative luminous efficiency, so by arranging the green LEDs 40G and 40G1 in the center, the center becomes brighter and the brightness is well balanced. However, the LED unit 42 can individually control the voltage supplied to the red LEDs 40R, 40R1, the blue LEDs 40B, 40B1, and the green LEDs 40G, 40G1, and the light intensity of the red LEDs 40R, 40R1, the blue LEDs 40B, 40B1, and the green LEDs 40G, 40G1. can be controlled individually, so it is not necessarily necessary to arrange the green LEDs 40G and 40G1 in the center.

次に、図8(B)は、第2のLEDユニット42Aを示す。LEDユニット42Aは、第1の赤色LED10R、第1の青色LED10B、緑色LED10G、第2の青色LED10B、及び第2の赤色LED10RをT方向に接合したものである。ただし、第2の青色LED10B、及び第2の赤色LED10Rは、それぞれ第1の青色LED10B、及び第1の赤色LED10Rに対してT方向に反転している。なお、赤色LED10R及び青色LED10Bは第1の実施形態で説明したように半導体層及び発光層がT方向に関して対称であるため、第2の青色LED10B、及び第2の赤色LED10Rはそれぞれ2つのP層及び2つの発光層の符号が入れ替わっている。 Next, FIG. 8(B) shows the second LED unit 42A. The LED unit 42A is made by joining a first red LED 10R, a first blue LED 10B, a green LED 10G, a second blue LED 10B, and a second red LED 10R in the T direction. However, the second blue LED 10B and the second red LED 10R are reversed in the T direction with respect to the first blue LED 10B and the first red LED 10R, respectively. Note that, as explained in the first embodiment, the semiconductor layer and the light emitting layer of the red LED 10R and the blue LED 10B are symmetrical with respect to the T direction, so the second blue LED 10B and the second red LED 10R each have two P layers. and the signs of the two light-emitting layers are switched.

LEDユニット42Aは、T方向において中心となる直線18Bに関して、P層12P1,12P2,…12P2,12P1及びN層12N,…12Nがそれぞれ対称である。さらに、LEDユニット42Aは、T方向に関して、3色の発光層12R1,12R2,14B1,14B2,16G1,16G2,14B2,14B1,12R2,12R1がそれぞれ対称である。この場合、LEDユニット42Aを用いて画像表示装置を製造する際に、基板上にLEDユニット42AをT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42Aは3色の光を発光する。このため、基板上でのLEDユニット42Aの配列を効率的に行うことができる。さらに、色調が変化しない。 In the LED unit 42A, the P layers 12P1, 12P2, . . . 12P2, 12P1 and the N layers 12N, . Furthermore, in the LED unit 42A, the three color light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B2, 14B1, 12R2, 12R1 are symmetrical with respect to the T direction. In this case, when manufacturing an image display device using the LED unit 42A, even if the LED unit 42A is installed on the board inverted with respect to the T direction, the wiring pattern (not shown) is not changed. The LED unit 42A emits three colors of light without changing the applied voltage. Therefore, the LED units 42A can be efficiently arranged on the board. Furthermore, the color tone does not change.

また、図8(C)は、第3のLEDユニット42Bを示す。LEDユニット42Bは、第1の赤色LED40R、第1の青色LED40B、緑色LED10G、第2の青色LED40B1、及び第2の赤色LED40R1をT方向に接合したものである。LEDユニット42Bも、T方向において中心となる直線18Cに関して、P層12P1,14P1,…14P1,12P1及びN層12N,14N,…12Nがそれぞれ対称である。さらに、LEDユニット42Bは、T方向に関して、3色の発光層12R1,14B1,16G1,16G2,14B1,12R1がそれぞれ対称である。この場合、LEDユニット42Bを用いて画像表示装置を製造する際に、基板上にLEDユニット42BをT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット42Bは3色の光を発光する。さらに、色調が変化しない。 Moreover, FIG. 8(C) shows the third LED unit 42B. The LED unit 42B is made by joining a first red LED 40R, a first blue LED 40B, a green LED 10G, a second blue LED 40B1, and a second red LED 40R1 in the T direction. In the LED unit 42B, the P layers 12P1, 14P1, . . . 14P1, 12P1 and the N layers 12N, 14N, . Furthermore, in the LED unit 42B, the three color light emitting layers 12R1, 14B1, 16G1, 16G2, 14B1, and 12R1 are symmetrical with respect to the T direction. In this case, when manufacturing an image display device using the LED unit 42B, even if the LED unit 42B is installed on the board inverted with respect to the T direction, the wiring pattern (not shown) is not changed. The LED unit 42B emits three colors of light without changing the applied voltage. Furthermore, the color tone does not change.

また、図8(D)は、第4のLEDユニット44を示す。LEDユニット44は、第1の赤色LED10R、スペーサ部46A、第1の青色LED10B、スペーサ部46B、緑色LED10G、スペーサ部46C、第2の青色LED10B、スペーサ部46D、及び第2の赤色LED10RをT方向に接合したものである。互いに同じ構成で同じ大きさのスペーサ部46A~46Dは、例えばLED10R,10B,10Gを製造する際に使用される基材又はその一部であり、スペーサ部46A~46Dは光を発生しない部分(黒色部又はいわゆるブラックマトリクス部)である。また、第2の青色LED10B、及び第2の赤色LED10Rは、それぞれ第1の青色LED10B、及び第1の赤色LED10Rに対して2つのP層及び2つの発光層の符号が入れ替わっている。青色LED10B(第2発光部)は、P層12P1(第3層)、発光層14B1、N層14N(第4層)、発光層14B2、P層14P2(第3層)をT方向に順に並べた構成である。また、青色LED10Bは、T方向の一端側にP層12P1(第3層)、発光層14B1が配列され、他端側に発光層14B2、P層14P2(第3層)が配列されている。LEDユニット44は、断面が例えば20~100μm程度の幅の正方形で、高さ(長さ)が300~700μm程度の四角柱状である。 Moreover, FIG. 8(D) shows the fourth LED unit 44. The LED unit 44 includes a first red LED 10R, a spacer section 46A, a first blue LED 10B, a spacer section 46B, a green LED 10G, a spacer section 46C, a second blue LED 10B, a spacer section 46D, and a second red LED 10R. It is joined in the direction. The spacer parts 46A to 46D having the same configuration and the same size are, for example, base materials or parts thereof used when manufacturing the LEDs 10R, 10B, and 10G, and the spacer parts 46A to 46D are parts that do not generate light ( This is the black part or so-called black matrix part). Further, in the second blue LED 10B and the second red LED 10R, the signs of the two P layers and the two light emitting layers are switched with respect to the first blue LED 10B and the first red LED 10R, respectively. The blue LED 10B (second light emitting section) includes a P layer 12P1 (third layer), a light emitting layer 14B1, an N layer 14N (fourth layer), a light emitting layer 14B2, and a P layer 14P2 (third layer) arranged in order in the T direction. The configuration is as follows. Further, in the blue LED 10B, a P layer 12P1 (third layer) and a light emitting layer 14B1 are arranged on one end side in the T direction, and a light emitting layer 14B2 and a P layer 14P2 (third layer) are arranged on the other end side. The LED unit 44 has a square cross section with a width of, for example, about 20 to 100 μm, and a rectangular prism shape with a height (length) of about 300 to 700 μm.

LEDユニット44は、T方向において中心となる直線18Dに関して、P層12P1,12P2,…12P1及びN層12N,14N,…12Nがそれぞれ対称である。さらに、LEDユニット44は、T方向に関して、3色の発光層12R1,12R2,14B1,14B2,16G1,16G2,14B2,14B1,12R2,12R1及びスペーサ部46A~46Dがそれぞれ対称である。この場合、LEDユニット44を用いて画像表示装置を製造する際に、基板上にLEDユニット44をT方向に関して反転して設置しても、不図示の配線パターンを変更することなく、さらに配線に印加する電圧を変更することなく、LEDユニット44は3色の光を発光する。このため、基板上でのLEDユニット44の配列を効率的に行うことができる。さらに、色調が変化しない。 In the LED unit 44, the P layers 12P1, 12P2, . . . 12P1 and the N layers 12N, 14N, . Further, in the LED unit 44, the three color light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, 16G2, 14B2, 14B1, 12R2, 12R1 and the spacer parts 46A to 46D are symmetrical with respect to the T direction. In this case, when manufacturing an image display device using the LED unit 44, even if the LED unit 44 is installed on the board inverted with respect to the T direction, the wiring pattern (not shown) is not changed. The LED unit 44 emits three colors of light without changing the applied voltage. Therefore, the LED units 44 can be efficiently arranged on the board. Furthermore, the color tone does not change.

上述のようにLEDユニット42,42A,42B,44は、それぞれ断面形状が正方形でT方向に細長い直方体状である。なお、LEDユニット42,42A~42C,44の外形を、細長い円柱状、又は細長い多角柱状にしてもよい。また、LEDユニット42,42A~42C,44は、T方向に関して半導体層(P層、N層)及び各色の発光層が対称に配置されていれば、その半導体層(P層、N層)及び各色の発光層の数及び配置は任意である。 As described above, the LED units 42, 42A, 42B, and 44 each have a square cross-sectional shape and a rectangular parallelepiped shape elongated in the T direction. Note that the external shape of the LED units 42, 42A to 42C, and 44 may be an elongated columnar shape or an elongated polygonal columnar shape. Further, in the LED units 42, 42A to 42C, 44, if the semiconductor layers (P layer, N layer) and the light emitting layers of each color are arranged symmetrically with respect to the T direction, the semiconductor layers (P layer, N layer) The number and arrangement of the light-emitting layers of each color are arbitrary.

図9(A)は、それぞれ本実施形態に係るLEDユニット42を用いたフルカラーの画像表示装置20Aを示す。図9(B)は、それぞれ本実施形態に係るLEDユニット42Bを、用いたフルカラーの画像表示装置20Bを示す。図10(A)は、それぞれ本実施形態に係るLEDユニット44を用いたフルカラーの画像表示装置20Cを示す。画像表示装置20A,20B,20Cは、それぞれほぼ長方形の絶縁体よりなる基板22A,22B,22Cの上面に、LEDユニット42,42A,44をマトリクス状に配列して固定した表示部と、多数のLEDユニット42,42A,44のオン/オフ及び光強度を個別に制御する制御部24A,24B,24Cとを備えている。なお、図9(A)、図9(B)、図10(A)及び以下で参照する図面では、説明の便宜上、LEDユニット42,42A,44を実際の大きさよりもかなり拡大して表している。以下、基板22A,22B,22Cの長手方向及び短手方向に沿ってそれぞれX軸及びY軸を取って説明する。本実施形態では、一例として、LEDユニット42,42A,44の接合方向であるT方向がX方向となっている。 FIG. 9A shows a full-color image display device 20A using the LED unit 42 according to this embodiment. FIG. 9B shows a full-color image display device 20B using the LED unit 42B according to this embodiment. FIG. 10A shows a full-color image display device 20C using the LED unit 44 according to this embodiment. The image display devices 20A, 20B, and 20C each include a display section in which LED units 42, 42A, and 44 are arranged and fixed in a matrix on the upper surface of a substantially rectangular insulating substrate 22A, 22B, and 22C, respectively, and a large number of LED units. It includes control units 24A, 24B, and 24C that individually control on/off and light intensity of the LED units 42, 42A, and 44. Note that in FIGS. 9(A), 9(B), 10(A), and the drawings referred to below, the LED units 42, 42A, and 44 are shown considerably enlarged than their actual sizes for convenience of explanation. There is. Hereinafter, the description will be made by taking the X-axis and Y-axis along the longitudinal direction and lateral direction of the substrates 22A, 22B, and 22C, respectively. In this embodiment, as an example, the T direction, which is the joining direction of the LED units 42, 42A, and 44, is the X direction.

例えば制御部24Cは、各LEDユニット44内の計5個あるLED10R,10B,10G内の任意のLEDの光強度も個別に制御できる。制御部24Aは、それぞれ各LEDユニット42内のLED40R,40R1,40G,40G1,40B,40B1内の発光層の光強度を個別に制御できる。 For example, the control unit 24C can also individually control the light intensity of any of the five LEDs 10R, 10B, and 10G in each LED unit 44. The control unit 24A can individually control the light intensity of the light emitting layers in the LEDs 40R, 40R1, 40G, 40G1, 40B, and 40B1 in each LED unit 42, respectively.

本実施形態では、LEDユニット42,42A,44はそれぞれX軸に平行な直線に沿ってX方向に所定ピッチで配列され、X方向に配列された2列のLEDユニット42,42A,44は、X方向に半ピッチずれて市松模様状に配置されている。LEDユニット42,42A,44のX方向の配列のピッチは、例えばLEDユニット42,42A,44のX方向の長さ(高さ)の1.1倍程度であり、LEDユニット42,42A,44のY方向の配列のピッチは、例えばLEDユニット42,42A,44の断面形状の幅の1.5~2倍程度である。LEDユニット42,42A,44のX方向及びY方向の配列数はそれぞれ200及び1000程度である。なお、LEDユニット42,42A,44の配列及び配列数は任意であり、例えばX方向に配列された1列のLEDユニット42,42A,44をそのままY方向に平行移動する状態の配列としてもよい。 In this embodiment, the LED units 42, 42A, 44 are each arranged at a predetermined pitch in the X direction along a straight line parallel to the X axis, and the two rows of LED units 42, 42A, 44 arranged in the X direction are They are arranged in a checkered pattern shifted by half a pitch in the X direction. The pitch of the arrangement of the LED units 42, 42A, 44 in the X direction is, for example, about 1.1 times the length (height) of the LED units 42, 42A, 44 in the X direction. The pitch of the arrangement in the Y direction is, for example, approximately 1.5 to 2 times the width of the cross-sectional shape of the LED units 42, 42A, and 44. The numbers of LED units 42, 42A, and 44 arranged in the X direction and Y direction are approximately 200 and 1000, respectively. Note that the arrangement and number of LED units 42, 42A, 44 are arbitrary; for example, one row of LED units 42, 42A, 44 arranged in the X direction may be arranged in parallel to the Y direction. .

また、図10(B)に示すように、画像表示装置20Cの基板22Cの上面のLEDユニット44が設置される領域には、LEDユニット44のLED10R,10B,10G,10B,10RのP層12P1,12P2,…12P2及びN層12N,14N,…12N(図8(D)参照)に電圧を印加するための配線28A~28I及び28F~28Aが形成されている。また、配線28A~28Iと対応するLED10R,10B,10Gとの間には図2(B)の端子部26A~26Iと同様の加熱によって溶着可能な材料又は導電性の接着剤よりなる端子部(不図示)が形成されている。制御部24Cは、配線28A~28I等に印加する電圧を多数のLEDユニット44内のLED10R,10B,10G内の2つの発光層毎に個別に制御する。これによって、表示部で任意の画像をフルカラーで高精細に表示できる。同様に、画像表示装置20A,20Bにおいても、表示部で任意の画像をフルカラーで表示できる。 Further, as shown in FIG. 10B, in the area where the LED unit 44 is installed on the upper surface of the substrate 22C of the image display device 20C, the P layer 12P1 of the LEDs 10R, 10B, 10G, 10B, and 10R of the LED unit 44 is provided. , 12P2, . . . 12P2 and the N layers 12N, 14N, . . . 12N (see FIG. 8(D)). Furthermore, between the wirings 28A to 28I and the corresponding LEDs 10R, 10B, and 10G, terminal portions ( (not shown) is formed. The control unit 24C individually controls the voltages applied to the wirings 28A to 28I and the like for each of the two light emitting layers in the LEDs 10R, 10B, and 10G in the large number of LED units 44. This allows any image to be displayed in full color and in high definition on the display unit. Similarly, in the image display devices 20A and 20B, any image can be displayed in full color on the display section.

次に、本実施形態のLEDユニット44及び画像表示装置20Cの製造方法の一例につき図11のフローチャートを参照して説明する。この製造のためには、第1の実施形態と同様の製造装置(不図示)が使用される。なお、LEDユニット42,42A,42B及び画像表示装置20A、20Bも同様の工程で製造できる。 Next, an example of a method for manufacturing the LED unit 44 and image display device 20C of this embodiment will be described with reference to the flowchart of FIG. 11. For this manufacturing, a manufacturing apparatus (not shown) similar to that of the first embodiment is used. Note that the LED units 42, 42A, 42B and the image display devices 20A, 20B can also be manufactured in the same process.

まず、図11のステップ102Aにおいて、半導体素子製造プロセスを用いて、図8(D)のLEDユニット44を構成する3種類のLED10R,10B,10Gを製造する
ための円板状の3種類の基材48A,48B,48Cの表面に、図12(A)に示すように、それぞれP層12PA,14PA,16PA、発光層12RA,14BA,16GA、N層12NA,14NA,16NA、発光層12RB,14BB,16GB、及びP層12PB,14PB,16PBをT方向に積層する。これによって、赤色のマイクロLED用の2枚のウエハ46R1,46R2(第1基板)、青色のマイクロLED用の2枚のウエハ46B1,46B2(第2基板)、及び緑色のマイクロLED用の1枚のウエハ46G(第3基板)が製造される。
First, in step 102A of FIG. 11, three types of disk-shaped substrates are used to manufacture three types of LEDs 10R, 10B, and 10G that constitute the LED unit 44 of FIG. 8(D) using a semiconductor element manufacturing process. As shown in FIG. 12(A), on the surfaces of the materials 48A, 48B, and 48C, P layers 12PA, 14PA, 16PA, light emitting layers 12RA, 14BA, 16GA, N layers 12NA, 14NA, 16NA, and light emitting layers 12RB, 14BB, respectively. , 16GB, and P layers 12PB, 14PB, and 16PB are stacked in the T direction. As a result, two wafers 46R1 and 46R2 (first substrate) for red micro LEDs, two wafers 46B1 and 46B2 (second substrate) for blue micro LEDs, and one wafer for green micro LEDs. A wafer 46G (third substrate) is manufactured.

そして、ステップ130において、図12(B)に示すように、5枚のウエハ46R1,46B1,46G、46B2,46R2を絶縁性の接着剤48A,48B,48C,48Dを介して貼り合わせる。さらに、ステップ132において、図13(A)に示すように、最下部の赤色LED用のウエハ46R1の基材48Aをエッチング等によって分離(除去)して、多数のLEDユニット44の集合体50を製造し、ダイシング装置(不図示)によって集合体50の点線の切断部52を切断する。これによって、図13(B)に示すように、LED10R,10B,10G及びスペーサ部46A~46Dを積層した構成の多数のLEDユニット44が製造できる。ウエハ46B1,46G,46B2,46R2の基材48B,48C,48B,48Aの一部がそれぞれスペーサ部46A~46Dとなっている。このLEDユニット44の製造方法によれば、多層構成のLEDユニット44を効率的に製造できる。 Then, in step 130, as shown in FIG. 12(B), five wafers 46R1, 46B1, 46G, 46B2, and 46R2 are bonded together via insulating adhesives 48A, 48B, 48C, and 48D. Furthermore, in step 132, as shown in FIG. 13(A), the base material 48A of the lowermost red LED wafer 46R1 is separated (removed) by etching or the like to form an aggregate 50 of a large number of LED units 44. The assembly 50 is manufactured and cut along the dotted line cut portion 52 using a dicing device (not shown). As a result, as shown in FIG. 13(B), a large number of LED units 44 having a structure in which the LEDs 10R, 10B, 10G and spacer parts 46A to 46D are stacked can be manufactured. Parts of the base materials 48B, 48C, 48B, and 48A of the wafers 46B1, 46G, 46B2, and 46R2 serve as spacer portions 46A to 46D, respectively. According to this method of manufacturing the LED unit 44, the LED unit 44 having a multilayer structure can be efficiently manufactured.

そして、ステップ106Aにおいて、図14(A)に示すように、画像表示装置20Cの基板22C、第1のガイド部材30A、及び図16(A)の第2のガイド部材30Bを製造する。基板22Cの上面のLEDユニット44が配置される領域23(例えば基板22CのX方向及びY方向の端部を基準として位置が予め規定されている)には、それぞれ配線28A~28I及び端子部(図10(B)参照)が形成されている。さらに、制御部24Cも製造される。ガイド部材30Aは、ほぼ基板22Cと同じ大きさで、ガイド部材30Aには、図10(A)のLEDユニット44の配列と同じ配列で、LEDユニット44が収容可能な複数の長方形の開口52がマトリクス状に形成されている。開口52は対応するLEDユニット44の側面の形状よりもわずかに大きく形成されている。 Then, in step 106A, as shown in FIG. 14(A), the substrate 22C of the image display device 20C, the first guide member 30A, and the second guide member 30B of FIG. 16(A) are manufactured. In the area 23 on the upper surface of the board 22C where the LED unit 44 is arranged (for example, the position is predefined with reference to the ends of the board 22C in the X direction and the Y direction), wirings 28A to 28I and terminal portions ( (see FIG. 10(B)) is formed. Furthermore, the control section 24C is also manufactured. The guide member 30A has approximately the same size as the substrate 22C, and the guide member 30A has a plurality of rectangular openings 52 that can accommodate the LED units 44 in the same arrangement as the LED units 44 in FIG. 10(A). It is formed in a matrix. The opening 52 is formed slightly larger than the shape of the side surface of the corresponding LED unit 44.

本実施形態では、一例としてガイド部材30Aを基板22に取り付けたままにしておくものとする。なお、LEDユニット44の装着後にガイド部材30Aを基板22から取り外すようにしてもよい。開口52の周辺のガイド部材30Aの厚さは、LEDユニット44の断面の辺の幅程度である。また、ガイド部材30Aの隣接する2つの開口52の間には、図15(B)及び(C)に示すように、開口52にX方向に向かって次第に低くなる傾斜部54A,54Bと、開口52にY方向に向かって次第に低くなる傾斜部54C,54Dとが形成されている。傾斜部54A~54Cによって、LEDユニット44は円滑に開口52に収容される。 In this embodiment, as an example, the guide member 30A is left attached to the substrate 22. Note that the guide member 30A may be removed from the board 22 after the LED unit 44 is attached. The thickness of the guide member 30A around the opening 52 is approximately the width of the side of the cross section of the LED unit 44. In addition, between the two adjacent openings 52 of the guide member 30A, as shown in FIGS. 52 is formed with inclined portions 54C and 54D that gradually become lower in the Y direction. The LED unit 44 is smoothly accommodated in the opening 52 by the inclined portions 54A to 54C.

そして、ステップ134において、基板22CのLEDユニット44が配置される領域23に、ガイド部材30Aの開口52が対向するように、基板22Cに対してガイド部材30Aの位置決めを行い、図14(B)に示すように、基板22Cの上面にガイド部材30Aを配置して固定する。一例として、後述の第2のガイド部材30Bを使用しない場合には、図3のステップ112~116と同様に、図14(B)に示すように、ガイド部材30Aの上面に多数のLEDユニット44を散布すると、図15(A)に示すように、ガイド部材30Aの多数の開口52内の基板22Cの上面に、それぞれLEDユニット44がその側面が基板22Cの上面に接するように配置される。図15(B)、(C)に示すように、位置B1及びB2にあるLEDユニット44はそれぞれガイド部材30Aの傾斜部54A,54Bを介して対応する開口52内に円滑に収容される。その後、動作は図11のステップ118Aに移行する。 Then, in step 134, the guide member 30A is positioned with respect to the substrate 22C so that the opening 52 of the guide member 30A faces the area 23 where the LED unit 44 of the substrate 22C is arranged, and as shown in FIG. As shown in FIG. 2, a guide member 30A is arranged and fixed on the upper surface of the substrate 22C. As an example, when the second guide member 30B to be described later is not used, a large number of LED units 44 are installed on the upper surface of the guide member 30A as shown in FIG. As shown in FIG. 15(A), the LED units 44 are arranged on the upper surface of the substrate 22C within the multiple openings 52 of the guide member 30A so that their side surfaces are in contact with the upper surface of the substrate 22C. As shown in FIGS. 15(B) and 15(C), the LED units 44 at positions B1 and B2 are smoothly housed in the corresponding openings 52 via the inclined portions 54A, 54B of the guide member 30A, respectively. Operation then proceeds to step 118A of FIG.

ここでは、ガイド部材30Aの開口52内により効率的にLEDユニット44を収容させるために、図16(A)に示すように、第2のガイド部材30Bを使用する場合につき説明する。第2のガイド部材30Bには、第1のガイド部材30Aの多数の開口52と同じ配列で、基板22Cの上面の法線方向に長手方向が配置されたLEDユニット44が通過可能な多数の開口56が形成されている。言い替えると、開口56は、LEDユニット44の断面形状よりもわずかに大きい形状である。また、第2のガイド部材30Bの上面の開口56に隣接する領域にも、開口56に向かって次第に低下する傾斜部58A,58Bが形成され、第2のガイド部材30Bの底面(基板22Cに対向する面)の開口56に隣接する領域には、傾斜部58A,58Bより小さい傾斜部58C,58D(面取り部でもよい)が形成されている。 Here, a case will be described in which a second guide member 30B is used as shown in FIG. 16(A) in order to more efficiently accommodate the LED unit 44 in the opening 52 of the guide member 30A. The second guide member 30B has a large number of openings through which the LED units 44 can pass, the longitudinal direction of which is arranged in the normal direction of the upper surface of the substrate 22C, in the same arrangement as the large number of openings 52 of the first guide member 30A. 56 is formed. In other words, the opening 56 has a shape slightly larger than the cross-sectional shape of the LED unit 44. Furthermore, sloped portions 58A and 58B that gradually decrease toward the opening 56 are formed in the area adjacent to the opening 56 on the top surface of the second guide member 30B, and the bottom surface of the second guide member 30B (opposed to the substrate 22C Slanted portions 58C and 58D (which may be chamfered portions) smaller than the sloped portions 58A and 58B are formed in the region adjacent to the opening 56 of the surface of the slanted surface.

このとき、ステップ136において、第2のガイド部材30Bの開口56の-X方向の端部が第1のガイド部材30Aの開口52の-X方向の端部にほぼ一致するように、かつ第2のガイド部材30Bの底面と基板22Cとの間隔がLEDユニット44の高さよりもわずかに小さくなるように、第1のガイド部材30Aに対して第2のガイド部材30Bを位置決めする。この際に、第2のガイド部材30BをX方向、Y方向、及び基板22Cの法線方向に移動する駆動部60(不図示)が使用される。 At this time, in step 136, the end of the opening 56 of the second guide member 30B in the -X direction almost coincides with the end of the opening 52 of the first guide member 30A in the -X direction, and The second guide member 30B is positioned with respect to the first guide member 30A so that the distance between the bottom surface of the guide member 30B and the substrate 22C is slightly smaller than the height of the LED unit 44. At this time, a drive unit 60 (not shown) is used that moves the second guide member 30B in the X direction, the Y direction, and the normal direction of the substrate 22C.

次のステップ138において、図16(A)に示すように、基板22C及び第1のガイド部材30Aの上方に配置された第2のガイド部材30Bの上面に、多数のLEDユニット44を散布する。この結果、多数のLEDユニット44は第2のガイド部材30Bの傾斜部58A,58Bを介してそれぞれ開口56を通過する。図16(B)に示すように、開口56を通過したLEDユニット44の端部が、それぞれ第1のガイド部材30Aの開口52の-X方向の端部に接触する。この状態で、ステップ140において、駆動部60によって第2のガイド部材30Bを第1のガイド部材30Aに対して矢印B3で示す+X方向に相対移動する。そして、第2のガイド部材30Bの移動によって、図17(A)に示すように、第1のガイド部材30Aの開口52内のLEDユニット44はそれぞれ時計回りに回転し、最終的に図17(B)に示すように、第1のガイド部材30Aの開口52内のLEDユニット44は、それぞれ側面が基板22Cに接触する姿勢で開口52内に収容される。これによって、基板22Cの上面での多数のLEDユニット44が目標とする配置で配列される。 In the next step 138, as shown in FIG. 16(A), a large number of LED units 44 are scattered on the upper surface of the second guide member 30B disposed above the substrate 22C and the first guide member 30A. As a result, a large number of LED units 44 each pass through the opening 56 via the inclined portions 58A, 58B of the second guide member 30B. As shown in FIG. 16(B), the ends of the LED units 44 that have passed through the openings 56 come into contact with the ends of the openings 52 in the -X direction of the first guide member 30A. In this state, in step 140, the drive unit 60 moves the second guide member 30B relative to the first guide member 30A in the +X direction indicated by arrow B3. Then, as the second guide member 30B moves, the LED units 44 in the openings 52 of the first guide member 30A rotate clockwise as shown in FIG. 17(A), and finally, as shown in FIG. As shown in B), the LED units 44 in the opening 52 of the first guide member 30A are housed in the opening 52 with their respective side surfaces in contact with the substrate 22C. As a result, a large number of LED units 44 on the upper surface of the substrate 22C are arranged in a targeted arrangement.

次のステップ118Aにおいて、基板22Cを底面から加熱することで、基板22Cの端子部(不図示)(及び図10(B)の配線28A~28I)がLEDユニット44の対応するLED10R,10B,10GのP層又はN層に溶着し、LEDユニット44が基板22Cの上面に固定される。その後、ステップ124Aにおいて、第2のガイド部材30Bを除去し、LEDユニット44を覆うカバーガラスの設置等を行うことで、画像表示装置20Cが製造される。 In the next step 118A, by heating the substrate 22C from the bottom, the terminal portion (not shown) of the substrate 22C (and the wirings 28A to 28I in FIG. The LED unit 44 is fixed to the upper surface of the substrate 22C by welding to the P layer or the N layer. Thereafter, in step 124A, the second guide member 30B is removed and a cover glass covering the LED unit 44 is installed, thereby manufacturing the image display device 20C.

このように本実施形態では、第2のガイド部材30Bの上面に多数のLEDユニット44を散布することによって、基板22Cの上面の第1のガイド部材30Aの開口52内に目標とする配置でLEDユニット44を効率的に配列できる。この際に、LEDユニット44はT方向に関してP層12P1,12P2,…12P1及びN層12N,14N,…12Nが対称であるため、ガイド部材30Aの開口52に対してLEDユニット44がT方向(X方向)に反転して収容されたとしても、配線28A~28Iに印加する電圧を変更することなく、LEDユニット44のLED10R,10B,10Gは同じように発光可能である。このため、より効率的に画像表示装置20を製造できる。 In this manner, in this embodiment, by scattering a large number of LED units 44 on the upper surface of the second guide member 30B, the LEDs can be placed in the target arrangement within the opening 52 of the first guide member 30A on the upper surface of the substrate 22C. The units 44 can be arranged efficiently. At this time, in the LED unit 44, since the P layers 12P1, 12P2, ... 12P1 and the N layers 12N, 14N, ... 12N are symmetrical with respect to the T direction, the LED unit 44 is symmetrical in the T direction ( Even if the LED unit 44 is housed inverted in the X direction), the LEDs 10R, 10B, and 10G of the LED unit 44 can emit light in the same way without changing the voltages applied to the wirings 28A to 28I. Therefore, the image display device 20 can be manufactured more efficiently.

さらに、LEDユニット44は3色の発光層12R1,12R2,…12R1もT方向に関して対称であるため、ガイド部材30Aの開口52に対してLEDユニット44がT方向に反転して収容されたとしても、画像表示装置20Cの色調が変化しない。
上述のように、本実施形態のLEDユニット44は、それぞれ赤色光、青色光、又は緑色光を発光する複数の発光層12R1,12R2,14B1,14B2,16G1,16G2と、電圧が付加されると発光層12R1,…16G2で光が発光するよう発光層12R1,…16G2に接合された複数のP層12P1,12P2等及びN層12N,14N等(半導体層)と、を備え、複数の発光層12R1等と、複数のP層12P1等及びN層12N等(半導体層)とがT方向(接合方向)に関して順に並んで接合された発光素子である。
Furthermore, since the three color light emitting layers 12R1, 12R2, ... 12R1 of the LED unit 44 are also symmetrical with respect to the T direction, even if the LED unit 44 is housed inverted in the T direction with respect to the opening 52 of the guide member 30A. , the color tone of the image display device 20C does not change.
As described above, the LED unit 44 of this embodiment includes a plurality of light emitting layers 12R1, 12R2, 14B1, 14B2, 16G1, and 16G2 that each emit red light, blue light, or green light, and when a voltage is applied, A plurality of P layers 12P1, 12P2, etc. and N layers 12N, 14N, etc. (semiconductor layers) bonded to the light emitting layers 12R1,...16G2 so that light is emitted by the light emitting layers 12R1,...16G2, and a plurality of light emitting layers. 12R1, etc., and a plurality of P layers 12P1, etc., and N layers 12N, etc. (semiconductor layers) are sequentially lined up and bonded in the T direction (junction direction).

LEDユニット44を用いて画像表示装置20Cを製造する場合、LEDユニット44を例えば基板22C上のガイド部材30A又は30Bの上面に散乱させるのみで、LEDユニット44を目標とする配置に効率的に配列できる。さらに、LEDユニット44は3色の発光層、及び半導体層がそれぞれT方向に関して対称であるため、LEDユニット44を基板22C上でT方向に反転して設置しても、配線等を変更することなく、同じ色調でLEDユニット44の3色の光を発光させることができる。 When manufacturing the image display device 20C using the LED units 44, the LED units 44 can be efficiently arranged in a targeted arrangement by simply scattering the LED units 44 on the upper surface of the guide member 30A or 30B on the substrate 22C, for example. can. Furthermore, since the three color light emitting layers and the semiconductor layer of the LED unit 44 are symmetrical with respect to the T direction, even if the LED unit 44 is installed upside down in the T direction on the substrate 22C, wiring etc. cannot be changed. Instead, the LED unit 44 can emit three colors of light with the same color tone.

また、本実施形態の画像表示装置20Cは、LEDユニット44と、LEDユニット44の発光層12R1,12R2等へ電力を供給する配線28A~28Iが形成され、LEDユニット44が接合される基板22Cと、を備えている。画像表示装置20Cは、基板22C上でのLEDユニット44の配列を効率的に行うことができるため、効率的に製造できる。 Further, the image display device 20C of the present embodiment includes a substrate 22C to which the LED unit 44 and wirings 28A to 28I for supplying power to the light emitting layers 12R1, 12R2, etc. of the LED unit 44 are formed, and to which the LED unit 44 is bonded. , is equipped with. The image display device 20C can be efficiently manufactured because the LED units 44 can be efficiently arranged on the substrate 22C.

また、本実施形態のLEDユニット44の製造方法は、3色のLED10R,10B,10Gをそれぞれ形成するように、発光層12R1,12R2等と、P層12PA,12PB等及びN層12NA等とをT方向に関して並べて接合して赤色LED、青色LED、及び緑色LEDのウエハ46R1,46B1,46Gを製造するステップ102Aと、ウエハ46R1,46B1,46GをT方向に並べて絶縁性の接着剤48A,48Bを介して貼り合わせるステップ130と、貼り合わせたウエハ46R1,46B1,46GをT方向と直交する方向に関して切り分けるステップ132とを有する。この製造方法によれば、多層で3色のLEDユニット44を効率的に高精度に製造できる。 In addition, the method for manufacturing the LED unit 44 of the present embodiment includes forming the light emitting layers 12R1, 12R2, etc., the P layers 12PA, 12PB, etc., and the N layer 12NA, etc. so as to form three color LEDs 10R, 10B, and 10G, respectively. A step 102A of manufacturing red LED, blue LED, and green LED wafers 46R1, 46B1, 46G by arranging and bonding them in the T direction, and arranging the wafers 46R1, 46B1, 46G in the T direction and applying insulating adhesives 48A, 48B. The process includes a step 130 of bonding the bonded wafers 46R1, 46B1, and 46G together through a step 130, and a step 132 of cutting the bonded wafers 46R1, 46B1, and 46G in a direction orthogonal to the T direction. According to this manufacturing method, the multilayer three-color LED unit 44 can be manufactured efficiently and with high precision.

また、本実施形態の画像表示装置20Cの製造方法は、基板22C上において、複数のLEDユニット44を散乱するステップ138と、散乱されたLEDユニット44と基板22Cとを加熱による溶着によって接合するステップ118Aとを含む。この製造方法によれば、LEDユニット44の散乱によって効率的にLEDユニット44を目標とする配置で配列できるため、画像表示装置20Cを効率的に製造できる。 Further, the method for manufacturing the image display device 20C of this embodiment includes a step 138 of scattering a plurality of LED units 44 on the substrate 22C, and a step of joining the scattered LED units 44 and the substrate 22C by welding by heating. 118A. According to this manufacturing method, since the LED units 44 can be efficiently arranged in a targeted arrangement by scattering the LED units 44, the image display device 20C can be efficiently manufactured.

なお、上述の実施形態では以下のような変形が可能である。
まず、上述の実施形態では、LEDユニット44は3色で発光するが、LEDユニット44は少なくとも1色で発光してもよい。また、LEDユニット44は、白色光を発生するマイクロLEDを有してもよい。
Note that the above-described embodiment can be modified as follows.
First, in the embodiment described above, the LED unit 44 emits light in three colors, but the LED unit 44 may emit light in at least one color. Further, the LED unit 44 may include a micro LED that generates white light.

また、上述の実施形態において、図10(B)に点線で示すように、基板22CのLEDユニット44が設置される領域に吸引孔22Caを形成し、LEDユニット44を基板22Cの端子部等に固定(溶着)する際に、不図示の真空ポンプによって、LEDユニット44を吸引孔22Caを介して吸着していてもよい。これによって、より安定にLEDユニット44を基板22Cに固定できる。
また、上述の実施形態では、発光部は発光ダイオードであるが、発光部は半導体レーザ等であってもよい。
In the above-described embodiment, as shown by the dotted line in FIG. 10(B), the suction hole 22Ca is formed in the area of the board 22C where the LED unit 44 is installed, and the LED unit 44 is connected to the terminal part of the board 22C. When fixing (welding), the LED unit 44 may be sucked through the suction hole 22Ca by a vacuum pump (not shown). This allows the LED unit 44 to be more stably fixed to the substrate 22C.
Further, in the above embodiments, the light emitting section is a light emitting diode, but the light emitting section may be a semiconductor laser or the like.

10R,40R…赤色LED、10B,40B…青色LED、10G,40G…緑色LED、12P1,12P2,14P1,14P2,16P1,16P2…P層、12N,14N,16N…N層、12R1,12R2,14B1,14B2,16G1,16G2…発光層、20,20A~20C…画像表示装置、22,22A~22C…基板、26A~26I…端子部、28A~28I…配線、30,30A,30B…ガイド部材、42,42A,42B,44…LEDユニット、46R1,46R2…赤色LEDのウエハ、46B1,46B2…青色LEDのウエハ、46G…緑色LEDのウエハ 10R, 40R...Red LED, 10B, 40B...Blue LED, 10G, 40G...Green LED, 12P1, 12P2, 14P1, 14P2, 16P1, 16P2...P layer, 12N, 14N, 16N...N layer, 12R1, 12R2, 14B1 , 14B2, 16G1, 16G2... Light emitting layer, 20, 20A to 20C... Image display device, 22, 22A to 22C... Substrate, 26A to 26I... Terminal section, 28A to 28I... Wiring, 30, 30A, 30B... Guide member, 42, 42A, 42B, 44...LED unit, 46R1, 46R2...Red LED wafer, 46B1, 46B2...Blue LED wafer, 46G...Green LED wafer

Claims (40)

第1の色の光を発光する複数の第1発光層と、前記第1の色とは異なる第2の色の光を発光する複数の第2発光層とを有する発光層と、
前記第1発光層および前記第2発光層のそれぞれを所定方向に挟むように設けられる複数の半導体層と、を備え、
前記複数の第1発光層と前記複数の第2発光層と前記複数の半導体層のそれぞれが、前記所定方向の中心線に関して線対称になるよう順に並んで接合された、発光素子。
A light emitting layer having a plurality of first light emitting layers that emit light of a first color and a plurality of second light emitting layers that emit light of a second color different from the first color;
a plurality of semiconductor layers provided to sandwich each of the first light emitting layer and the second light emitting layer in a predetermined direction;
A light emitting element, wherein each of the plurality of first light emitting layers, the plurality of second light emitting layers, and the plurality of semiconductor layers are lined up and bonded in order so as to be line symmetrical with respect to a center line in the predetermined direction.
請求項1に記載の発光素子において、
前記所定方向は、前記発光素子が接合される平板状の基板の表面に平行な方向である、発光素子。
The light emitting device according to claim 1,
In the light emitting element, the predetermined direction is a direction parallel to a surface of a flat substrate to which the light emitting element is bonded.
請求項1又は2に記載の発光素子において、
前記複数の半導体層は、前記第1発光層を前記所定方向に挟むように設けられ、伝導形式が互いに異なる第1半導体層及び第2半導体層と、前記第2発光層を前記所定方向に挟むように設けられ、伝導形式が互いに異なる第3半導体層及び第4半導体層とを有する、発光素子。
The light emitting device according to claim 1 or 2,
The plurality of semiconductor layers are provided so as to sandwich the first light-emitting layer in the predetermined direction, and sandwich the second light-emitting layer between a first semiconductor layer and a second semiconductor layer having different conduction types in the predetermined direction. A light emitting element comprising a third semiconductor layer and a fourth semiconductor layer having different conduction types.
請求項3に記載の発光素子において、
前記第1半導体層および前記第3半導体層はP型半導体層であり、
前記第2半導体層および前記第4半導体層はN型半導体層である、発光素子。
The light emitting device according to claim 3,
The first semiconductor layer and the third semiconductor layer are P-type semiconductor layers,
A light emitting device, wherein the second semiconductor layer and the fourth semiconductor layer are N-type semiconductor layers.
請求項3又は4に記載の発光素子において、
前記発光層は、前記第1の色および前記第2の色とは異なる第3の色の光を発光する複数の第3発光層を有し、
前記複数の半導体層は、前記第3発光層を前記所定方向に挟むように設けられ、伝導形式が互いに異なる第5半導体層及び第6半導体層を有し、
前記複数の第1発光層と前記複数の第2発光層と前記複数の第3発光層と前記複数の半導体層のそれぞれが、前記所定方向の中心線に関して線対称になるよう順に並んで接合された、発光素子。
The light emitting device according to claim 3 or 4,
The light emitting layer has a plurality of third light emitting layers that emit light of a third color different from the first color and the second color,
The plurality of semiconductor layers are provided to sandwich the third light emitting layer in the predetermined direction, and include a fifth semiconductor layer and a sixth semiconductor layer having different conduction types,
Each of the plurality of first light-emitting layers, the plurality of second light-emitting layers, the plurality of third light-emitting layers, and the plurality of semiconductor layers are lined up and bonded in order so as to be line symmetrical with respect to a center line in the predetermined direction. Also, a light emitting element.
請求項5に記載の発光素子において、
前記第1から第3発光層のいずれかは緑色の光を発光する緑色発光層であり、前記緑色発光層が前記所定方向において中心となる位置の最も近くに配列される、発光素子。
The light emitting device according to claim 5,
The light emitting element, wherein one of the first to third light emitting layers is a green light emitting layer that emits green light, and the green light emitting layer is arranged closest to a central position in the predetermined direction.
請求項1から6の何れか一項に記載の発光素子と、
前記発光層へ電力を供給する配線が形成され、前記発光素子が接合される基板と、を備える表示装置。
The light emitting device according to any one of claims 1 to 6,
A display device comprising: a substrate on which wiring for supplying power to the light emitting layer is formed and to which the light emitting element is bonded.
請求項7に記載の表示装置において、
前記発光素子と前記配線とが接続される所定位置に前記発光素子を誘導するガイド部を備える、表示装置。
The display device according to claim 7,
A display device including a guide portion that guides the light emitting element to a predetermined position where the light emitting element and the wiring are connected.
請求項8に記載の表示装置において、
前記ガイド部は、前記発光素子の側面が前記基板と接触するように形成される、表示装置。
The display device according to claim 8,
In the display device, the guide portion is formed such that a side surface of the light emitting element contacts the substrate.
請求項1から6の何れか一項に記載の発光素子を製造する製造方法であって、
前記発光素子を形成するよう前記発光層と複数の前記半導体層とを前記所定方向に並べて接合することと、
接合された前記発光層と複数の前記半導体層を、前記所定方向と交差する方向に切り分けることと、を含む発光素子の製造方法。
A manufacturing method for manufacturing the light emitting device according to any one of claims 1 to 6, comprising:
arranging and bonding the light emitting layer and the plurality of semiconductor layers in the predetermined direction to form the light emitting element;
A method for manufacturing a light emitting device, including cutting the joined light emitting layer and a plurality of semiconductor layers in a direction intersecting the predetermined direction.
請求項10に記載の発光素子の製造方法において、
前記接合することは、
前記第1発光層と、前記第1発光層に対応する前記半導体層とを積層して第1基板を製造することと、
前記第2発光層と、前記第2発光層に対応する前記半導体層とを積層して第2基板を製造することと、
前記第1基板と前記第2基板とを前記所定方向に並べて絶縁性の接着剤を介して貼り合わせることと、を含む発光素子の製造方法。
The method for manufacturing a light emitting device according to claim 10,
The joining includes:
manufacturing a first substrate by laminating the first light emitting layer and the semiconductor layer corresponding to the first light emitting layer;
manufacturing a second substrate by laminating the second light emitting layer and the semiconductor layer corresponding to the second light emitting layer;
A method for manufacturing a light emitting element, comprising arranging the first substrate and the second substrate in the predetermined direction and bonding them together with an insulating adhesive.
請求項7から9の何れか一項に記載の表示装置を製造する製造方法であって、
前記基板上において、複数の前記発光素子を散乱することと、
散乱された前記発光素子と前記基板とを接合することと、を含む、表示装置の製造方法。
A manufacturing method for manufacturing the display device according to any one of claims 7 to 9, comprising:
scattering the plurality of light emitting elements on the substrate;
A method for manufacturing a display device, comprising: bonding the scattered light emitting element and the substrate.
請求項12に記載の表示装置の製造方法において、
前記発光素子と前記配線とが接続される所定位置に前記発光素子を収容可能な複数の開口が形成されたガイド部を前記基板に沿って配置することを含み、
前記散乱することは、前記ガイド部の複数の前記開口にそれぞれ前記発光素子が収容されるように、複数の前記発光素子を前記ガイド部上に散乱することを含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 12,
arranging along the substrate a guide portion in which a plurality of openings capable of accommodating the light emitting element are formed at predetermined positions where the light emitting element and the wiring are connected;
The method for manufacturing a display device, wherein the scattering includes scattering the plurality of light emitting elements onto the guide part so that the light emitting elements are respectively accommodated in the plurality of openings of the guide part.
請求項13に記載の表示装置の製造方法において、
前記散乱することは、前記所定位置に位置する前記発光素子がずれないように前記基板が有する吸引孔を介して、前記基板上に前記発光素子を固定することを含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 13,
A method for manufacturing a display device, wherein the scattering includes fixing the light emitting element on the substrate via a suction hole of the substrate so that the light emitting element located at the predetermined position does not shift.
請求項13又は14に記載の表示装置の製造方法において、
前記ガイド部は、前記発光素子の底面が前記基板と接触するように前記発光素子を誘導する第1ガイド部と、前記第1ガイド部により前記底面と前記基板とが接触した前記発光素子の側面が前記基板と接触するように移動可能で前記開口が形成された第2ガイド部とを有し、
前記散乱することは、前記第1ガイド部を介して前記発光素子の前記底面が前記基板と接触するように前記発光素子を前記第2ガイド部の前記開口に誘導することと、前記発光素子の側面が前記基板と接触するように前記第2ガイド部を移動させることと、を含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 13 or 14,
The guide portion includes a first guide portion that guides the light emitting device so that the bottom surface of the light emitting device comes into contact with the substrate, and a side surface of the light emitting device where the bottom surface and the substrate are in contact with each other by the first guide portion. a second guide part that is movable so as to come into contact with the substrate and has the opening formed therein;
The scattering includes guiding the light emitting element to the opening of the second guide part through the first guide part so that the bottom surface of the light emitting element contacts the substrate; A method of manufacturing a display device, the method comprising: moving the second guide part so that a side surface thereof comes into contact with the substrate.
請求項13から15の何れか一項に記載の表示装置の製造方法において、
前記発光素子と前記基板とが接合された後、前記ガイド部を前記基板上から取り除くことを含む、表示装置の製造方法。
The method for manufacturing a display device according to any one of claims 13 to 15,
A method for manufacturing a display device, comprising removing the guide portion from the substrate after the light emitting element and the substrate are bonded.
請求項12から16の何れか一項に記載の表示装置の製造方法において、
前記接合することは、前記発光素子と前記基板とを熱処理により接合することを含む、表示装置の製造方法。
The method for manufacturing a display device according to any one of claims 12 to 16,
The method for manufacturing a display device, wherein the bonding includes bonding the light emitting element and the substrate by heat treatment.
それぞれ異なる波長の光を発光する複数の第1発光層と複数の第2発光層とを有する発光層と、
電圧が付加されると前記発光層で前記光が発光するよう前記発光層に接合された複数の半導体層と、を備え、
複数の前記半導体層は、所定方向に関して、前記第1発光層を挟むように設けられ、伝導形式が互いに異なる第1半導体層及び第2半導体層を有し、
複数の前記半導体層は、前記所定方向に関して、前記第2発光層を挟むように設けられ、伝導形式が互いに異なる第3半導体層及び第4半導体層を有し、
前記発光層と複数の前記半導体層とは、前記所定方向に関して、前記第1半導体層、前記第1発光層、前記第2半導体層、前記第3半導体層、前記第2発光層、前記第4半導体層、前記第2発光層、前記第3半導体層、前記第2半導体層、前記第1発光層、前記第1半導体層の順に並んで接合された発光部を形成する発光素子。
a light-emitting layer having a plurality of first light-emitting layers and a plurality of second light-emitting layers, each of which emits light of a different wavelength;
a plurality of semiconductor layers bonded to the light emitting layer so that the light is emitted in the light emitting layer when a voltage is applied;
The plurality of semiconductor layers are provided so as to sandwich the first light emitting layer in a predetermined direction, and include a first semiconductor layer and a second semiconductor layer having different conduction types,
The plurality of semiconductor layers are provided to sandwich the second light emitting layer in the predetermined direction, and include a third semiconductor layer and a fourth semiconductor layer having different conduction types,
The light emitting layer and the plurality of semiconductor layers include the first semiconductor layer, the first light emitting layer, the second semiconductor layer, the third semiconductor layer, the second light emitting layer, and the fourth semiconductor layer with respect to the predetermined direction. A light emitting element forming a light emitting section in which a semiconductor layer, the second light emitting layer, the third semiconductor layer, the second semiconductor layer, the first light emitting layer, and the first semiconductor layer are lined up and bonded in this order.
複数の前記半導体層の数は、前記発光層の数よりも多い請求項18に記載の発光素子。 The light emitting device according to claim 18, wherein the number of the plurality of semiconductor layers is greater than the number of the light emitting layers. 複数の前記半導体層の数は、前記発光層の数よりも1つ多い請求項19に記載の発光素子。 The light emitting device according to claim 19, wherein the number of the plurality of semiconductor layers is one more than the number of the light emitting layers. 請求項18から20の何れか一項に記載の発光素子において、
前記発光部は、前記所定方向に関して、前記第1半導体層、前記第1発光層、前記第2半導体層、前記第3半導体層、前記第2発光層、前記第4半導体層、前記第4半導体層、前記第2発光層、前記第3半導体層、前記第2半導体層、前記第1発光層、前記第1半導体層の順に、複数の前記半導体層と前記発光層とが並んで接合される、発光素子。
The light emitting device according to any one of claims 18 to 20,
The light emitting section includes, with respect to the predetermined direction, the first semiconductor layer, the first light emitting layer, the second semiconductor layer, the third semiconductor layer, the second light emitting layer, the fourth semiconductor layer, and the fourth semiconductor. The plurality of semiconductor layers and the light emitting layer are bonded side by side in the following order: layer, the second light emitting layer, the third semiconductor layer, the second semiconductor layer, the first light emitting layer, and the first semiconductor layer. , light emitting element.
請求項18から21の何れか一項に記載の発光素子において、
前記発光層は、前記第1及び第2発光層と異なる波長の光を発光する複数の第3発光層を有し、
前記複数の第1発光層、前記複数の第2発光層、及び前記複数の第3発光層は、それぞれ前記所定方向の中心線に関して線対称になるように配列される、発光素子。
The light emitting device according to any one of claims 18 to 21,
The light emitting layer has a plurality of third light emitting layers that emit light of a different wavelength from the first and second light emitting layers,
The plurality of first light-emitting layers, the plurality of second light-emitting layers, and the plurality of third light-emitting layers are each arranged in line symmetry with respect to a center line in the predetermined direction.
請求項18から22の何れか一項に記載の発光素子において、
前記発光部は、対応する前記発光層において発光する前記光の色に応じて、大きさが異なる、発光素子。
The light emitting device according to any one of claims 18 to 22,
The light emitting element is such that the light emitting section has a different size depending on the color of the light emitted in the corresponding light emitting layer.
請求項18から23の何れか一項に記載の発光素子において、
前記第1又は第2発光層の少なくとも一方は、円もしくは多角形の底面と、前記所定方向の高さとを有する円柱もしくは多角柱である、発光素子。
The light emitting device according to any one of claims 18 to 23,
At least one of the first and second light emitting layers is a light emitting element, wherein at least one of the first and second light emitting layers is a cylinder or a polygonal pillar having a circular or polygonal bottom surface and a height in the predetermined direction.
請求項24に記載の発光素子において、
前記第1又は第2発光層の少なくとも一方は、対応する前記発光層において発光する光の波長に応じて、前記底面又は前記高さの少なくとも一方が異なる、発光素子。
The light emitting device according to claim 24,
A light emitting element, wherein at least one of the first or second light emitting layer has at least one of the bottom surface and the height different depending on the wavelength of light emitted in the corresponding light emitting layer.
請求項18から25の何れか一項に記載の発光素子において、
前記第2発光層は、緑色の波長の光を発光する緑色発光層を有し、前記所定方向に関して前記緑色発光層が中心に配列される、発光素子。
The light emitting device according to any one of claims 18 to 25,
The second light emitting layer is a light emitting device, wherein the second light emitting layer has a green light emitting layer that emits light of a green wavelength, and the green light emitting layer is arranged at the center with respect to the predetermined direction.
請求項18から26の何れか一項に記載の発光素子と、
前記発光層へ電力を供給する配線が形成され、前記発光素子が接合される基板と、を備える表示装置。
The light emitting device according to any one of claims 18 to 26,
A display device comprising: a substrate on which wiring for supplying power to the light emitting layer is formed and to which the light emitting element is bonded.
請求項27に記載の表示装置において、
前記発光素子と前記配線とが接続される所定位置に前記発光素子を誘導するガイド部を備える表示装置。
The display device according to claim 27,
A display device including a guide portion that guides the light emitting element to a predetermined position where the light emitting element and the wiring are connected.
請求項28に記載の表示装置において、
前記ガイド部は、前記発光素子の側面が前記基板と接触するように形成される、表示装置。
The display device according to claim 28,
In the display device, the guide portion is formed such that a side surface of the light emitting element contacts the substrate.
請求項28に記載の表示装置において、
前記ガイド部は、前記発光素子の底面が前記基板と接触するように形成される、表示装置。
The display device according to claim 28,
In the display device, the guide portion is formed such that a bottom surface of the light emitting element contacts the substrate.
請求項18から26の何れか一項に記載の発光素子を製造する製造方法であって、
前記発光素子を形成するよう前記発光層と複数の前記半導体層とを前記所定方向に並べて接合することと、
接合された前記発光層と複数の前記半導体層を、前記所定方向と交差する方向に切り分けることと、を含む発光素子の製造方法。
A manufacturing method for manufacturing the light emitting device according to any one of claims 18 to 26, comprising:
arranging and bonding the light emitting layer and the plurality of semiconductor layers in the predetermined direction to form the light emitting element;
A method for manufacturing a light emitting device, including cutting the joined light emitting layer and a plurality of semiconductor layers in a direction intersecting the predetermined direction.
請求項31に記載の発光素子の製造方法において、
前記発光層は、互いに異なる波長の光を発光する第1発光層、第2発光層、及び第3発光層を有し、
前記半導体層は、それぞれ前記第1発光層、前記第2発光層、及び前記第3発光層に接合される複数の層を有し、
前記接合することは、
前記第1発光層、前記第2発光層、及び前記第3発光層と、対応する前記半導体層の層とを接合して第1発光部、第2発光部、及び第3発光部が形成された第1基板、第2基板、及び第3基板を製造することと、
前記第1基板、前記第2基板、及び前記第3基板を前記所定方向に並べて絶縁性の接着剤を介して貼り合わせることと、を含む、発光素子の製造方法。
The method for manufacturing a light emitting device according to claim 31,
The light emitting layer has a first light emitting layer, a second light emitting layer, and a third light emitting layer that emit light of different wavelengths,
The semiconductor layer has a plurality of layers bonded to the first light emitting layer, the second light emitting layer, and the third light emitting layer, respectively,
The joining includes:
A first light emitting section, a second light emitting section, and a third light emitting section are formed by bonding the first light emitting layer, the second light emitting layer, and the third light emitting layer with the corresponding semiconductor layer. manufacturing a first substrate, a second substrate, and a third substrate;
A method for manufacturing a light emitting device, comprising arranging the first substrate, the second substrate, and the third substrate in the predetermined direction and bonding them together with an insulating adhesive.
請求項27から30の何れか一項に記載の表示装置を製造する製造方法であって、
前記基板上において、複数の前記発光素子を散乱することと、
散乱された前記発光素子と前記基板とを接合することと、を含む表示装置の製造方法。
A manufacturing method for manufacturing the display device according to any one of claims 27 to 30, comprising:
scattering the plurality of light emitting elements on the substrate;
A method for manufacturing a display device, comprising: bonding the scattered light emitting element and the substrate.
請求項33に記載の表示装置の製造方法において、
前記散乱することは、互いに異なる大きさを有する複数の前記発光素子を前記基板上に散乱することを含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 33,
The method for manufacturing a display device, wherein the scattering includes scattering a plurality of the light emitting elements having different sizes onto the substrate.
請求項33又は34に記載の表示装置の製造方法において、
前記発光素子と前記配線とが接続される所定位置に前記発光素子を収容可能な複数の開口が形成されたガイド部を前記基板に沿って配置することを含み、
前記散乱することは、前記ガイド部の複数の前記開口にそれぞれ前記発光素子が収容されるように、複数の前記発光素子を前記ガイド部上に散乱することを含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 33 or 34,
arranging along the substrate a guide portion in which a plurality of openings capable of accommodating the light emitting element are formed at predetermined positions where the light emitting element and the wiring are connected;
The method for manufacturing a display device, wherein the scattering includes scattering the plurality of light emitting elements onto the guide part so that the light emitting elements are respectively accommodated in the plurality of openings of the guide part.
請求項35に記載の表示装置の製造方法において、
前記散乱することは、前記所定位置に位置する前記発光素子がずれないように前記基板が有する吸引孔を介して、前記基板上に前記発光素子を固定することを含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 35,
A method for manufacturing a display device, wherein the scattering includes fixing the light emitting element on the substrate via a suction hole of the substrate so that the light emitting element located at the predetermined position does not shift.
請求項35又は36に記載の表示装置の製造方法において、
前記ガイド部は、前記発光素子の底面が前記基板と接触するように前記発光素子を誘導する第1ガイド部と、前記第1ガイド部により前記底面と前記基板とが接触した前記発光素子の側面が前記基板と接触するように移動可能で前記開口が形成された第2ガイド部とを有し、
前記散乱することは、前記第1ガイド部を介して前記発光素子の前記底面が前記基板と接触するように前記発光素子を前記第2ガイド部の前記開口に誘導することと、前記発光素子の側面が前記基板と接触するように前記第2ガイド部を移動させることと、を含む、表示装置の製造方法。
The method for manufacturing a display device according to claim 35 or 36,
The guide portion includes a first guide portion that guides the light emitting device so that the bottom surface of the light emitting device comes into contact with the substrate, and a side surface of the light emitting device where the bottom surface and the substrate are in contact with each other by the first guide portion. a second guide part that is movable so as to come into contact with the substrate and has the opening formed therein;
The scattering includes guiding the light emitting element to the opening of the second guide part through the first guide part so that the bottom surface of the light emitting element contacts the substrate; A method of manufacturing a display device, the method comprising: moving the second guide part so that a side surface thereof comes into contact with the substrate.
請求項35から37の何れか一項に記載の表示装置の製造方法において、
前記発光素子と前記基板とが接合された後、前記ガイド部を前記基板上から取り除くことを含む、表示装置の製造方法。
The method for manufacturing a display device according to any one of claims 35 to 37,
A method for manufacturing a display device, comprising removing the guide portion from the substrate after the light emitting element and the substrate are bonded.
請求項33から38の何れか一項に記載の表示装置の製造方法において、
前記接合することは、前記発光素子と前記基板とを熱処理により接合することを含む、表示装置の製造方法。
The method for manufacturing a display device according to any one of claims 33 to 38,
The method for manufacturing a display device, wherein the bonding includes bonding the light emitting element and the substrate by heat treatment.
請求項33から39の何れか一項に記載の表示装置の製造方法において、
前記散乱することは、イオナイザにより除電された前記発光素子を前記基板上に散乱することを含む、表示装置の製造方法。
The method for manufacturing a display device according to any one of claims 33 to 39,
The method for manufacturing a display device, wherein the scattering includes scattering the light emitting element whose charge has been removed by an ionizer onto the substrate.
JP2023127536A 2017-11-27 2023-08-04 Light emitting element and display, and method for manufacturing the same Pending JP2023156400A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017226750 2017-11-27
JP2017226750 2017-11-27
JP2019555292A JPWO2019102955A1 (en) 2017-11-27 2018-11-19 Light emitting element and display device, and their manufacturing method
PCT/JP2018/042613 WO2019102955A1 (en) 2017-11-27 2018-11-19 Light-emitting element and display device, and method for manufacturing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019555292A Division JPWO2019102955A1 (en) 2017-11-27 2018-11-19 Light emitting element and display device, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2023156400A true JP2023156400A (en) 2023-10-24

Family

ID=66630957

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019555292A Pending JPWO2019102955A1 (en) 2017-11-27 2018-11-19 Light emitting element and display device, and their manufacturing method
JP2023127536A Pending JP2023156400A (en) 2017-11-27 2023-08-04 Light emitting element and display, and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019555292A Pending JPWO2019102955A1 (en) 2017-11-27 2018-11-19 Light emitting element and display device, and their manufacturing method

Country Status (5)

Country Link
JP (2) JPWO2019102955A1 (en)
KR (1) KR20200088347A (en)
CN (1) CN111418077A (en)
TW (2) TW202046382A (en)
WO (1) WO2019102955A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220054480A (en) * 2020-10-23 2022-05-03 삼성디스플레이 주식회사 Light emitting element and display device comprising the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143678A (en) * 1983-12-29 1985-07-29 Fujitsu Ltd Light emitting transistor
JPH0652806B2 (en) * 1986-03-31 1994-07-06 圭弘 浜川 Method for manufacturing semiconductor light emitting device
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
JP3195720B2 (en) * 1994-12-20 2001-08-06 シャープ株式会社 Multicolor LED element, LED display device using the multicolor LED element, and method of manufacturing multicolor LED element
JPH11163397A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led element and its manufacture
JP3829594B2 (en) * 2000-06-30 2006-10-04 セイコーエプソン株式会社 Device mounting method and optical transmission device
JP3890921B2 (en) 2001-06-05 2007-03-07 ソニー株式会社 Element arrangement method and image display device manufacturing method
JP3844061B2 (en) * 2002-01-16 2006-11-08 ソニー株式会社 Electronic component placement method and apparatus
JP4082031B2 (en) * 2002-01-17 2008-04-30 ソニー株式会社 Element arrangement method and display device
JP2006173326A (en) * 2004-12-15 2006-06-29 Nippon Leiz Co Ltd Optical source apparatus
US7381995B2 (en) * 2005-03-16 2008-06-03 Industrial Technology Research Institute Lighting device with flipped side-structure of LEDs
TWI279165B (en) * 2005-08-09 2007-04-11 Au Optronics Corp White organic light emitting diode
WO2007037617A1 (en) * 2005-09-30 2007-04-05 Seoul Opto Device Co., Ltd. Light emitting device having vertically stacked light emitting diodes
JP2007227682A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Light emitting device
JP5057824B2 (en) * 2007-04-04 2012-10-24 株式会社 ハリーズ Manufacturing method of electronic parts
KR101058880B1 (en) * 2010-05-07 2011-08-25 서울대학교산학협력단 Led display apparatus having active devices and fabrication method thereof
KR101191869B1 (en) * 2011-06-08 2012-10-16 주식회사 프로텍 Method of manufacturing led device
TWI493751B (en) * 2012-03-30 2015-07-21 華夏光股份有限公司 Stacked bonded light emitting diode
TW201344955A (en) * 2012-04-27 2013-11-01 Phostek Inc Light emitting diode device
TWI506813B (en) * 2013-04-09 2015-11-01 Unity Opto Technology Co Ltd Single crystal dual light source light emitting element
US10510973B2 (en) * 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
CN105977392A (en) * 2016-05-24 2016-09-28 深圳市华星光电技术有限公司 Three-primary-color white-light OLED device structure, electroluminescent device, and display device

Also Published As

Publication number Publication date
TW201937556A (en) 2019-09-16
CN111418077A (en) 2020-07-14
JPWO2019102955A1 (en) 2021-01-14
TW202046382A (en) 2020-12-16
WO2019102955A1 (en) 2019-05-31
TWI697035B (en) 2020-06-21
KR20200088347A (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US10615313B2 (en) Display device
TW540163B (en) LED-module and multiple arrangement
JP2023156400A (en) Light emitting element and display, and method for manufacturing the same
JP5408414B2 (en) Light emitting module
KR20130109319A (en) Semiconductor light emitting device, light emitting module and illumination apparatus
US20200287075A1 (en) Light-emitting device
US9705029B2 (en) Light-emitting device and manufacturing method thereof
JP2011216514A (en) Led light-emitting device and vehicle head lamp using the same
JP2015050270A (en) Semiconductor light-emitting device
AU2020345111A1 (en) Multi-color led pixel unit and micro-led display panel
WO2021049211A1 (en) Method for manufacturing display device, and display device
KR20220061911A (en) Multi-color LED pixel unit and micro-LED display panel
US11114419B2 (en) Multi-color LED pixel unit and micro-LED display panel
KR20110057084A (en) Illumination means
JP2010027943A (en) Self-emission type display device and manufacturing method thereof, and illumination device
US9478587B1 (en) Multi-layer circuit board for mounting multi-color LED chips into a uniform light emitter
KR102029533B1 (en) Micro Light Emitting Diodes And Their Application For Full Color Display Device
KR101823930B1 (en) Light Emitting Diode Package Array and Method of Manufacturing Light Emitting Diode Package
CN113193086A (en) Light emitting device
KR102029636B1 (en) Micro Light Emitting Diodes And Their Application For Full Color Display Device
Cheung et al. Colour tuneable LEDs and pixelated micro-LED arrays
KR102464568B1 (en) ordered array of LEDs
KR20220002436A (en) LED module, LED display module and manufacturing method thereof
KR20070017030A (en) Edge-emitting led light source
JP2010205948A (en) Led display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818