JPH07335940A - Compound semiconductor light emitting device - Google Patents

Compound semiconductor light emitting device

Info

Publication number
JPH07335940A
JPH07335940A JP13149094A JP13149094A JPH07335940A JP H07335940 A JPH07335940 A JP H07335940A JP 13149094 A JP13149094 A JP 13149094A JP 13149094 A JP13149094 A JP 13149094A JP H07335940 A JPH07335940 A JP H07335940A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
type
type sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13149094A
Other languages
Japanese (ja)
Inventor
Hidetoshi Fujimoto
英俊 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13149094A priority Critical patent/JPH07335940A/en
Publication of JPH07335940A publication Critical patent/JPH07335940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a high light emission intensity by a method wherein the smallest difference among energy differences between the acceptor levels and the donor levels of a light emitting layer is so selected as to be smaller than the energy differences between the acceptor levels and the donor levels of first and second current injection layers. CONSTITUTION:An n-type SiC layer 12 doped with Ga and N is built up first on one of the main surfaces of an n-type SiC substrate 11. Then a p-type SiC 13 doped with Al is built up on the layer 12. The n-type SiC substrate 11 and the p-type SiC layer 13 are used as current injection layers and the n-type SiC layer 12 is used as a light emitting layer. The smallest energy difference among energy differences between the acceptor levels and the donor levels of the light emitting layer is so selected as to be smaller than the energy differences between the acceptor levels and the donor levels of the first and second current injection layers. With this constitution, the probability that electron-positive hole pairs are captured by impurity levels is high and, as a result, a high light emission intensity is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青または紫外波長を示
す、例えば炭化ケイ素(SiC)・窒化ガリウム(Ga
N)・窒化アルミニウム(AlN)・窒化ボロン(B
N)からなる化合物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to blue or ultraviolet wavelengths such as silicon carbide (SiC) gallium nitride (Ga).
N), aluminum nitride (AlN), boron nitride (B)
N) and a compound semiconductor light emitting device.

【0002】[0002]

【従来の技術】半導体材料であるSiC化合物半導体
は、その結晶構造により2.2〜3.3eVの禁制帯幅
を持つ。またSiCは熱的・化学的・機械的に極めて安
定であり、高い禁制帯幅をもつ他の半導体材料と比べて
容易にp型およびn型の導電型を形成しやすい。したが
ってSiC単結晶に、外部回路と電気的接続をとるため
の電極を形成した半導体素子は、高温動作素子・大電力
用素子・耐放射線用素子・光電変換用素子などの多種に
わたる応用が期待できる。
2. Description of the Related Art A SiC compound semiconductor, which is a semiconductor material, has a band gap of 2.2 to 3.3 eV due to its crystal structure. Further, SiC is extremely stable thermally, chemically, and mechanically, and easily forms p-type and n-type conductivity types more easily than other semiconductor materials having a high band gap. Therefore, a semiconductor element in which electrodes for electrically connecting to an external circuit are formed on a SiC single crystal can be expected to have various applications such as a high temperature operation element, a high power element, a radiation resistant element, and a photoelectric conversion element. .

【0003】この種々の内、発光素子に適用した場合は
以下のようにして作成する。SiC化合物半導体として
は周期6分子層の六方晶系(6H型)を用いる。SiC
化合物半導体にアルミニウム(Al)を添加してp型の
層を、窒素(N)を添加してn型の層を形成し、この2
つの層の間にAlとNとを添加した層を挟む。
Among these various types, when applied to a light emitting element, it is produced as follows. As the SiC compound semiconductor, a hexagonal system (6H type) having a period of 6 molecular layers is used. SiC
Aluminum (Al) is added to the compound semiconductor to form a p-type layer, and nitrogen (N) is added to the compound semiconductor to form an n-type layer.
A layer to which Al and N are added is sandwiched between two layers.

【0004】SiC化合物半導体の禁制帯中に、Alで
アクセプタ−凖位、Nでドナ−準位をそれぞれ形成す
る。アクセプタ−準位は価電子帯の少し上に、ドナ−準
位は伝導帯の少し下にそれぞれ形成される。
In the forbidden band of the SiC compound semiconductor, Al forms an acceptor-level and N forms a donor-level. The acceptor level is formed slightly above the valence band, and the donor level is formed slightly below the conduction band.

【0005】そしてp型の層、n型の層にそれぞれ電極
を設ける。このようにして形成された発光素子において
はp型・n型の層に挟まれた、AlとNを添加した層が
発光層となる。またp型・n型の層は電流注入層とな
る。
Then, electrodes are provided on the p-type layer and the n-type layer, respectively. In the light emitting device thus formed, the layer between Al and N, which is sandwiched between the p-type and n-type layers, becomes the light-emitting layer. The p-type and n-type layers become current injection layers.

【0006】発光素子に順方向に電圧を加えるとpn接
合の接合部の電位障壁が低くなり、n型の電流注入層の
伝導帯の電子がp型の電流注入層に向かって、またp型
の電流注入層の価電子帯の正孔がn型の電流注入層に向
かって移動する。流れた電子は発光層のドナ−凖位に捕
獲される。また正孔は発光層のアクセプタ−凖位に捕獲
される。
When a voltage is applied to the light emitting element in the forward direction, the potential barrier at the junction of the pn junction is lowered, so that electrons in the conduction band of the n-type current injection layer are directed toward the p-type current injection layer and again. Holes in the valence band of the current injection layer move toward the n-type current injection layer. The electrons that have flowed are trapped in the donation position of the light emitting layer. In addition, holes are trapped in the acceptor-deposition position of the light emitting layer.

【0007】移動する電子・正孔、つまり少数キャリア
は外部から加えた電界によって強制的に移動させられる
ので、通常の熱的な平衡状態よりも高いエネルギ−状態
にあって不安定である。このような高いエネルギ−状態
にある不安定な電子や正孔はより安定になろうとして低
いエネルギ−状態に移る。最も低い状態は電子と正孔が
再結合して消滅することである。つまり発光層のドナ−
凖位に捕獲された電子が発光層のアクセプタ−凖位に落
ち、アクセプタ−凖位に捕獲されている正孔と再結合す
る。この際に再結合によって放出される余分のエネルギ
−の一部が自然放出光となり素子が青色の発光をする。
The moving electrons / holes, that is, the minority carriers are forcibly moved by an electric field applied from the outside, so that they are unstable in an energy state higher than a normal thermal equilibrium state. Unstable electrons and holes in such a high energy state move to a lower energy state in an attempt to become more stable. The lowest state is that electrons and holes recombine and disappear. That is, the donor of the light emitting layer
The electrons trapped in the small position drop to the acceptor-small position of the light emitting layer, and are recombined with the holes captured in the acceptor-small position. At this time, a part of the extra energy emitted by the recombination becomes spontaneous emission light, and the device emits blue light.

【0008】このような発光素子では、SiCが間接遷
移であるためその発光強度が小さい。発光強度を向上さ
せる手段としてIII −V 族半導体を用いた発光素子で用
いられているような、発光層と電流注入層に異なる物質
を用い発光層の禁制帯幅を電流注入層の禁制帯幅よりも
小さくして、発光層でのキャリアの閉じ込めを行う、い
わゆるダブルヘテロ構造を用いる方法が考えられる。
In such a light emitting device, since the SiC is an indirect transition, its light emission intensity is small. The forbidden band width of the current injection layer is changed by using different materials for the light emitting layer and the current injection layer, which are used in the light emitting device using a III-V group semiconductor as a means for improving the emission intensity. A method using a so-called double hetero structure, in which carriers are confined in the light emitting layer by making the size smaller than that, is conceivable.

【0009】6H型のSiCよりも禁制帯幅の大きい物
質としては、4H型あるいは2H型のSiCがある。し
かし、これらの物質を用いて6H型のSiCを挟む形で
積層してダブルヘテロ構造の発光素子を作成すること
は、現状の技術では困難である。つまり周期6分子層の
6H型の上に周期4分子層の4H型や2分子層の2H型
を結晶成長させることは難しい。
4H-type or 2H-type SiC is a substance having a band gap larger than that of 6H-type SiC. However, it is difficult with the current technology to fabricate a light emitting device having a double hetero structure by stacking 6H-type SiC with these substances sandwiched therebetween. That is, it is difficult to grow crystals of 4H type of 4 molecular layers and 2H type of 2 molecular layers on 6H type of 6 molecular layers.

【0010】ところでAlNあるいはGaNなどの窒素
を含むIII −V 族からなる化合物半導体を用いた発光素
子においても、発光層にケイ素(Si)とマグネシウム
(Mg)を添加した例が知られている。この発光素子は
発光層が電流注入層に挟まれる形ではなく、発光層の片
面に電流注入層が隣接した形になっている。
[0010] By the way, there is known an example in which silicon (Si) and magnesium (Mg) are added to a light emitting layer also in a light emitting element using a compound semiconductor of III-V group containing nitrogen such as AlN or GaN. In this light emitting element, the light emitting layer is not sandwiched between the current injection layers, but the current injection layer is adjacent to one surface of the light emitting layer.

【0011】このような発光素子は青色の発光をさせる
ためにインジウム(In)との混晶にすることが多い
が、Inを添加することは困難であり、特に高濃度に添
加することは困難であった。このため発光強度の大きな
素子が得られていなかった。
In such a light emitting element, a mixed crystal with indium (In) is often used in order to emit blue light, but it is difficult to add In, and it is particularly difficult to add In at a high concentration. Met. Therefore, an element having a large emission intensity has not been obtained.

【0012】[0012]

【発明が解決しようとする課題】上述したように6H型
のSiC化合物半導体を用いた従来の発光素子ではSi
Cが間接遷移であるためその発光強度が弱く、また発光
強度を向上させるために6H型のSiCを4H型や2H
型のSiCで挟み込んでダブルヘテロ構造を作成するこ
とが困難であるという問題があった。
As described above, in the conventional light emitting device using the 6H type SiC compound semiconductor,
Since C is an indirect transition, its emission intensity is weak, and in order to improve the emission intensity, 6H type SiC is changed to 4H type and 2H type.
There is a problem in that it is difficult to create a double hetero structure by sandwiching the double hetero structure.

【0013】またAlNあるいはGaN化合物半導体を
用いた発光素子では、青色の発光をさせるために添加す
るInの、特に高濃度の添加が困難であり、このため発
光強度の大きな素子が得られていないという問題があっ
た。そこで本発明は上記の問題を解決し、発光強度の大
きい化合物半導体発光素子を提供することを目的とす
る。
Further, in a light emitting device using AlN or GaN compound semiconductor, it is difficult to add In, which is added for emitting blue light, in a particularly high concentration, and therefore, a device having high emission intensity has not been obtained. There was a problem. Therefore, it is an object of the present invention to solve the above problems and provide a compound semiconductor light emitting device having high emission intensity.

【0014】[0014]

【課題を解決するための手段】上記の問題を解決するた
めに本発明は、第1導電型の第1の電流注入層と、この
第1の電流注入層に隣接し少なくとも2種類の不純物を
含む発光層と、この発光層に隣接した第2導電型の第2
の電流注入層とを備え、炭化ケイ素のIV−族または窒素
を含むIII −V 族からなる化合物半導体発光素子におい
て、前記発光層のアクセプタ−およびドナ−準位間のエ
ネルギ−差のうち最も狭いエネルギ−差が前記第1およ
び第2の電流注入層のアクセプタ−およびドナ−準位間
のエネルギ−差よりも狭くなるように構成したことを特
徴とする化合物半導体発光素子を提供する。
In order to solve the above problems, the present invention provides a first current injection layer of the first conductivity type and at least two kinds of impurities adjacent to the first current injection layer. And a second conductive type second layer adjacent to the light emitting layer.
In the compound semiconductor light emitting device comprising the IV-group of silicon carbide or the III-V group containing nitrogen, the narrowest energy difference between the acceptor and the donor level of the light-emitting layer is provided. There is provided a compound semiconductor light emitting device, characterized in that the energy difference is narrower than the energy difference between the acceptor and donor levels of the first and second current injection layers.

【0015】ここで第1および第2の電流注入層のアク
セプタ−およびドナ−準位間のエネルギ−差EΔとは、
電流注入層と発光層とで同じ材料を用いた場合、下記の
数式(1)のように、アクセプタ−準位と価電子帯との
間のエネルギ−差E1 およびドナ−準位と伝導帯との間
のエネルギ−差E2 を禁制帯幅Eg から差し引いたもの
である。
Here, the energy difference EΔ between the acceptor and donor levels of the first and second current injection layers is
When the same material is used for the current injection layer and the light emitting layer, the energy difference E 1 between the acceptor level and the valence band and the donor level and the conduction band are calculated as in the following formula (1). The energy difference E 2 between and is subtracted from the forbidden band width E g .

【0016】 EΔ=Eg −(E1 +E2 ) (1) このエネルギ−差が発光層のアクセプタ−およびドナ−
準位間のエネルギ−差のうち最も狭いエネルギ−差より
も広いということは、発光層のアクセプタ−およびドナ
−準位のうち少なくとも1つの深さが第1および第2の
電流注入層のアクセプタ−およびドナ−準位の深さより
も深いということを意味している。ここで準位の深さが
深いとは、アクセプタ−準位の場合は価電子帯とのエネ
ルギ−差がより大きいこと、ドナ−準位の場合は伝導帯
とのエネルギ−差がより大きいことを指す。
EΔ = E g − (E 1 + E 2 ) (1) This energy difference is the acceptor and the donor of the light emitting layer.
That the energy difference between the levels is wider than the narrowest energy difference means that at least one of the acceptor and the donor level of the light emitting layer has a depth of the first and second current injection layers. -And Donna-means deeper than the depth of the level. Here, the deep level means that the energy difference with the valence band is larger in the case of the acceptor level, and the energy difference with the conduction band is larger in the case of the donor level. Refers to.

【0017】上述した以外の発光層のアクセプタ−およ
びドナ−準位の深さは第1および第2の電流注入層のア
クセプタ−およびドナ−準位の深さと同じであるか浅く
なる。本発明においてはこの2つの場合のうち浅い場合
にも、発光層のアクセプタ−およびドナ−準位間のエネ
ルギ−差のうち最も狭いエネルギ−差が第1および第2
の電流注入層のアクセプタ−およびドナ−準位間のエネ
ルギ−差よりも狭くなるようにする。
The depths of the acceptor and donor levels of the light emitting layer other than those described above are the same as or shallower than the depths of the acceptor and donor levels of the first and second current injection layers. In the present invention, even in the shallow case of these two cases, the narrowest energy difference among the energy differences between the acceptor and the donor level of the light emitting layer is the first and second.
The energy difference between the acceptor level and the donor level of the current injection layer is made narrower.

【0018】アクセプタ−準位・ドナ−準位に捕獲され
る正孔・電子の数はアクセプタ−準位と価電子帯、ドナ
−凖位と伝導帯とのエネルギ−差によって決まる。アク
セプタ−が深ければ正孔が価電子帯に、ドナ−凖位が深
ければ電子が伝導帯に行きにくく、アクセプタ−準位・
ドナ−凖位に捕獲されている正孔・電子の数が多くな
る。
The number of holes / electrons captured in the acceptor level / donor level is determined by the energy difference between the acceptor level and the valence band and between the donor level and the conduction band. If the acceptor is deep, holes go to the valence band, and if the donor level is deep, electrons are hard to reach the conduction band.
The number of holes / electrons trapped in the donor position increases.

【0019】本発明の発光素子においては電流注入層に
おけるアクセプタ−準位・ドナ−凖位の深さと発光層に
おけるアクセプタ−準位・ドナ−凖位の深さとを比較し
た場合、発光層のアクセプタ−準位・ドナ−凖位のうち
少なくとも1つは電流注入層のアクセプタ−準位・ドナ
−凖位の深さよりも深い。従って正孔・電子はより浅い
アクセプタ−凖位・ドナ−準位の電流注入層で捕獲され
るよりも、より深いアクセプタ−凖位・ドナ−準位の発
光層で捕獲される確率が高くなる。
In the light emitting device of the present invention, when the acceptor-level / donor-level depths in the current injection layer are compared with the acceptor-level / donor-level depths in the light-emitting layer, the acceptors in the light-emitting layer are compared. At least one of the level / donor level is deeper than the depth of the acceptor level / donor level of the current injection layer. Therefore, holes and electrons are more likely to be trapped in the deeper acceptor-decay / donor-level light-emitting layer than they are trapped in the shallower acceptor-decay / donor-level current injection layer. .

【0020】そこで発光層ではアクセプタ−凖位が正孔
によって、あるいはドナ−準位が電子によって満たされ
る。このため電流注入層と発光層とのアクセプタ−凖位
・ドナ−準位が同じである従来の発光素子と比べて、電
子と正孔とが再結合する確率が増大し、発光する確率が
増大して発光強度が大きくなる。
Therefore, in the light emitting layer, the acceptor-level is filled with holes or the donor-level is filled with electrons. Therefore, the probability of recombination of electrons and holes is increased, and the probability of light emission is increased, as compared with a conventional light emitting device in which the acceptor level and the donor level of the current injection layer and the light emitting layer are the same. As a result, the emission intensity increases.

【0021】なお発光層のアクセプタ−準位・ドナ−準
位のいずれかが電流注入層のアクセプタ−準位・ドナ−
準位よりも浅い場合、例えば発光層のアクセプタ−準位
が電流注入層のアクセプタ−準位よりも浅い場合にも、
発光層と電流注入層とのアクセプタ−準位のエネルギ−
差よりも発光層と電流注入層とのドナ−準位のエネルギ
−差が大きくなるようにしておけば、従来の発光素子よ
りも電子と正孔が再結合する確率は高くなる。
Either the acceptor level or the donor level of the light emitting layer is the acceptor level or the donor level of the current injection layer.
When shallower than the level, for example, when the acceptor level of the light emitting layer is shallower than the acceptor level of the current injection layer,
Energy of the acceptor level between the light emitting layer and the current injection layer
If the energy difference in the donor level between the light emitting layer and the current injection layer is set to be larger than the difference, the probability that electrons and holes are recombined becomes higher than that in the conventional light emitting element.

【0022】ここで電流注入層・発光層に用いることの
できる材料としてはSiC,AlN,GaN,BNな
ど、およびこれらの混晶が挙げられる。SiCは2H・
4H・6H型のいずれを用いても良い。
Examples of materials that can be used for the current injection layer and the light emitting layer include SiC, AlN, GaN, BN, and mixed crystals thereof. 2H for SiC
Either 4H or 6H type may be used.

【0023】また電流注入層・発光層を形成する方法と
しては例えばSiCを用いる場合、液相成長(LPE)
法・気相成長(CVD)法・分子線エピタキシ−(MB
E)法などを用いることができる。AlNやGaNを用
いる場合には有機金属気相成長(MOCVD)法・MB
E法・有機金属分子線エピタキシ−(MOMBE)法な
どを用いることができる。
As a method for forming the current injection layer / light emitting layer, for example, when SiC is used, liquid phase growth (LPE)
Method, vapor phase epitaxy (CVD) method, molecular beam epitaxy (MB
The method E) or the like can be used. When using AlN or GaN, metalorganic chemical vapor deposition (MOCVD) method, MB
The E method / organic metal molecular beam epitaxy (MOMBE) method can be used.

【0024】また不純物としては例えばSiCを用いる
場合、アクセプタ−としてAl・ガリウム(Ga)・ホ
ウ素(B)など、ドナ−としてN・ヒ素(As)・リン
(P)などを用いることができる。AlNやGaNを用
いる場合には、アクセプタ−としてMg・亜鉛(Zn)
・カドミウム(Cd)など、ドナ−としてテルル(T
e)・Siなどを用いることができる。
When SiC is used as the impurity, for example, Al.gallium (Ga) .Boron (B) or the like can be used as the acceptor, and N.arsenic (As) or phosphorus (P) or the like can be used as the donor. When AlN or GaN is used, Mg.Zinc (Zn) is used as an acceptor.
・ Tellurium (T) as a donor such as cadmium (Cd)
e) -Si or the like can be used.

【0025】[0025]

【作用】本発明によれば発光層のアクセプタ−およびド
ナ−準位間のエネルギ−差のうち最も狭いエネルギ−差
が第1および第2の電流注入層のアクセプタ−およびド
ナ−準位間のエネルギ−差よりも狭いため、電子・正孔
が発光層の不純物凖位に捕獲される確率が高くなり、こ
の結果、発光強度が大きくなる。
According to the present invention, the narrowest energy difference between the acceptor and donor levels in the light emitting layer is the energy difference between the acceptor and donor levels in the first and second current injection layers. Since it is narrower than the energy difference, the probability that electrons / holes are trapped in the impurity level of the light emitting layer is increased, and as a result, the emission intensity is increased.

【0026】[0026]

【実施例】以下、実施例を説明する。図1に本発明の第
1の実施例に係る発光素子の断面図を示す。この発光素
子は4H型のSiCを材料としたpn接合型の発光素子
である。
EXAMPLES Examples will be described below. FIG. 1 shows a sectional view of a light emitting device according to a first embodiment of the present invention. This light emitting element is a pn junction type light emitting element made of 4H type SiC as a material.

【0027】図1において11はNが主な不純物である
キャリア濃度2×1018cm-3のn型SiC基板であ
る。このn型SiC基板11の一方の主面上にLPE法
によって、まずGaおよびNを添加したキャリア濃度5
×1017cm-3、厚さ約10μmのn型SiC層12を
積層する。次いでこの上にAlを添加したキャリア濃度
2×1018cm-3、厚さ約10μmのp型SiC層13
を積層する。n型SiC基板11・p型SiC層13は
電流注入層、n型SiC層12は発光層となる。
In FIG. 1, reference numeral 11 denotes an n-type SiC substrate having a carrier concentration of 2 × 10 18 cm -3 where N is a main impurity. On the one main surface of the n-type SiC substrate 11, a carrier concentration of Ga and N was first added by the LPE method to 5
An n-type SiC layer 12 having a thickness of × 10 17 cm −3 and a thickness of about 10 μm is laminated. Then, a p-type SiC layer 13 having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 10 μm, to which Al is added, is formed.
Are stacked. The n-type SiC substrate 11 and the p-type SiC layer 13 are current injection layers, and the n-type SiC layer 12 is a light emitting layer.

【0028】そしてn型SiC基板11のもう一方の主
面に厚さ約0.3μmのNi電極14、p型SiC層1
3に厚さ約2μmのAl電極15をスパッタリング法に
よって形成する。
Then, on the other main surface of the n-type SiC substrate 11, the Ni electrode 14 having a thickness of about 0.3 μm and the p-type SiC layer 1 are formed.
An Al electrode 15 having a thickness of about 2 μm is formed on the substrate 3 by sputtering.

【0029】この電極をそれぞれ酸処理をして所定の形
状に整形した後、アルゴンガス中において約1000
℃、5分程度の加熱処理を行う。この加熱処理によって
Ni電極14・Al電極15はSiCとほどよく反応し
てオ−ム性電極となる。
Each of the electrodes was treated with an acid to be shaped into a predetermined shape, and then the electrode was subjected to about 1000 in argon gas.
Heat treatment is performed at ℃ for 5 minutes. By this heat treatment, the Ni electrode 14 and the Al electrode 15 react with SiC to a moderate degree to form an ohmic electrode.

【0030】なおNi電極14は4つ、Al電極15は
1つ形成する。このような形状にする理由を次に述べ
る。NiやAlは光を吸収してしまうため電極は小さい
方が好ましい。ただし単に小さくするだけだと電流が広
がらず発光する面積が小さくなってしまうので、一方の
電極は複数設けて電流が広がるようにする。
Four Ni electrodes 14 and one Al electrode 15 are formed. The reason for such a shape will be described below. Since Ni and Al absorb light, it is preferable that the electrodes are small. However, if it is simply reduced, the current does not spread and the light emitting area becomes small. Therefore, a plurality of one electrodes are provided to spread the current.

【0031】このようにして発光素子が完成する。本実
施例に対する比較例として図2に同じ4H型SiCを用
いた発光素子の断面図を示す。図中の番号については図
1と同一の部分には同じ番号を付けた。本比較例は、第
1の実施例のAlを添加したp型SiC層13の代わり
に、Gaを添加したp型SiC層を用いた点のみが異な
る。
In this way, the light emitting device is completed. As a comparative example to this example, FIG. 2 shows a sectional view of a light emitting device using the same 4H-type SiC. Regarding the numbers in the figure, the same parts as those in FIG. 1 are given the same numbers. The present comparative example is different only in that a Ga-added p-type SiC layer is used instead of the Al-added p-type SiC layer 13 of the first embodiment.

【0032】図2において11はNが主な不純物である
キャリア濃度が2×1018cm-3のn型SiC基板であ
る。このn型SiC基板11の一方の主面上にLPE法
によって、まずガリウム(Ga)およびNを添加したキ
ャリア濃度5×1017cm-3、厚さ約10μmのn型S
iC層12を積層する。次いでこの上にGaを添加した
キャリア濃度2×1018cm-3、厚さ約10μmのp型
SiC層21を積層する。
In FIG. 2, reference numeral 11 denotes an n-type SiC substrate having a carrier concentration of 2 × 10 18 cm -3 where N is the main impurity. An n-type S having a carrier concentration of 5 × 10 17 cm −3 and a thickness of about 10 μm, to which gallium (Ga) and N are added, is first formed on one main surface of the n-type SiC substrate 11 by the LPE method.
The iC layer 12 is laminated. Then, a p-type SiC layer 21 having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 10 μm, to which Ga has been added, is laminated on this.

【0033】そして第1の実施例と同様にしてNi電極
14・Al電極15を形成して発光素子が完成する。第
1の実施例の発光素子と本比較例の発光素子の発光強度
とを比較したところ、20mAという同じ大きさの順方
向の電流に対して、第1の実施例の発光素子は本比較例
の発光素子の約5倍の発光強度を示した。また発光色は
青であった。
Then, similar to the first embodiment, the Ni electrode 14 and the Al electrode 15 are formed to complete the light emitting device. Comparing the light emitting intensity of the light emitting device of the first embodiment with the light emitting intensity of the light emitting device of this comparative example, the light emitting device of the first embodiment shows that the light emitting device of the first embodiment has a forward current of the same magnitude. The luminescence intensity of the luminescent element was about 5 times. The luminescent color was blue.

【0034】なお第1の実施例においてn型SiC層1
2の厚さは5〜30μm程度、p型SiC層13の厚さ
は10〜30μm程度が好ましい。これは厚くしすぎる
と光を吸収してしまうからであり、また薄くしすぎると
電流が広がらないからである。
In the first embodiment, the n-type SiC layer 1
2 is preferably about 5 to 30 μm, and the p-type SiC layer 13 is preferably about 10 to 30 μm. This is because if it is made too thick, it will absorb light, and if it is made too thin, the current will not spread.

【0035】またn型SiC基板11・n型SiC層1
2・p型SiC層13の不純物のキャリア濃度は1017
〜1019cm-3程度が好ましい。これはキャリア濃度が
高いと電流は広がるが光を吸収しやすくなるからであ
り、キャリア濃度が低いとその逆となるからである。
The n-type SiC substrate 11 and the n-type SiC layer 1
The carrier concentration of impurities in the 2 · p-type SiC layer 13 is 10 17
It is preferably about 10 19 cm -3 . This is because when the carrier concentration is high, the current spreads but the light is easily absorbed, and when the carrier concentration is low, the opposite occurs.

【0036】また電極を形成する方法としてはスパッタ
リング法の他にも真空蒸着法などを用いることもでき
る。ここで第1の実施例を改良した発光素子の断面図を
図3に示す。図中の番号については図1と同一の部分に
は同じ番号を付けた。この発光素子はp型SiC層13
の上に、電流拡散層としてAlを高濃度に添加したキャ
リア濃度が約2×1019cm-3のp型SiC層31を積
層したもので、第1の実施例の発光素子と比べて約10
倍の発光強度を示した。
In addition to the sputtering method, a vacuum vapor deposition method or the like can be used as a method for forming the electrodes. Here, FIG. 3 shows a cross-sectional view of a light emitting device obtained by improving the first embodiment. Regarding the numbers in the figure, the same parts as those in FIG. 1 are given the same numbers. This light emitting device has a p-type SiC layer 13
A p-type SiC layer 31 having a carrier concentration of approximately 2 × 10 19 cm −3 , which is a high concentration of Al added as a current diffusion layer, is stacked on top of the above. 10
The emission intensity was doubled.

【0037】続いて図4に本発明の第2の実施例に係る
発光素子の断面図を示す。この発光素子は2H型のSi
Cを用いた発光素子である。図4において41はNが主
な不純物であるキャリア濃度3×1017cm-3のn型S
iC基板である。このn型SiC基板41の一方の主面
上にCVD法を用いて2H型のSiC層42〜44を順
次積層する。42はNが主な不純物であるキャリア濃度
2×1018cm-3、厚さ約10μmのn型SiC層、4
3はGaとNを添加したキャリア濃度1×1017
-3、厚さ約5μmのn型SiC層、44はAlを添加
したキャリア濃度2×1018cm-3、厚さ約10μmの
p型SiC層である。
Next, FIG. 4 shows a sectional view of a light emitting device according to a second embodiment of the present invention. This light emitting element is a 2H type Si
It is a light emitting element using C. In FIG. 4, 41 is an n-type S with a carrier concentration of 3 × 10 17 cm -3 where N is a main impurity.
It is an iC substrate. 2H type SiC layers 42 to 44 are sequentially laminated on one main surface of this n type SiC substrate 41 by a CVD method. 42 is an n-type SiC layer having a carrier concentration of 2 × 10 18 cm −3 , which is N as a main impurity, and a thickness of about 10 μm, 4
3 is a carrier concentration of 1 × 10 17 c with Ga and N added.
m −3 , an n-type SiC layer having a thickness of about 5 μm, and 44 is a p-type SiC layer having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 10 μm, to which Al is added.

【0038】そしてn型SiC基板41のもう一方の主
面に厚さ約1μmのNi電極45を、p型SiC層44
に厚さ約1μmのTi電極46を形成する。形成方法は
第1の実施例と同様であり、Ni電極45は1つ、Ti
電極46は3つ形成する。
Then, a Ni electrode 45 having a thickness of about 1 μm and a p-type SiC layer 44 are formed on the other main surface of the n-type SiC substrate 41.
Then, a Ti electrode 46 having a thickness of about 1 μm is formed. The formation method is similar to that of the first embodiment, one Ni electrode 45, Ti
Three electrodes 46 are formed.

【0039】この発光素子も第1の実施例の発光素子と
同様な発光強度を示した。また電流値によって異なる
が、順方向の電流20mA程度で波長430nm程度に
その発光スペクトルのピ−クを持ち紫〜青の発光色を示
した。2H型のSiCは4H型のSiCに比べて禁制帯
幅が大きいためキャリア濃度が同じ場合、発光スペクト
ルのピ−クが短波長側に移動する。
This light emitting device also showed the same light emission intensity as the light emitting device of the first embodiment. Although it depends on the current value, it has a peak of its emission spectrum at a wavelength of about 430 nm at a forward current of about 20 mA and exhibits a purple to blue emission color. Since 2H-type SiC has a larger forbidden band width than 4H-type SiC, when the carrier concentration is the same, the peak of the emission spectrum moves to the shorter wavelength side.

【0040】次に図5に本発明の第3の実施例に係る発
光素子の断面図を示す。この発光素子はAlNを用いた
発光素子である。図5において51はサファイア基板で
ある。このサファイア基板51の一方の主面上にMOC
VD法を用いてAlN層52〜54を順次積層する。5
2はCdを添加したキャリア濃度2×1018cm-3、厚
さ約1μmのp型AlN層、53はMgとTeを添加し
たキャリア濃度1×1017cm-3,厚さ約1μmのn型
AlN層、54はTeを添加したキャリア濃度2×10
18cm-3,厚さ約3μmのn型AlN層である。
Next, FIG. 5 shows a sectional view of a light emitting device according to a third embodiment of the present invention. This light emitting element is a light emitting element using AlN. In FIG. 5, reference numeral 51 is a sapphire substrate. MOC is formed on one main surface of the sapphire substrate 51.
The AlN layers 52 to 54 are sequentially stacked by using the VD method. 5
2 is a p-type AlN layer having a carrier concentration of 2 × 10 18 cm −3 with Cd added and a thickness of about 1 μm, and 53 is a carrier concentration of 1 × 10 17 cm −3 with Mg and Te added and a thickness of about 1 μm n. Type AlN layer, 54 is Te-added carrier concentration 2 × 10
The n-type AlN layer has a thickness of 18 cm −3 and a thickness of about 3 μm.

【0041】この後エッチングによってp型AlN層5
2を露出させ、p型AlN層52に約1μmの厚さの金
(Au)電極55、n型AlN層54に約1μmの厚さ
のAu電極56を真空蒸着法を用いて形成する。この後
500℃程度の温度で約5分間の熱処理を行いオ−ム性
電極とする。
After that, by etching, the p-type AlN layer 5 is formed.
2 is exposed, and a gold (Au) electrode 55 having a thickness of about 1 μm is formed on the p-type AlN layer 52, and an Au electrode 56 having a thickness of about 1 μm is formed on the n-type AlN layer 54 using a vacuum deposition method. After that, heat treatment is performed at a temperature of about 500 ° C. for about 5 minutes to form an ohmic electrode.

【0042】この発光素子は実施例1の発光素子と同様
な発光強度を示し、波長420nm程度に発光スペクト
ルのピ−クを有した。図6に本発明の第4の実施例に係
る発光素子の断面図を示す。この発光素子は2H型のS
iCを用いた発光素子である。
This light emitting device showed the same emission intensity as the light emitting device of Example 1, and had a peak of the emission spectrum at a wavelength of about 420 nm. FIG. 6 shows a sectional view of a light emitting device according to a fourth embodiment of the present invention. This light emitting element is a 2H type S
It is a light emitting element using iC.

【0043】図6において61はNを主たる不純物とし
て添加したキャリア濃度2×1018cm-3のn型SiC
基板である。このn型SiC基板61の一方の主面上に
LPE法を用いて2H型のSiC層62・63を順次積
層する。62はAlとAsを添加したキャリア濃度1×
1017cm-3、厚さ約10μmのn型SiC層、63は
Alを添加したキャリア濃度2×1018cm-3、厚さ約
10μmのp型SiC層である。
In FIG. 6, reference numeral 61 denotes n-type SiC having a carrier concentration of 2 × 10 18 cm -3 with N added as a main impurity.
The substrate. 2H type SiC layers 62 and 63 are sequentially laminated on one main surface of the n type SiC substrate 61 by the LPE method. 62 is a carrier concentration of 1 × with Al and As added.
An n-type SiC layer having a thickness of 10 17 cm −3 and a thickness of about 10 μm, and 63 is a p-type SiC layer having an Al-added carrier concentration of 2 × 10 18 cm −3 and a thickness of about 10 μm.

【0044】n型SiC基板61のもう一方の主面に厚
さ約1μmのNi電極64、p型SiC層63に厚さ約
3μmのAl電極65を実施例1と同様にして形成す
る。この発光素子も実施例1と同様な発光強度を示し
た。また発光色は青緑〜青であった。
A Ni electrode 64 having a thickness of about 1 μm is formed on the other main surface of the n-type SiC substrate 61, and an Al electrode 65 having a thickness of about 3 μm is formed on the p-type SiC layer 63 in the same manner as in the first embodiment. This light emitting device also showed the same light emission intensity as in Example 1. The emission color was bluish green to blue.

【0045】図7に本発明の第5の実施例に係る発光素
子の断面図を示す。この発光素子は2H型のSiCを用
いた発光素子である。図7において71はNを主たる不
純物として添加したキャリア濃度2×1018cm-3のn
型SiC基板である。このn型SiC基板71の一方の
主面上にBと酸素(O)を添加したキャリア濃度1×1
17cm-3、厚さ約5μmのn型SiC層72、Alを
添加したキャリア濃度2×1018、厚さ約10μmのp
型SiC層73をLPE法を用いて順次積層する。
FIG. 7 shows a sectional view of a light emitting device according to a fifth embodiment of the present invention. This light emitting element is a light emitting element using 2H type SiC. In FIG. 7, reference numeral 71 denotes n with a carrier concentration of 2 × 10 18 cm −3 with N added as a main impurity.
Type SiC substrate. Carrier concentration of 1 × 1 in which B and oxygen (O) are added on one main surface of the n-type SiC substrate 71.
0 17 cm −3 , n-type SiC layer 72 with a thickness of about 5 μm, carrier concentration 2 × 10 18 with Al added, and p with a thickness of about 10 μm.
The type SiC layers 73 are sequentially laminated using the LPE method.

【0046】この後n型SiC基板71のもう一方の主
面にNi電極74、p型SiC層73にAl電極74を
実施例1と同様に形成する。この発光素子も実施例1の
発光素子と同様な発光強度を示した。また電流値によっ
て異なるがおおむね緑〜黄の発光色を示す。
Thereafter, a Ni electrode 74 is formed on the other main surface of the n-type SiC substrate 71 and an Al electrode 74 is formed on the p-type SiC layer 73 in the same manner as in the first embodiment. This light emitting device also showed the same light emission intensity as that of the light emitting device of Example 1. Although it depends on the current value, the emission color is generally green to yellow.

【0047】図8に本発明の第6の実施例に係る発光素
子の断面図を示す。この発光素子は4H型のSiCを用
いた発光素子である。図8において81はNを主たる不
純物として添加したキャリア濃度2×1018cm-3のn
型SiC基板である。このn型SiC基板81の一方の
主面上にベリリウム(Be)とAsを添加したキャリア
濃度1×1017cm-3、厚さ約5μmのn型SiC層8
2、Alを添加したキャリア濃度2×1018cm、厚さ
約10μmのp型SiC層83をLPE法によって順次
積層する。
FIG. 8 shows a sectional view of a light emitting device according to a sixth embodiment of the present invention. This light emitting element is a light emitting element using 4H type SiC. In FIG. 8, 81 is an n having a carrier concentration of 2 × 10 18 cm −3 with N added as a main impurity.
Type SiC substrate. An n-type SiC layer 8 having a carrier concentration of 1 × 10 17 cm −3 and a thickness of about 5 μm in which beryllium (Be) and As are added on one main surface of the n-type SiC substrate 81.
2. A p-type SiC layer 83 having a carrier concentration of 2 × 10 18 cm and a thickness of about 10 μm to which Al is added is sequentially laminated by the LPE method.

【0048】この後、実施例1と同様にしてNi電極8
4・Al電極85を形成する。この発光素子も実施例1
の発光素子と同様な発光強度を示した。また波長400
〜450nm程度に発光スペクトルのピ−クを持ち紫〜
青の発光色を呈した。
After that, the Ni electrode 8 was formed in the same manner as in Example 1.
4. Al electrode 85 is formed. This light emitting device is also the first embodiment.
The same luminescence intensity as that of the light emitting device of No. Wavelength 400
~ Purple with peak of emission spectrum at about 450nm ~
It exhibited a blue emission color.

【0049】図9に本発明の第7の実施例に係る発光素
子の断面図を示す。この発光素子は2H型のSiCを用
いた発光素子である。図9において91はNを主たる不
純物として添加したキャリア濃度2×1018cm-3のn
型SiC基板である。このn型SiC基板91の一方の
主面上にBとGaとNを添加したキャリア濃度1×10
17cm-3、厚さ約5μmのn型SiC層92、Alを添
加したキャリア濃度2×1018cm-3、厚さ約10μm
のp型SiC層93をLPE法を用いて順次積層する。
FIG. 9 is a sectional view of a light emitting device according to the seventh embodiment of the present invention. This light emitting element is a light emitting element using 2H type SiC. In FIG. 9, 91 is n with a carrier concentration of 2 × 10 18 cm −3 with N added as a main impurity.
Type SiC substrate. Carrier concentration of 1 × 10 5 with B, Ga and N added on one main surface of the n-type SiC substrate 91.
17 cm -3 , n-type SiC layer 92 with a thickness of about 5 μm, carrier concentration 2 × 10 18 cm -3 with Al added, thickness of about 10 μm
The p-type SiC layer 93 is sequentially laminated by the LPE method.

【0050】この後、実施例1と同様にしてNi電極9
4・Al電極95を形成する。この発光素子も実施例1
の発光素子と同様な発光強度を示した。また発光層に異
なる発光色の元となる不純物が含まれているため、電流
値によって紫外〜青の様々な色を呈することができる。
Thereafter, the Ni electrode 9 is formed in the same manner as in Example 1.
4. Form the Al electrode 95. This light emitting device is also the first embodiment.
The same luminescence intensity as that of the light emitting device of No. Further, since the light emitting layer contains impurities that are the origin of different emission colors, various colors from ultraviolet to blue can be exhibited depending on the current value.

【0051】図10に本発明の第8の実施例に係る発光
素子の断面図を示す。この発光素子は窒化物半導体を用
いた発光素子である。図10において101はサファイ
ア基板、102は基板と上部の窒化物半導体層との間の
格子不整合を緩和するためのバッファ層である。
FIG. 10 is a sectional view of a light emitting device according to the eighth embodiment of the present invention. This light emitting device is a light emitting device using a nitride semiconductor. In FIG. 10, 101 is a sapphire substrate, and 102 is a buffer layer for alleviating the lattice mismatch between the substrate and the upper nitride semiconductor layer.

【0052】バッファ層102上にMOCVD法を用い
て、Siを添加したキャリア濃度2×1018cm-3、厚
さ約3μmのn型GaN層103、Siと亜鉛(Zn)
を添加したキャリア濃度1×1017、厚さ約0.5μm
のn型InGaN層104、Mgを添加したキャリア濃
度2×1018cm-3、厚さ約1μmのp型GaN層10
5を順次積層する。
On the buffer layer 102, an n-type GaN layer 103 having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 3 μm added with Si, and Si and zinc (Zn) are formed by MOCVD.
Carrier concentration with addition of 1 × 10 17 and thickness of about 0.5 μm
N-type InGaN layer 104, a p-type GaN layer 10 having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 1 μm, to which Mg is added.
5 are sequentially laminated.

【0053】この後、実施例3と同様にしてAu電極1
06・Au電極107を形成する。この発光素子も実施
例1の発光素子と同様な発光強度を示した。また発光層
におけるInとGaとの間の比を変えることにより発光
する波長を変化させることができる。例えばIn/(G
a+In)を0〜0.3にすることにより波長455〜
540nm程度のピ−クを持つ発光を得ることができ、
この比を0.1〜0.25とすると波長480〜520
nm程度の緑色の発光を得ることができる。
After that, the Au electrode 1 was formed in the same manner as in Example 3.
The 06.Au electrode 107 is formed. This light emitting device also showed the same light emission intensity as that of the light emitting device of Example 1. The wavelength of emitted light can be changed by changing the ratio between In and Ga in the light emitting layer. For example, In / (G
a + In) is set to 0 to 0.3, the wavelength is 455 to
It is possible to obtain light emission having a peak of about 540 nm,
If this ratio is 0.1 to 0.25, the wavelength is 480 to 520.
It is possible to obtain green emission of about nm.

【0054】図11に本発明の第9の実施例に係る発光
素子の断面図を示す。この発光素子は窒化物半導体を用
いた発光素子である。図11において111はサファイ
ア基板、112は基板と上部の窒化物半導体層との間の
格子不整合を緩和するためのバッファ層である。
FIG. 11 is a sectional view of a light emitting device according to the ninth embodiment of the present invention. This light emitting device is a light emitting device using a nitride semiconductor. In FIG. 11, 111 is a sapphire substrate, and 112 is a buffer layer for alleviating the lattice mismatch between the substrate and the upper nitride semiconductor layer.

【0055】バッファ層112上にMOCVD法を用い
て、Siを添加したキャリア濃度2×1018cm-3、厚
さ約3μmのn型AlGaN層113、SiとZnを添
加したキャリア濃度1×1017cm-3、厚さ約0.5μ
mのn型GaN層114、Mgを添加したキャリア濃度
2×1018cm-3、厚さ約1μmのp型AlGaN層1
15を順次積層する。
A carrier concentration of 2 × 10 18 cm −3 containing Si and an n-type AlGaN layer 113 having a thickness of about 3 μm and a carrier concentration of 1 × 10 containing Si and Zn are formed on the buffer layer 112 by MOCVD. 17 cm -3 , thickness about 0.5μ
m n-type GaN layer 114, Mg-added p-type AlGaN layer 1 having a carrier concentration of 2 × 10 18 cm −3 and a thickness of about 1 μm.
15 are sequentially laminated.

【0056】この後、実施例3と同様にしてAu電極1
16・Au電極117を形成する。この発光素子も実施
例1の発光素子と同様な発光強度を示した。また発光色
は青紫〜青であった。
After that, the Au electrode 1 was formed in the same manner as in Example 3.
16 · Au electrode 117 is formed. This light emitting device also showed the same light emission intensity as that of the light emitting device of Example 1. The emission color was bluish purple to blue.

【0057】ここで発光強度は添加する不純物によって
も異なってくるが、AlGaN層113・115の組成
比によっても異なってくる。例えばAl/(Al+G
a)の比が0.1〜0.4においては電子・正孔が効率
良く注入されるが、この範囲を越える領域においては、
特にp型AlGaN層115に対するオ−ミック接触を
とることが非常に困難になる。このため電極部での電気
抵抗が増大し、発光効率が低下する。この点から、発光
効率を向上させるためにはAl/(Al+Ga)の比は
0.2〜0.3が好ましい。
Here, the emission intensity varies depending on the added impurities, but also varies depending on the composition ratio of the AlGaN layers 113 and 115. For example, Al / (Al + G
When the ratio of a) is 0.1 to 0.4, electrons and holes are efficiently injected, but in a region exceeding this range,
In particular, it becomes very difficult to make an ohmic contact with the p-type AlGaN layer 115. For this reason, the electric resistance in the electrode portion increases, and the luminous efficiency decreases. From this point, the ratio of Al / (Al + Ga) is preferably 0.2 to 0.3 in order to improve the luminous efficiency.

【0058】[0058]

【発明の効果】以上述べたように本発明によれば、発光
強度の大きい発光素子を提供することができる。
As described above, according to the present invention, it is possible to provide a light emitting device having a high emission intensity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1に係る発光素子の断面図。FIG. 1 is a sectional view of a light emitting device according to a first embodiment of the invention.

【図2】 本発明の実施例1に対する比較例に係る発光
素子の断面図。
FIG. 2 is a cross-sectional view of a light emitting device according to a comparative example with respect to Example 1 of the present invention.

【図3】 本発明の実施例1に係る発光素子の断面図。FIG. 3 is a sectional view of a light emitting device according to a first embodiment of the invention.

【図4】 本発明の実施例2に係る発光素子の断面図。FIG. 4 is a sectional view of a light emitting device according to a second embodiment of the invention.

【図5】 本発明の実施例3に係る発光素子の断面図。FIG. 5 is a sectional view of a light emitting device according to a third embodiment of the invention.

【図6】 本発明の実施例4に係る発光素子の断面図。FIG. 6 is a sectional view of a light emitting device according to a fourth embodiment of the invention.

【図7】 本発明の実施例5に係る発光素子の断面図。FIG. 7 is a sectional view of a light emitting device according to a fifth embodiment of the invention.

【図8】 本発明の実施例6に係る発光素子の断面図。FIG. 8 is a sectional view of a light emitting device according to Example 6 of the present invention.

【図9】 本発明の実施例7に係る発光素子の断面図。FIG. 9 is a sectional view of a light emitting device according to Example 7 of the present invention.

【図10】 本発明の実施例8に係る発光素子の断面
図。
FIG. 10 is a sectional view of a light emitting device according to Example 8 of the present invention.

【図11】 本発明の実施例9に係る発光素子の断面
図。
FIG. 11 is a sectional view of a light emitting device according to Example 9 of the present invention.

【符号の説明】[Explanation of symbols]

11、41…n型SiC基板 12、42、43…n型SiC層 13、44…p型SiC層 51、101、111…サファイア基板 52…p型AlN層 53、54…n型AlN層 102、112…バッファ層 103、114…n型GaN層 104…n型InGaN層 105…p型GaN層 113…n型AlGaN層 115…p型AlGaN層 11, 41 ... N-type SiC substrate 12, 42, 43 ... N-type SiC layer 13, 44 ... P-type SiC layer 51, 101, 111 ... Sapphire substrate 52 ... P-type AlN layer 53, 54 ... N-type AlN layer 102, 112 ... Buffer layer 103, 114 ... N-type GaN layer 104 ... N-type InGaN layer 105 ... P-type GaN layer 113 ... N-type AlGaN layer 115 ... P-type AlGaN layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の第1の電流注入層と、この
第1の電流注入層に隣接し少なくとも2種類の不純物を
含む発光層と、この発光層に隣接した第2導電型の第2
の電流注入層とを備え、炭化ケイ素のIV族または窒素を
含むIII −V 族からなる化合物半導体発光素子におい
て、 前記発光層のアクセプタ−およびドナ−準位間のエネル
ギ−差のうち最も狭いエネルギ−差が前記第1および第
2の電流注入層のアクセプタ−およびドナ−準位間のエ
ネルギ−差よりも狭くなるように構成したことを特徴と
する化合物半導体発光素子。
1. A first current injection layer of a first conductivity type, a light emitting layer adjacent to the first current injection layer and containing at least two kinds of impurities, and a second current conductivity type adjacent to the light emission layer. Second
In the compound semiconductor light emitting device comprising the group IV of silicon carbide or the group III-V containing nitrogen, the narrowest energy difference among the energy difference between the acceptor and the donor level of the light emitting layer is provided. A compound semiconductor light emitting device, characterized in that the difference is narrower than the energy difference between the acceptor and donor levels of the first and second current injection layers.
JP13149094A 1994-06-14 1994-06-14 Compound semiconductor light emitting device Pending JPH07335940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13149094A JPH07335940A (en) 1994-06-14 1994-06-14 Compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13149094A JPH07335940A (en) 1994-06-14 1994-06-14 Compound semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH07335940A true JPH07335940A (en) 1995-12-22

Family

ID=15059220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13149094A Pending JPH07335940A (en) 1994-06-14 1994-06-14 Compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH07335940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066556A (en) * 2004-08-25 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor device and its manufacturing method
JP2006080560A (en) * 2005-10-31 2006-03-23 Kansai Electric Power Co Inc:The Optical coupling power semiconductor device
JP2016015463A (en) * 2014-06-10 2016-01-28 エルシード株式会社 METHOD FOR PROCESSING SiC MATERIAL AND SiC MATERIAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066556A (en) * 2004-08-25 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor device and its manufacturing method
JP2006080560A (en) * 2005-10-31 2006-03-23 Kansai Electric Power Co Inc:The Optical coupling power semiconductor device
JP2016015463A (en) * 2014-06-10 2016-01-28 エルシード株式会社 METHOD FOR PROCESSING SiC MATERIAL AND SiC MATERIAL

Similar Documents

Publication Publication Date Title
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
JP3209096B2 (en) Group III nitride compound semiconductor light emitting device
JP5167127B2 (en) Optoelectronic semiconductor chip
US7737451B2 (en) High efficiency LED with tunnel junction layer
EP1791189B1 (en) Semiconductor device and method of semiconductor device fabrication
KR101174908B1 (en) Light-emitting device and manufacturing method thereof
JP5836338B2 (en) Nitride semiconductor structure and semiconductor light emitting device
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
WO2007136097A1 (en) Semiconductor light emitting element
JPH0268968A (en) Compound semiconductor light-emitting device
US11538962B2 (en) Light-emitting element and method for manufacturing light-emitting element
KR100700529B1 (en) Light emitting diode with current spreading layer and manufacturing method thereof
JPH10256601A (en) Light emitting device
KR20000024945A (en) Method for manufacturing gan-based light-emitting device with double cladding-double hetero structure
JP2790235B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
JPH07335940A (en) Compound semiconductor light emitting device
JP5060823B2 (en) Semiconductor light emitting device
JPH09326508A (en) Semiconductor optical device
Park et al. Effect of carrier blocking layers on the emission characteristics of AlGaN-based ultraviolet light emitting diodes
JP3117203B2 (en) Light emitting diode and method of manufacturing the same
JP2020181976A (en) Light-emitting element and manufacturing method of the same
KR100737821B1 (en) Light emitting device and the fabrication method thereof
Kikawa et al. Electroluminescence studies under forward and reverse bias conditions of a nitride-rich GaN1− xPx SQW structure LED grown by laser-assisted metal-organic chemical vapor deposition
JP2795885B2 (en) Semiconductor light emitting diode
CN110168752A (en) Method for growing luminescent device under ultraviolet irradiation