JPH0330486A - Multi quantum well light emitting element - Google Patents

Multi quantum well light emitting element

Info

Publication number
JPH0330486A
JPH0330486A JP1167549A JP16754989A JPH0330486A JP H0330486 A JPH0330486 A JP H0330486A JP 1167549 A JP1167549 A JP 1167549A JP 16754989 A JP16754989 A JP 16754989A JP H0330486 A JPH0330486 A JP H0330486A
Authority
JP
Japan
Prior art keywords
quantum well
layer
active layer
light emitting
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1167549A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamazaki
裕幸 山崎
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1167549A priority Critical patent/JPH0330486A/en
Publication of JPH0330486A publication Critical patent/JPH0330486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make carriers uniform in distribution so as to obtain a muliple quantum well light emitting element excellent in characteristics by a method wherein donors and acceptors are partly added to the P-clad layer side and the N-buffer layer side of a semiconductor thin film which constitutes an active layer respectively. CONSTITUTION:An N-InP buffer layer 2, a muliple quantum well active layer 3 composed of an InGaAs well layer 4 and an InP barrier layer 5, and a P-InP clad layer 6 are successively laminated on an InP substrate 1, and then a P- electrode 7 and an N-electrode 8 are provided to the P-InP clad layer 6 and the rear side of the substrate 1 to form a light emitting element. Moreover, donors are wholly added to the part of the active layer 3 close to the clad layer 6 and acceptors partly added to the part of the active layer 3 close to the buffer layer 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重量子井戸発光素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a multiple quantum well light emitting device.

〔従来の技術〕[Conventional technology]

半導体多層薄膜を活性層として有する量子井戸型半導体
レーザは、状態密度が階段状になるのを反映し、通常の
二重へテロ接合(D H)構造半導体レーザと比べて、
低しきい値、高い特性温度To。
Quantum well type semiconductor lasers, which have a semiconductor multilayer thin film as an active layer, reflect the fact that the density of states is step-like, and compared to normal double heterojunction (D H) structure semiconductor lasers,
Low threshold, high characteristic temperature To.

変調時のスペクトル拡がりが狭い等の優れた特性を有し
ている。そのひとつとしてAT&T  Be11研究所
のDutta等はアプライド・フィジックス・レターズ
誌(^pp1.Phys、Lett、、voi。
It has excellent characteristics such as narrow spectrum spread during modulation. As one of them, Dutta et al. of AT&T Be11 Laboratory published Applied Physics Letters magazine (^pp1. Phys, Lett,, voi.

46、p1036−1038.1985)において、発
光波長163μm組成(以下、1.3μm組成と略記す
る)のInGaAsPウェル層、1.03μmt[u成
のInGaAsPバリア層(いずれも厚さ約300人)
を交互に数層ずつ積層1−た活性層を有する多重量子井
戸レーザを報告している。ここで、Dutta等はしき
い値におけるキャリアライフタイムの温度依存性を評価
し通常の半導体レーザに比べて、多重量子井戸レーザの
温度特性が優れていることを報告した。また高野等は電
子情報通信学会技術研究報告(OQE88−68゜p2
9−35.1988年10月24日)において、量子井
戸レーザは通常の半導体レーザに比ベスペクトル線幅が
狭いこと、さらにウェル層の暦数が少いほどスペクトル
線幅が狭いこと等を実験的に明かにした。
46, p1036-1038.1985), an InGaAsP well layer with an emission wavelength of 163 μm composition (hereinafter abbreviated as 1.3 μm composition) and an InGaAsP barrier layer with a 1.03 μm thickness (both approximately 300 μm thick)
reported a multi-quantum well laser with an active layer consisting of several layers stacked alternately. Here, Dutta et al. evaluated the temperature dependence of carrier lifetime at the threshold value and reported that the temperature characteristics of a multiple quantum well laser are superior to that of a normal semiconductor laser. In addition, Takano et al.
9-35. (October 24, 1988), experiments showed that quantum well lasers have a narrower spectral linewidth than ordinary semiconductor lasers, and that the fewer the number of well layers, the narrower the spectral linewidth. It was clearly revealed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多重量子井戸レーザは各量子井戸にキャリアを均一に注
入する必要があり、注入が不均一に行われていると多重
量子井戸レーザの特性が十分に弓き出されない恐りがあ
る。特に量子井戸層数の多い多重量子井戸レーザではキ
ャリア分布の不均一性からの特性劣化が顕著である。
In a multiple quantum well laser, it is necessary to uniformly inject carriers into each quantum well, and if the injection is performed non-uniformly, there is a risk that the characteristics of the multiple quantum well laser will not be sufficiently developed. In particular, in multi-quantum well lasers with a large number of quantum well layers, characteristic deterioration due to non-uniform carrier distribution is remarkable.

量子井戸活性層に不純物の添加を行っていない通常の多
重量子井戸レーザはレーザ発振している状態において、
第3図(a)、 (b)、 (c)に示すように、n型
クラッド層側ではホールが減少し、p型クラッド層側で
は電子が減少する。すなわちn型クラッド層(第3図(
a)の場合はバッファ層2がこれに相当する)側から注
入された電子は拡散効果、電界によるドリフト効果、さ
らにバリア層5の薄い場合にはトンネル効果によって順
次隣接した量子井戸に注入されていく。このため、n型
クラッド層に近い量子井戸では電子密度が高く、p型ク
ラッド層6に近い量子井戸では電子密度が低くなる。ま
た、ホールについては電子に対し逆方向から注入される
ことから、電子密度の分布とは逆にn型クラッド層に近
い量子井戸ではホール密度が低く、p型クラッド層6に
近い量子井戸ではホール密度の高い分布となる。このた
め、量子井戸活性層の中央付近における量子井戸では利
得を持つことができるが、p型クラッド層とn型クラッ
ド層の近傍における量子井戸では利得は生じず損失とな
る。さらに、各量子井戸のキャリア密度は上述のように
して生じた損失と利得が釣り合うキャリア密度で固定さ
れるためレーザ発振時においても第3図(b)、 ?(
c)に示すような不均一なキャリア分布となる。これは
発光ダイオードについても同じである。
In a normal multi-quantum well laser in which impurities are not added to the quantum well active layer, during laser oscillation,
As shown in FIGS. 3(a), (b), and (c), holes decrease on the n-type cladding layer side, and electrons decrease on the p-type cladding layer side. That is, the n-type cladding layer (Fig. 3 (
In case a), the electrons injected from the buffer layer 2 are sequentially injected into adjacent quantum wells due to the diffusion effect, the drift effect due to the electric field, and furthermore, when the barrier layer 5 is thin, the tunnel effect. go. Therefore, the electron density is high in quantum wells close to the n-type cladding layer, and the electron density is low in quantum wells close to the p-type cladding layer 6. Furthermore, since holes are injected from the opposite direction to electrons, the hole density is low in quantum wells near the n-type cladding layer, contrary to the distribution of electron density, and in quantum wells near the p-type cladding layer 6, holes are injected from the opposite direction to electrons. This results in a dense distribution. Therefore, a quantum well near the center of the quantum well active layer can have a gain, but a quantum well near the p-type cladding layer and the n-type cladding layer causes no gain but a loss. Furthermore, since the carrier density of each quantum well is fixed at a carrier density that balances the loss and gain generated as described above, even during laser oscillation, as shown in FIG. 3(b), ? (
This results in non-uniform carrier distribution as shown in c). The same applies to light emitting diodes.

本発明の目的は多層の多重量子井戸発光素子において、
キャリア分布を均一にして、優れた特性の多重量子井戸
発光素子を提供することにある。
The object of the present invention is to provide a multilayer multi-quantum well light emitting device,
The object of the present invention is to provide a multi-quantum well light emitting device with excellent characteristics by making the carrier distribution uniform.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では半導体多層膜を活性層として有する多重量子
井戸発光素子において、前記活性層を構成する半導体薄
膜のpクラッド側にドナー、nクラッド側に7クセブタ
ーを部分的に添加することを特徴とする多重量子井戸発
光素子によって上述の問題を解決する。あるいは、前記
活性層全体にドナーを添加することを特徴とする多重量
子井戸発光素子によって上述の問題を解決する。
The present invention is characterized in that, in a multi-quantum well light emitting device having a semiconductor multilayer film as an active layer, a donor is partially added to the p-cladding side of the semiconductor thin film constituting the active layer, and a 7xbuter is partially added to the n-cladding side of the semiconductor thin film constituting the active layer. A multi-quantum well light emitting device solves the above problems. Alternatively, the above-mentioned problem can be solved by a multi-quantum well light emitting device characterized in that a donor is added to the entire active layer.

〔作用〕[Effect]

先述の問題を解決するためには、キャリアの均一注入を
行うためにバリア層の厚さを薄くして、トンネル効果に
より、各量子井戸に均一にキャリアを注入することが考
えられる。しかし、これでは量子井戸間における電子の
波動関数の結合が無視できなくなり、その結果多くのサ
ブバンドを形成する。これにより、ゲインカーブの幅が
広がることによって、利得が低下してしまい量子井戸レ
ーザの優れた特性を引き出すことはできない。
In order to solve the above-mentioned problem, it is conceivable to reduce the thickness of the barrier layer in order to uniformly inject carriers, and to uniformly inject carriers into each quantum well by the tunnel effect. However, this makes it impossible to ignore the coupling of electron wave functions between quantum wells, resulting in the formation of many subbands. As a result, the width of the gain curve widens and the gain decreases, making it impossible to bring out the excellent characteristics of the quantum well laser.

本発明は各量子井戸においてキャリア密度が不均一に分
布している多重量子井戸レーザに対し、あらかじめ量子
井戸活性層に不純物を添加することによって、これによ
る特性の劣化を少なくするものである。
The present invention is directed to a multi-quantum well laser in which the carrier density is non-uniformly distributed in each quantum well, by adding impurities to the quantum well active layer in advance to reduce the deterioration in characteristics caused by this.

第3図(a)では量子井戸活性層に不純物の添加を行っ
ていない通常の多重量子井戸レーザのポテンシャルの例
を示した。図のように、レーザ発振時においては、各量
子井戸のキャリア密度が相当不均一になっていることが
予想される。ここで、電子とホールは逆方向から注入さ
れることから、多重量子井戸活性層の中央付近では、電
子、ホールの両方が量子井戸に注入され、利得を持つこ
とができる。しかし、前述の活性層の中央から離れた量
子井戸活性層の両端近傍では電子密度の高い部分ではホ
ール密度が低く、ホール密度の高い部分では、電子密度
が低くなる分布となり、これが内部損失増大の原因とな
る。
FIG. 3(a) shows an example of the potential of a normal multiple quantum well laser in which no impurity is added to the quantum well active layer. As shown in the figure, during laser oscillation, it is expected that the carrier density in each quantum well is considerably non-uniform. Here, since electrons and holes are injected from opposite directions, both electrons and holes are injected into the quantum well near the center of the multi-quantum well active layer, which can provide gain. However, near both ends of the quantum well active layer away from the center of the active layer, the hole density is low in areas with high electron density, and the electron density is low in areas with high hole density, which causes an increase in internal loss. Cause.

そこで例えば量子井戸活性層内のpクラッド層に近い側
に7クセブタ、nクラッド層に近い側にドナーを添加し
ておくことにより、あらかじめ活性層内に逆のキャリア
分布をもたせておけば電流注入時のキャリア分布の均一
性を向上することができる。それによって、キャリアの
不均一分布から生じる内部損失の増大が避けられ、しき
い値電流が小さく、特性の優れた多重量子井戸発光素子
を提供することができる。
Therefore, if a reverse carrier distribution is created in advance in the active layer by adding a donor to the side of the quantum well active layer near the p-cladding layer and a donor to the side near the n-cladding layer, current can be injected. It is possible to improve the uniformity of carrier distribution at the time. As a result, an increase in internal loss caused by non-uniform distribution of carriers can be avoided, and a multi-quantum well light emitting device with a small threshold current and excellent characteristics can be provided.

また、量子井戸において、損失の増大は、電子密度の減
少の方がホール密度の減少よりも約10倍大きいことが
論理解析により明かになっているので、前記活性層全体
にわたりドナーを添加することも活性層での損失増大に
対して極めて有効な手段である。ホール密度に関しては
キャリアの不均一性が生じうるがこれによる損失は少な
い。
Furthermore, in quantum wells, it has been revealed through logical analysis that the decrease in electron density is about 10 times larger than the decrease in hole density, so adding donors throughout the active layer is necessary. This is also an extremely effective means for increasing loss in the active layer. Regarding the hole density, although carrier non-uniformity may occur, the loss due to this is small.

方、電子密度に関してはノンドープ活性層の場合と比べ
て密度の減少は避けられるため、損失の増大を防ぐこと
ができ、特性の優れた多重量子井戸発光素子を得ること
ができる。
On the other hand, since a decrease in electron density can be avoided compared to the case of a non-doped active layer, an increase in loss can be prevented, and a multi-quantum well light emitting device with excellent characteristics can be obtained.

〔実施例〕〔Example〕

以下に、実施例を示す図面を参照して本発明をより詳細
に説明する。本発明による実施例を第1図、第2図に示
す。
In the following, the present invention will be explained in more detail with reference to the drawings showing examples. An embodiment according to the present invention is shown in FIGS. 1 and 2.

第1の実施例である第1図(a)は断面構造図、第1図
(b)は伝導帯のエネルギーバンド図、第1図(C)は
ドナー不純物の分布、第1図(d)はアクセプタ不純物
の分布、第1図(e)、 (f)はレーザ発振時におけ
る電子、ホール分布を示す。この実施例の作製において
は、InP基板l上にn−InPバッファ層2を厚さ0
.5.um、InGaAsウェル層4.InPバリア層
5から成る多重量子井戸活性層3を厚さ0.245.u
m、p−InPクラッド層6を厚さ0.5μmにて順次
積層したのち、p−InPクラッド層6と基板裏面にそ
れぞれp電極7.n電極8を付ける構成とする。また、
多重量子井戸活性層3はI n G a A sウェル
層4を70人として15層、InPバリア層5を100
人として14層、交互に順次積層した構成とする。
FIG. 1(a) of the first embodiment is a cross-sectional structural diagram, FIG. 1(b) is an energy band diagram of the conduction band, FIG. 1(C) is the distribution of donor impurities, and FIG. 1(d) 1 shows the distribution of acceptor impurities, and FIGS. 1(e) and 1(f) show the electron and hole distributions during laser oscillation. In the fabrication of this example, an n-InP buffer layer 2 is formed on an InP substrate l to a thickness of 0.
.. 5. um, InGaAs well layer 4. The multi-quantum well active layer 3 made of an InP barrier layer 5 has a thickness of 0.245. u
After sequentially laminating p-InP cladding layers 6 with a thickness of 0.5 μm, p-electrodes 7. The configuration is such that an n-electrode 8 is attached. Also,
The multi-quantum well active layer 3 has 15 layers including 70 InGaAs well layers 4 and 100 InP barrier layers 5.
It has a structure in which 14 layers are stacked alternately in sequence.

この実施例は、多重量子井戸活性層3にp−InPクラ
ッド層6近傍にはドナーを最大8Xl□itam−3n
−InPバッファ層7近傍にはアクセプターを最大8 
X 1017an−”添加する。この不純物添加の様子
を第1図(c)、 (d)に示す。
In this embodiment, a maximum of 8Xl□itam-3n
-Maximum of 8 acceptors near the InP buffer layer 7
X 1017an-'' is added. The state of this impurity addition is shown in FIGS. 1(c) and 1(d).

上述した不純物添加を行うことにより、レーザ発振時に
おけるキャリア密度の積層方向の不均一性は減少し、電
子、ホール密度の極端に低い部分が存在しなくなる。こ
のレーザ発振時におケル電極の構成として、しきい値電
流密度を測定したところ800 A/cJ程度のものが
得られた。これは通常のDEIレーザの1.2−1.5
 K A/dに比べ50コロ0%低い値である。さらに
、この積層構造をストライプ状に加工し、LPE法によ
りストライプ状の積層構造の両側に半導体層を形成して
埋め込み構造としたところ、室温CWでの発振°しきい
値電流10”20mA、片面あたりの微分量子効率的2
5%の多重量子井戸レーザが得られた。
By adding the impurities as described above, the non-uniformity of the carrier density in the stacking direction during laser oscillation is reduced, and areas with extremely low electron and hole densities no longer exist. When the threshold current density of the Okel electrode was measured during laser oscillation, it was found to be about 800 A/cJ. This is 1.2-1.5 of a normal DEI laser.
This is a value 50% lower than K A/d. Furthermore, this stacked structure was processed into a striped structure, and semiconductor layers were formed on both sides of the striped stacked structure using the LPE method to create a buried structure. Differential quantum efficient per 2
A 5% multiple quantum well laser was obtained.

また、レーザの特性温度T0は90=100にと通常の
DB構造レーザに比べ大幅に改善される。
Further, the characteristic temperature T0 of the laser is 90=100, which is significantly improved compared to a normal DB structure laser.

しきい値におけるキャリアライフタイムの温度依存性も
DH構造と比べてその変化率が小さく、さらに多重量子
井戸構造による階段状の状態密度を反映してパルス変調
時の発振スペクトル拡がりもDH構造レーザと比べて1
/2−1/3に低減された。
The temperature dependence of the carrier lifetime at the threshold value also has a smaller rate of change compared to the DH structure, and the oscillation spectrum broadening during pulse modulation also differs from that of the DH structure laser, reflecting the step-like density of states due to the multiple quantum well structure. Compared to 1
/2-1/3.

第2の実施例のエネルギーバンド図を第2図(a)に、
ドナーの分布を第2図(b)に、アクセプタの分布を第
2図(c)に、レーザ発振時における電子、ホール分布
を第2図(d)、 (e)に示す。多重量子井戸レーザ
の断面構造は第1の実施例と同一とした。
The energy band diagram of the second embodiment is shown in FIG. 2(a).
The distribution of donors is shown in FIG. 2(b), the distribution of acceptors is shown in FIG. 2(c), and the distribution of electrons and holes during laser oscillation is shown in FIG. 2(d) and (e). The cross-sectional structure of the multiple quantum well laser was the same as that of the first embodiment.

第2の実施例においては多重量子井戸活性層3全体にド
ナーを最大8 X 10 ”cm−’添加した。この不
純物添加の様子を第2図(b)、 (c)に示す。第2
の実施例においても第1の実施例とほぼ同程度優れた特
性の多重量子井戸レーザな得ることが期待される。
In the second example, donors were added to the entire multi-quantum well active layer 3 in a maximum amount of 8 x 10 cm-'. The state of this impurity addition is shown in FIGS. 2(b) and 2(c).
It is expected that a multi-quantum well laser having almost the same excellent characteristics as the first embodiment can be obtained in this embodiment as well.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては多重量子井戸レーザにお
いて多重量子井戸活性層に不純物を添加することによっ
て注入キャリア分布の均一性が向上した優れた特性の多
重量子井戸レーザと提供することができる。
As described above, in the present invention, by adding impurities to the multi-quantum well active layer of a multi-quantum well laser, it is possible to provide a multi-quantum well laser with excellent characteristics in which the uniformity of the injection carrier distribution is improved.

なお実施例においてはInP、 InGaAs系の半導
体材料を用いたが本発明傘≠≠*尖オ弄に用いる材料系
はもちろんこれに限るものではなく、GaAs、AlG
aAs系等他の材料を用いても何ら差しつかえない。ま
た、以上は半導体レーザについて説明したものだが、本
発明の構造は発光ダイオードについても有効である。
In the examples, InP and InGaAs semiconductor materials were used, but the material used for the tip of the present invention is of course not limited to these, and may include GaAs, AlG, etc.
There is no problem in using other materials such as aAs-based materials. Further, although the above description has been made regarding a semiconductor laser, the structure of the present invention is also effective for a light emitting diode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示し、同図(a)は断
面構造図、同図(b)は活性層周辺のエネルギーバンド
図、同図(c)、 (d)は不純物添加の様子を示す図
、同図(e)、 (r)はレーザ発振時における電子、
ホール分布を示す図である。第2図は本発明の第2の実
施例を示し、同図(a)は活性層Jffi辺のエネルギ
ーバンド図、同図(b)、 (c)は不純物添加の様子
を示す図、同図(d)、 (e)はレーザ発振時におけ
る電子、ホール分布を示す図である。第3図は活性層に
不純物を添加していない従来の多重1子井戸レーザに関
して示したものであり、同図(a)は活性層周辺のエネ
ルギーバンド図、同図(b)、 (c)はレーザ発振時
における電子、ホール分布を示す。 図中、1はn−InP基板、2はn−工nPバッファ層
、3は多重量子井戸活性層、4はInGaAsウェル層
、5はInPバリア層、6はp−InPクラッド層、7
はp電極、8はn電極を示す。
FIG. 1 shows a first embodiment of the present invention, in which (a) is a cross-sectional structural diagram, (b) is an energy band diagram around the active layer, and (c) and (d) are impurity A diagram showing the state of addition, (e) and (r) are electrons during laser oscillation,
FIG. 3 is a diagram showing hole distribution. FIG. 2 shows a second embodiment of the present invention, in which (a) is an energy band diagram of the active layer Jffi side, and (b) and (c) are diagrams showing how impurities are added. (d) and (e) are diagrams showing electron and hole distributions during laser oscillation. Figure 3 shows a conventional multiple single-well laser in which no impurities are added to the active layer. Figure 3 (a) is an energy band diagram around the active layer, Figure 3 (b), and Figure 3 (c). shows the electron and hole distribution during laser oscillation. In the figure, 1 is an n-InP substrate, 2 is an n-type nP buffer layer, 3 is a multiple quantum well active layer, 4 is an InGaAs well layer, 5 is an InP barrier layer, 6 is a p-InP cladding layer, 7
8 indicates a p-electrode and 8 indicates an n-electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体多層薄膜で成る多重量子井戸構造の活性層
をp型クラッド層とn型クラッド層で挟んだ積層構造を
少くとも備えている多重量子井戸発光素子において、前
記活性層を構成する半導体薄膜のpクラッド側にドナー
、nクラッド側にアクセプターを部分的に添加したこと
を特徴とする多重量子井戸発光素子。
(1) In a multi-quantum well light emitting device having at least a stacked structure in which an active layer with a multi-quantum well structure made of a semiconductor multilayer thin film is sandwiched between a p-type cladding layer and an n-type cladding layer, the semiconductor constituting the active layer A multi-quantum well light emitting device characterized in that a donor is partially added to the p-cladding side of the thin film, and an acceptor is partially added to the n-cladding side of the thin film.
(2)半導体多層薄膜で成る多重量子井戸構造の活性層
をp型クラッド層とn型クラッド層で挟んだ積層構造を
少くとも備えている多重量子井戸発光素子において、前
記活性層全体にドナーを添加したことを特徴とする多重
量子井戸発光素子。
(2) In a multi-quantum well light-emitting device that includes at least a stacked structure in which an active layer with a multi-quantum well structure made of a semiconductor multilayer thin film is sandwiched between a p-type cladding layer and an n-type cladding layer, donors are provided throughout the active layer. A multi-quantum well light-emitting device characterized by doping.
JP1167549A 1989-06-28 1989-06-28 Multi quantum well light emitting element Pending JPH0330486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167549A JPH0330486A (en) 1989-06-28 1989-06-28 Multi quantum well light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167549A JPH0330486A (en) 1989-06-28 1989-06-28 Multi quantum well light emitting element

Publications (1)

Publication Number Publication Date
JPH0330486A true JPH0330486A (en) 1991-02-08

Family

ID=15851777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167549A Pending JPH0330486A (en) 1989-06-28 1989-06-28 Multi quantum well light emitting element

Country Status (1)

Country Link
JP (1) JPH0330486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42008E1 (en) 1999-06-07 2010-12-28 Nichia Corporation Nitride semiconductor device
JP2019197868A (en) * 2018-05-11 2019-11-14 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method for semiconductor light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42008E1 (en) 1999-06-07 2010-12-28 Nichia Corporation Nitride semiconductor device
USRE45672E1 (en) 1999-06-07 2015-09-22 Nichia Corporation Nitride semiconductor device
JP2019197868A (en) * 2018-05-11 2019-11-14 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method for semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US7756179B2 (en) Semiconductor laser apparatus
JPH0143472B2 (en)
EP1202410A2 (en) Semiconductor laser device
JP2003535454A (en) Multiple semiconductor laser structure with narrow wavelength distribution
JP3024484B2 (en) Semiconductor light emitting device
JP2008172188A (en) Multi-wavelength quantum dot laser device
JP2814786B2 (en) Semiconductor laser
US20070171948A1 (en) Semiconductor laser having an improved stacked structure
JP2778454B2 (en) Semiconductor laser
JPH0513809A (en) Semiconductor light emitting element
JPH0330486A (en) Multi quantum well light emitting element
JPH01179488A (en) Optical amplifier
JPH11261154A (en) Semiconductor light-emitting element
JP2748570B2 (en) Semiconductor laser device
JP4069479B2 (en) Multiple quantum well semiconductor light emitting device
JPH07288338A (en) Semiconductor light emitting element
JPH07162084A (en) Quantum well structure of semiconductor laser
JP3752306B2 (en) Semiconductor laser
JP2000022203A (en) Light emitting diode
JP3252998B2 (en) Semiconductor light emitting device
JPH08162670A (en) Semiconductor light emitting element
JPH10321960A (en) Light-emitting semiconductor element
JP3617129B2 (en) Semiconductor light emitting device
JPH02229487A (en) Multiple quantum well type semiconductor light-emitting element
JP3239996B2 (en) Semiconductor laser device