JPH07162084A - Quantum well structure of semiconductor laser - Google Patents

Quantum well structure of semiconductor laser

Info

Publication number
JPH07162084A
JPH07162084A JP30942493A JP30942493A JPH07162084A JP H07162084 A JPH07162084 A JP H07162084A JP 30942493 A JP30942493 A JP 30942493A JP 30942493 A JP30942493 A JP 30942493A JP H07162084 A JPH07162084 A JP H07162084A
Authority
JP
Japan
Prior art keywords
quantum well
layer
layers
quantum
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30942493A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP30942493A priority Critical patent/JPH07162084A/en
Publication of JPH07162084A publication Critical patent/JPH07162084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To shorten carrier conveyance time between quantum wells, and uniform the density distribution of carriers which are injected into each quantum well. CONSTITUTION:The title quantum well structure of a semiconductor laser is formed by laminating a plurality of quantum well layers 20b1-20b4 and barrier layers 20a1-20a5. The quantum well layer is composed of first semiconductor thinner than or equal to the thickness which generates quantum effect. The barrier layer is composed of second semiconductor whose forbidden bandwidth is larger than or equal to that of the quantum well layer. In order to uniform the carrier density distribution, the forbidden bandwidth of each of barrier layers 20a1-20a5 is changed in order in the thickness direction. The thickness of each of the quantum well layers 20b1-29b4 is so changed that all of the wavelengths lB1-lB2 of the well layers become equal according to the change amount of the forbidden bandwidths of the barrier layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、量子井戸層構造の半導
体レーザまたは多重量子井戸構造の半導体レーザの低閾
電流密度化を図るのに好適な半導体レーザの量子井戸構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum well structure of a semiconductor laser suitable for reducing the threshold current density of a semiconductor laser having a quantum well layer structure or a semiconductor laser having a multiple quantum well structure.

【0002】[0002]

【従来の技術】半導体レーザには、その活性層に量子効
果の生じる厚さ以下の厚さの第1の半導体からなる量子
井戸層と該量子井戸層より禁制帯幅の広い第2の半導体
からなる障壁層(バリア層とも称する)とがそれぞれ複
数積層されてなる量子井戸構造を採用したものがある。
この量子井戸構造は、発振閾電流の低下、直接変調帯域
の拡大、発振スペクトル線幅の低減等が可能な半導体レ
ーザの性能改善策として開発されたものである。
2. Description of the Related Art A semiconductor laser includes a quantum well layer made of a first semiconductor having a thickness equal to or less than a thickness at which a quantum effect is generated in an active layer, and a second semiconductor having a forbidden band width wider than that of the quantum well layer. There is a quantum well structure in which a plurality of barrier layers (also referred to as barrier layers) are laminated.
This quantum well structure was developed as a performance improving measure for a semiconductor laser capable of lowering an oscillation threshold current, expanding a direct modulation band, and reducing an oscillation spectrum line width.

【0003】図4に、量子井戸構造を採用した活性層近
傍のバンド(伝導バンド)ダイアグラムの一例を示す。
図4に示されるように、前記活性層はその厚さ方向のほ
ぼ中央に量子井戸(多重量子井戸:MQW)構造10が
形成され、その量子井戸構造10は3つの障壁層10a
1〜10a3と4つの量子井戸層10b1〜10b4と
が交互に積層されてなるものである。また、その量子井
戸構造の厚さ方向両側には、光り閉じ込め層(OCL)
12が積層され、さらにその外側にクラッド層14が積
層されている。
FIG. 4 shows an example of a band (conduction band) diagram near the active layer adopting the quantum well structure.
As shown in FIG. 4, the active layer has a quantum well (multi-quantum well: MQW) structure 10 formed substantially in the center in the thickness direction. The quantum well structure 10 includes three barrier layers 10a.
1 to 10a3 and four quantum well layers 10b1 to 10b4 are alternately laminated. An optical confinement layer (OCL) is formed on both sides of the quantum well structure in the thickness direction.
12 is laminated, and the clad layer 14 is further laminated on the outer side thereof.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記の量子
井戸構造を用いた半導体レーザにおいては、各量子井戸
に注入されるキャリア密度分布の不均一により内部微分
効率の低下が起こる。この内部微分効率の低下が生じる
のは、量子井戸間でのキャリア輸送時間が長くなり、各
量子井戸に注入されるキャリア密度の分布が不均一にな
るからである。前記図4のバンドダイアグラムに従え
ば、図4の左側から正孔が注入されてくるものとして、
各量子井戸層10b1〜10b4に注入されるキャリア
密度は図5に斜線で示すように厚さ方向に順に低くなっ
ている。
By the way, in the semiconductor laser using the above quantum well structure, the internal differential efficiency is lowered due to the non-uniformity of the carrier density distribution injected into each quantum well. This decrease in internal differential efficiency occurs because the carrier transport time between quantum wells becomes long and the distribution of carrier density injected into each quantum well becomes non-uniform. According to the band diagram of FIG. 4, it is assumed that holes are injected from the left side of FIG.
The carrier density injected into each of the quantum well layers 10b1 to 10b4 gradually decreases in the thickness direction as indicated by the hatched lines in FIG.

【0005】そこで、前記注入されるキャリア密度分布
を均一にする方法として、障壁層厚を薄くし、トンネリ
ングにより各量子井戸間の結合を強くすることが考えら
れるが、この場合、量子閉じ込めが弱くなり、歪量子井
戸構造においては結晶性も悪くなる。
Therefore, as a method of making the injected carrier density distribution uniform, it is conceivable to reduce the barrier layer thickness and strengthen the coupling between the quantum wells by tunneling, but in this case, the quantum confinement is weak. Therefore, the crystallinity becomes worse in the strained quantum well structure.

【0006】また、障壁層の障壁高さを全体的に低くし
て量子閉じ込めを弱くする方法があるが、これでは、キ
ャリアの注入側から1つ目と2つ目の量子井戸にはほぼ
同等のキャリア密度が得られるに過ぎずそれ以降の量子
井戸ではやはり不均一になるという問題は残るものであ
る。
There is also a method of weakening the quantum confinement by lowering the barrier height of the barrier layer as a whole, but with this method, the first and second quantum wells from the carrier injection side are almost equal. However, the problem of non-uniformity still remains in the subsequent quantum wells.

【0007】なお、本発明に関連したものとして、図6
に示すように、前記キャリア密度分布に対応して障壁層
の障壁高さ(禁制帯幅に相当)を厚さ方向に順に低くし
て量子閉じ込めを順に弱くする構造が提案されている
(例えば特公平4−7594参照)。しかしながら、こ
の構造では、障壁層10a1〜10a3の組成を変化さ
せるとそれに応じて、例えば、図6に示すように、各量
子井戸層10b1〜10b4でキャリア密度は均一にな
るが、各井戸での発光波長が異なる。
It is to be noted that FIG. 6 is related to the present invention.
As shown in, a structure has been proposed in which the barrier height (corresponding to the forbidden band width) of the barrier layer is sequentially decreased in the thickness direction in accordance with the carrier density distribution to sequentially weaken the quantum confinement (for example, (See Hei 4-7594). However, in this structure, when the composition of the barrier layers 10a1 to 10a3 is changed, the carrier density becomes uniform in the quantum well layers 10b1 to 10b4, for example, as shown in FIG. The emission wavelength is different.

【0008】このような各量子井戸層の発光波長(発振
波長)が異なるものとなり、閾電流の低下はある程度ま
でしか図れないという問題点が有る。
The emission wavelengths (oscillation wavelengths) of the respective quantum well layers are different, and there is a problem that the threshold current can be reduced only to some extent.

【0009】本発明は、前記従来の問題点を解消するべ
くなされたものであって、量子井戸間でのキャリア輸送
時間を短くし、各量子井戸に注入されるキャリア密度の
分布を均一にし、かつ、各量子井戸の発光波長を均一に
することができる半導体レーザの量子井戸構造を提供す
ることを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, in which the carrier transport time between quantum wells is shortened and the distribution of carrier density injected into each quantum well is made uniform. Another object of the present invention is to provide a quantum well structure of a semiconductor laser capable of making the emission wavelength of each quantum well uniform.

【0010】[0010]

【課題を解決するための手段】本発明においては、前記
課題と解決するため、量子効果の生じる厚さ以下の厚さ
の第1の半導体からなる量子井戸層と該量子井戸層より
禁制帯幅の広い第2の半導体からなる障壁層とがそれぞ
れ複数積層されてなる半導体レーザの量子井戸構造にお
いて、各障壁層は、キャリア密度分布が均一になるよう
に各禁制帯幅が厚さ方向に順に変化し、かつ、各量子井
戸層は、前記障壁層の禁制帯幅が変化された量に応じて
各井戸層の波長がすべて同等になるようにその厚さが変
化することを特徴とする半導体レーザの量子井戸構造の
構成を有する。
In the present invention, in order to solve the above-mentioned problems, a quantum well layer made of a first semiconductor having a thickness equal to or less than a thickness at which a quantum effect occurs and a forbidden band width from the quantum well layer. In a quantum well structure of a semiconductor laser in which a plurality of barrier layers made of a wide second semiconductor are stacked, each barrier layer has a forbidden band width sequentially in the thickness direction so that the carrier density distribution becomes uniform. And a semiconductor layer characterized in that the thickness of each quantum well layer is changed so that the wavelengths of the respective well layers are all equal according to the amount of change in the band gap of the barrier layer. It has a structure of a quantum well structure of a laser.

【0011】[0011]

【作用】本発明においては、各障壁層を、キャリア密度
分布が均一になるように各禁制帯幅(障壁の高さ)を厚
さ方向に順に変化させるので、量子井戸間でのキャリア
の輸送時間を短くし、各量子井戸に注入されるキャリア
の密度の分布を均一化するようにして内部微分効率を向
上させることができる。ただ、前記各障壁層は、おのお
のの組成を変化させて禁制帯幅を変化させるので、一つ
一つの井戸層での光の波長が異なるものになる。従っ
て、障壁層の禁制帯幅が変化すると、例えば後記図3の
ように、波長λもこれに伴って変化する。
In the present invention, since each forbidden band width (barrier height) in each barrier layer is sequentially changed in the thickness direction so that the carrier density distribution becomes uniform, carrier transport between quantum wells is performed. The internal differential efficiency can be improved by shortening the time and making the density distribution of carriers injected into each quantum well uniform. However, since each barrier layer changes the forbidden band width by changing the composition thereof, the wavelength of light in each well layer is different. Therefore, when the forbidden band width of the barrier layer changes, the wavelength λ also changes accordingly, as shown in FIG.

【0012】そこで、本発明では、各量子井戸層に対し
て、前記障壁層の禁制帯幅が変化された量に応じて各井
戸層の波長がすべて同等になるようにその厚さを変化さ
せるものであり、これにより、バリア高さの変化に伴う
量子井戸のバンドギャップエネルギー(組成波長)の相
違を補正する。これは、キャリア密度分布を均一化する
のに障壁層の組成の設定をある程度行い、その組成の設
定により波長の変動した分を各量子井戸層の層厚で設定
し補正するものである。現在の半導体の成膜技術であ
る、気相エピタキシ法(例えばMOV法)や分子線エピ
タキシ法(MBE法)では、層厚の設定は極めて正確に
行い得るため、本発明は、量子井戸層の波長を正確に目
的波長にするのに極めて有効である。したがって、多重
量子井戸における各井戸の波長(レーザで単一量子井戸
で例えると発振波長)が異なって、発振閾値の増加や発
振スペクトル線幅の広がりが起こることを確実に防ぐこ
とができるものである。
Therefore, in the present invention, the thickness of each quantum well layer is changed so that all the wavelengths of each well layer become equal depending on the amount of change in the forbidden band width of the barrier layer. Thus, the difference in bandgap energy (composition wavelength) of the quantum well due to the change in barrier height is corrected. In this method, the composition of the barrier layer is set to some extent in order to make the carrier density distribution uniform, and the variation of the wavelength due to the setting of the composition is set and corrected by the layer thickness of each quantum well layer. In the vapor phase epitaxy method (for example, MOV method) and the molecular beam epitaxy method (MBE method), which are the current semiconductor film forming techniques, the layer thickness can be set extremely accurately. It is extremely effective in accurately setting the wavelength to the target wavelength. Therefore, it is possible to reliably prevent the increase of the oscillation threshold and the broadening of the oscillation spectrum line width due to the difference in the wavelength of each well in the multiple quantum well (oscillation wavelength when compared with a single quantum well in a laser). is there.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。本実施例の半導体レーザの構成説明図を図
1に示す。図1の(a)は要部断面を含む全体斜視構成
図であり、(b)は、(a)の要部拡大図、(c)は
(b)の活性層周辺の拡大説明図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram showing the structure of the semiconductor laser of this embodiment. 1A is an overall perspective configuration diagram including a cross section of a main part, FIG. 1B is an enlarged view of a main part of FIG. 1A, and FIG. 1C is an enlarged explanatory view of the periphery of an active layer of FIG. 1B. .

【0014】図1に示すように、前記半導体レーザは、
多重量子井戸(MQW)構造の活性層20は、InGa
AsPの混晶からなる複数(実施例では5層)の障壁層
20a(20a1〜20a5)と、InGaAsPの混
晶からなる複数(実施例では4層)の量子井戸層20b
(20b1〜20b4)とが交互に積層されて構成され
る。前記障壁層20aの各層20a1〜20a5は、次
式で表される組成 (In1-x Gax Asy1-y) …(1) で変数X、Yの設定を変えて組成比を変えており、これ
により障壁高さ(禁制帯幅に相当)が厚さ方向に順に変
化している。また、前記量子井戸層20bの各層20b
1〜20b4は、組成比が一定で(例えば波長λ=1.
7μm)その層厚が前記障壁層20aの組成に応じて層
厚を変化させているものである。
As shown in FIG. 1, the semiconductor laser is
The active layer 20 having a multiple quantum well (MQW) structure is made of InGa.
A plurality (five layers in the embodiment) of barrier layers 20a (20a1 to 20a5) made of a mixed crystal of AsP and a plurality (four layers in the embodiment) of quantum well layers 20b made of a mixed crystal of InGaAsP.
(20b1 to 20b4) are alternately stacked. Each layer 20a1~20a5 of the barrier layer 20a is, changing the composition ratio by changing the variables X, Y set in composition represented by the following formula (In 1-x Ga x As y P 1-y) ... (1) As a result, the barrier height (corresponding to the forbidden band width) changes sequentially in the thickness direction. In addition, each layer 20b of the quantum well layer 20b
1 to 20b4 have a constant composition ratio (for example, wavelength λ = 1.
7 μm) The layer thickness is changed according to the composition of the barrier layer 20a.

【0015】なお、前記活性層20以外の構成は、埋め
込みヘテロ構造の半導体レーザの構成を有しており、図
1(a)の矢印方向がレーザ光の導波方向である。実施
例の半導体レーザにおいては、図1の(b)に示すよう
に、活性層20の厚さ方向上、下に、i−InGaAs
Pからなる(例えば波長λ=1.15μm)導波路層2
2a、22bが積層され、さらに、上側の導波路層22
a上にn−InPのクラッド層24が積層される。前記
活性層20、導波路層22a、22bおよびクラッド層
24の幅方向の両側には、n−InPからなるブロック
層26aと、該ブロック層26aを厚さ方向両側から挟
むp−InPからなるブロック層26bとが積層されて
おり、前記活性層20等とブロック層26a、26bと
はp−InPからなるバッファ層28上に積層されてい
る。また、バッファ層28はp−InPからなる基板3
0上に積層される。
The structure other than the active layer 20 has a structure of a semiconductor laser having a buried hetero structure, and the arrow direction in FIG. 1A is the waveguide direction of laser light. In the semiconductor laser of the embodiment, as shown in FIG. 1B, i-InGaAs is formed above and below the active layer 20 in the thickness direction.
Waveguide layer 2 made of P (for example, wavelength λ = 1.15 μm)
2a and 22b are stacked, and the upper waveguide layer 22
An n-InP clad layer 24 is laminated on a. On both sides in the width direction of the active layer 20, the waveguide layers 22a and 22b, and the cladding layer 24, a block layer 26a made of n-InP and a block made of p-InP sandwiching the block layer 26a from both sides in the thickness direction. The layer 26b is laminated, and the active layer 20 and the like and the block layers 26a and 26b are laminated on the buffer layer 28 made of p-InP. Further, the buffer layer 28 is the substrate 3 made of p-InP.
0 stacked.

【0016】また、前記クラッド層24と上側のブロッ
ク層26bとの上部には、n−InPからなる層32
と、さらにその上部にn−InGaAsP又はn−In
GaAsからなる層34が積層されている。また、前記
基板30の下面にp型電極36aが形成され、また、前
記n−InGaAsP層34上面はn型電極36bが形
成される。実施例の半導体レーザは、電極間に電圧印加
して活性層20に閾電流以上の電流が流れることによっ
てレーザ発振し、矢印A方向にレーザ光を出力する。
A layer 32 of n-InP is formed on the cladding layer 24 and the upper block layer 26b.
And n-InGaAsP or n-In
A layer 34 made of GaAs is laminated. A p-type electrode 36a is formed on the lower surface of the substrate 30, and an n-type electrode 36b is formed on the upper surface of the n-InGaAsP layer 34. The semiconductor laser of the embodiment oscillates when a voltage of more than the threshold current flows through the active layer 20 when a voltage is applied between the electrodes to output laser light in the direction of arrow A.

【0017】ここで、実施例では、活性層20は、図2
に概略を示すように、エネルギーバンドダイヤグラムを
有している。そして、図3に、出力レーザの波長をほぼ
1.48μmにするために、各設定された障壁層20a
1〜20a5の組成毎に変化する量子井戸層20b1〜
20b4の波長λg(μm:1.24/Eg)の例を示
す。図3中では量子井戸層20b1〜20b4の各波長
はλB1〜λB4で示す。
Here, in the embodiment, the active layer 20 is formed as shown in FIG.
Has an energy band diagram as outlined in FIG. Then, in FIG. 3, in order to make the wavelength of the output laser approximately 1.48 μm, each set barrier layer 20a is set.
Quantum well layers 20b1 to 20b1 that change depending on the composition of 1 to 20a5
An example of the wavelength λg (μm: 1.24 / Eg) of 20b4 is shown. In FIG. 3, the respective wavelengths of the quantum well layers 20b1 to 20b4 are indicated by λ B1 to λ B4 .

【0018】なお、障壁層の組成波長は、1.24/障
壁高さ(障壁層の禁制帯幅)で求められる。また、第1
〜第5の障壁層20a1〜20a5は、障壁高さが順に
低くなっており、それが厚さ方向に順に低く変化するの
で、前記第1〜第4の量子井戸層20b1〜20b4の
各波長λB1〜λB4はこれに応じて変化する。なお、前記
各障壁層20a1〜20a5が順に変化して(実施例で
は順に低くなっている)おり、これにより前記波長は、
λB1>λB2>λB3>λB4の関係になっている。また、第
1の量子井戸層20b1の波長はキャリア注入側の障壁
高さに従ったものになる。
The composition wavelength of the barrier layer is obtained by 1.24 / barrier height (barrier band width of the barrier layer). Also, the first
The barrier heights of the fifth to fifth barrier layers 20a1 to 20a5 are sequentially reduced, and the barrier heights of the fifth barrier layers 20a1 to 20a5 are sequentially reduced in the thickness direction. B1 to λ B4 change accordingly. The barrier layers 20a1 to 20a5 are sequentially changed (in the example, they are sequentially lowered), and thus the wavelength is
The relationship is λ B1 > λ B2 > λ B3 > λ B4 . The wavelength of the first quantum well layer 20b1 is in accordance with the barrier height on the carrier injection side.

【0019】したがって、図3の関係に基づき、前記記
第1〜第4の量子井戸層20b1〜20b4を、その波
長λB1〜λB4が目的とする単一の波長(実施例では1.
48μm)になる厚さに成膜する。これにより、半導体
レーザの出力するレーザの波長が単一のものに最も近く
なる。
[0019] Thus, based on the relationship of FIG. 3, the Symbol first to fourth quantum well layer 20B1~20b4, the single wavelength (embodiments that wavelength lambda B1 to [lambda] B4 is intended 1.
A film having a thickness of 48 μm) is formed. As a result, the wavelength of the laser emitted from the semiconductor laser becomes the closest to a single wavelength.

【0020】なお、前記実施例においては、障壁層、量
子井戸層がともにInGaAsPで構成されたものであ
るが、本発明はこのような構成のものに限定されず、そ
の他の構成の半導体レーザに例えば各層の数が実施例と
は異なるものや、障壁層がAlGaAs、量子井戸層が
GaAsの量子井戸構造のものに適用可能なことは明ら
かである。また、各層の成膜はMOPVD法の他、MB
E法等半導体に応じて適宜の方法を用いて行うことがで
きる。
Although the barrier layer and the quantum well layer are both made of InGaAsP in the above-mentioned embodiment, the present invention is not limited to such a configuration and can be applied to semiconductor lasers having other configurations. For example, it is obvious that the present invention can be applied to those having the number of layers different from those of the embodiment, and those having a quantum well structure in which the barrier layer is AlGaAs and the quantum well layer is GaAs. In addition to the MOPVD method, each layer is formed by MB
It can be performed by using an appropriate method depending on the semiconductor such as the E method.

【0021】[0021]

【発明の効果】以上説明した通り本発明によれば、量子
井戸間でのキャリア輸送時間を短くし、各量子井戸に注
入されるキャリア密度の分布を均一にすることができ
る。したがって、多重量子井戸における各井戸の波長
(レーザで単一量子井戸で例えると発振波長)が異なっ
て、発振閾値の増加や発振スペクトル線幅の広がりが起
こることを確実に防ぐことができるものである。
As described above, according to the present invention, the carrier transport time between quantum wells can be shortened and the distribution of carrier density injected into each quantum well can be made uniform. Therefore, it is possible to reliably prevent the increase of the oscillation threshold and the broadening of the oscillation spectrum line width due to the difference in the wavelength of each well in the multiple quantum well (oscillation wavelength when compared with a single quantum well in a laser). is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体レーザの構成説明図を
示す。(a)は要部断面を含む全体斜視構成図であり、
(b)は、(a)の要部拡大図、(c)は(b)の活性
層周辺の拡大説明図である。
FIG. 1 is a structural explanatory view of a semiconductor laser of an embodiment of the present invention. (A) is an overall perspective view including a cross section of a main part,
(B) is an enlarged view of a main part of (a), and (c) is an enlarged explanatory view of the periphery of the active layer of (b).

【図2】図1の活性層20の概略的なエネルギーバンド
ダイヤグラムを示す。
FIG. 2 shows a schematic energy band diagram of the active layer 20 of FIG.

【図3】本発明に係る波長と量子井戸層厚との関係の一
例を示すグラフである。
FIG. 3 is a graph showing an example of the relationship between wavelength and quantum well layer thickness according to the present invention.

【図4】分離閉じ込めヘテロ接合であって多重量子井戸
構造の半導体レーザのバンド構造例である。
FIG. 4 is an example of a band structure of a semiconductor laser having a multi-quantum well structure with a separate confinement heterojunction.

【図5】従来の多重量子井戸構造のバンドダイアグラム
例である。
FIG. 5 is an example of a band diagram of a conventional multiple quantum well structure.

【図6】従来の多重量子井戸構造のバンドダイアグラム
の他の例である。
FIG. 6 is another example of a band diagram of a conventional multiple quantum well structure.

【符号の説明】[Explanation of symbols]

20 活性層 20a1〜20a5 第1〜第5の障壁層 20b1〜20b4 第1〜第4の量子井戸層 λB1〜λB4 波長20 active layers 20a1 to 20a5 first to fifth barrier layers 20b1 to 20b4 first to fourth quantum well layers λ B1 to λ B4 wavelengths

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 量子効果の生じる厚さ以下の厚さの第1
の半導体からなる量子井戸層と該量子井戸層より禁制帯
幅の広い第2の半導体からなる障壁層とがそれぞれ複数
積層されてなる半導体レーザの量子井戸構造において、 各障壁層は、キャリア密度分布が均一になるように各禁
制帯幅が厚さ方向に順に変化し、かつ、各量子井戸層
は、前記障壁層の禁制帯幅が変化された量に応じて各井
戸層の波長がすべて同等になるようにその厚さが変化す
ることを特徴とする半導体レーザの量子井戸構造。
1. A first device having a thickness equal to or less than a thickness at which a quantum effect occurs
In a quantum well structure of a semiconductor laser in which a plurality of quantum well layers made of the above semiconductor and a barrier layer made of a second semiconductor having a forbidden band width wider than that of the quantum well layers are stacked, each barrier layer has a carrier density distribution. , Each forbidden band width changes in order in the thickness direction, and each quantum well layer has the same wavelength in each well layer according to the amount of change in the forbidden band width of the barrier layer. A quantum well structure for a semiconductor laser, characterized in that its thickness is changed so that
JP30942493A 1993-12-09 1993-12-09 Quantum well structure of semiconductor laser Pending JPH07162084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30942493A JPH07162084A (en) 1993-12-09 1993-12-09 Quantum well structure of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30942493A JPH07162084A (en) 1993-12-09 1993-12-09 Quantum well structure of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07162084A true JPH07162084A (en) 1995-06-23

Family

ID=17992844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30942493A Pending JPH07162084A (en) 1993-12-09 1993-12-09 Quantum well structure of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07162084A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235732A (en) * 1993-12-28 1995-09-05 Nec Corp Semiconductor laser
EP1729385A1 (en) * 2005-06-01 2006-12-06 AGILENT TECHNOLOGIES, INC. (A Delaware Corporation) Active region of a light emitting device optimized for increased modulation speed operation
JP2007123878A (en) * 2005-10-25 2007-05-17 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element
JP2009124008A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235732A (en) * 1993-12-28 1995-09-05 Nec Corp Semiconductor laser
EP1729385A1 (en) * 2005-06-01 2006-12-06 AGILENT TECHNOLOGIES, INC. (A Delaware Corporation) Active region of a light emitting device optimized for increased modulation speed operation
US7577172B2 (en) 2005-06-01 2009-08-18 Agilent Technologies, Inc. Active region of a light emitting device optimized for increased modulation speed operation
JP2007123878A (en) * 2005-10-25 2007-05-17 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element
JP2009124008A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device

Similar Documents

Publication Publication Date Title
US4573161A (en) Semiconductor laser
JPH07202260A (en) Distortion superlattice light emitting element
JPS6254489A (en) Semiconductor light emitting element
JPH05243669A (en) Semiconductor laser element
JPH0143472B2 (en)
US4982408A (en) Variable oscillation wavelength semiconduction laser device
US6487225B2 (en) Surface-emitting laser device
US5519722A (en) II-VI compound semiconductor laser with burying layers
JPH04305992A (en) Semiconductor laser element
JPH07162084A (en) Quantum well structure of semiconductor laser
EP0660473B1 (en) Quantum-well type semiconductor laser device having multi-layered quantum-well layer
JP3497290B2 (en) Semiconductor crystal structure, semiconductor laser and method of manufacturing the same
JP2003177367A (en) Semiconductor optical element
JPH02229487A (en) Multiple quantum well type semiconductor light-emitting element
JPH0728093B2 (en) Semiconductor laser device
JPH0278290A (en) Semiconductor laser device
JPH0330486A (en) Multi quantum well light emitting element
JP3087129B2 (en) Light modulator
JP2917695B2 (en) Method for manufacturing optical semiconductor device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH1192297A (en) Production of disordered crystal structure, production of semiconductor laser and production of semiconductor laser having window structure
KR20230161444A (en) semiconductor optoelectronic devices
JPH05136528A (en) Semiconductor laser element and manufacture thereof
JPH08288592A (en) Integrated semiconductor optical device and fabrication thereof
JPH07202328A (en) Semiconductor laser device