JPH05243669A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH05243669A
JPH05243669A JP4283792A JP4283792A JPH05243669A JP H05243669 A JPH05243669 A JP H05243669A JP 4283792 A JP4283792 A JP 4283792A JP 4283792 A JP4283792 A JP 4283792A JP H05243669 A JPH05243669 A JP H05243669A
Authority
JP
Japan
Prior art keywords
layer
refractive index
semiconductor laser
thickness
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4283792A
Other languages
Japanese (ja)
Inventor
Satoshi Kawanaka
敏 川中
Toshiaki Tanaka
俊明 田中
Hironori Yanagisawa
浩徳 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4283792A priority Critical patent/JPH05243669A/en
Publication of JPH05243669A publication Critical patent/JPH05243669A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/2219Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties absorbing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce a light absorption near an end face of a laser, to enhance an optical damage level and to raise an output of the laser by forming an asymmetrical SCH structure in which an optical guide layer of an n-type clad layer side is formed thicker than that of a p-type clad layer side. CONSTITUTION:The semiconductor laser element comprises a light-carrier isolating confinement structure in which an AlGaInP active layer 7 and both sides of the layer 7 provided on a semiconductor substrate 1 are held by an optical guide layer 8 made of AlGaInP having a larger band gap than the active layer. This structure is formed in an asymmetrical SCH structure in which a thickness of an n-type side guide layer is formed larger than that of a p-type side guide layer, a high refractive index layer 4 made of AlGaInP having a higher refractive index than that of the clad layer is provided in an n-type clad layer 3 and a refractive index of the layer 4 is set to the same degree as an average refractive index of the SCH structure having the layer 7 and an optical guide layer 6. A center of a waveguide mode can be shifted into the n-type side optical guide layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報端末機器等の光
源として用いるレーザ素子に係り、閾値電流が低くて光
損傷レベルが十分に高く、安定に高出力動作をさせるこ
とのできる高信頼の半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser device used as a light source for optical information terminal equipment and the like, which has a low threshold current, a sufficiently high optical damage level, and a high reliability capable of stable high output operation. Semiconductor laser device of the present invention.

【0002】[0002]

【従来の技術】AlGaInP半導体レーザの光出力が制限さ
れる原因は、レーザ共振器端面近傍での光吸収が熱を発
生し、光損傷により共振器端面が破壊されることによる
ものである。従来、光損傷によるレーザ端面の破壊を防
ぐために、活性層を薄くしてクラッド層への光のしみだ
しを増し、活性層内部の光密度を低減して光吸収による
熱の発生を抑制する方法が取られていた。例えば、この
ことは文献(Extended Abstracts of the 1991 Internat
ional Conference on Solid State Devices andMateria
ls,pp114-116(1991) )において述べられている。
2. Description of the Related Art The reason why the light output of an AlGaInP semiconductor laser is limited is that light absorption in the vicinity of the end face of the laser resonator generates heat and the end face of the resonator is destroyed by optical damage. Conventionally, in order to prevent damage to the laser end face due to optical damage, the active layer is thinned to increase the amount of light leaking into the cladding layer, and the optical density inside the active layer is reduced to suppress heat generation due to light absorption. Was taken. This is, for example, the case in the literature (Extended Abstracts of the 1991 Internat
ional Conference on Solid State Devices and Materia
ls, pp 114-116 (1991)).

【0003】[0003]

【発明が解決しようとする課題】光損傷による端面の破
壊を抑制するために活性層を薄くした場合、活性層に注
入された電子のpクラッド層へのリークが顕著となり、
光出力の熱飽和が発生する。そのため、素子の温度特性
が低下し、良好な高温高出力特性が得られないという問
題が生じる。また、活性層を薄層化した際には、レーザ
内に導波されるモードが広がるため、GaAs埋込層におい
て光吸収が生じ、光損失を増して閾値電流が増大しない
ようにクラッド層を1.5μm以上にすることが必要であっ
た。しかし、Al組成が大きいAlGaInP4元混晶ではホー
ル濃度の高濃度化が難しく、p型AlGaInPクラッド層は
抵抗率が高く、熱伝導度が小さくなっている。そのた
め、活性層薄層化によってクラッド層を厚くすると、素
子抵抗及び熱抵抗が増大し、活性層付近の温度上昇から
素子の発振特性の劣化を助長するという問題が生じる。
When the active layer is made thin in order to suppress the destruction of the end face due to optical damage, the electrons injected into the active layer are significantly leaked to the p-clad layer.
Thermal saturation of light output occurs. As a result, the temperature characteristics of the device deteriorate, and a problem arises in that good high temperature and high output characteristics cannot be obtained. In addition, when the active layer is thinned, the modes guided in the laser spread, so light absorption occurs in the GaAs buried layer, and the cladding layer is formed so that optical loss does not increase and the threshold current does not increase. It was necessary to make it 1.5 μm or more. However, it is difficult to increase the hole concentration in the AlGaInP quaternary mixed crystal having a large Al composition, and the p-type AlGaInP clad layer has a high resistivity and a low thermal conductivity. Therefore, if the thickness of the clad layer is increased by thinning the active layer, the device resistance and thermal resistance increase, and there arises a problem that deterioration of the oscillation characteristics of the device is promoted due to a temperature rise near the active layer.

【0004】[0004]

【課題を解決するための手段】活性層の両側に設ける光
ガイド層においてn側のガイド層の膜厚をp側ガイド層
よりも厚くするか、もしくはn側のみに光ガイド層を設
けた非対称SCH構造とし、さらに活性層及び光ガイド
層からなる導波層の平均の屈折率と同程度の屈折率を持
つ高屈折率層をnクラッド層内部に設けた構造とするこ
とによって上記課題を解決することができる。
In the light guide layers provided on both sides of the active layer, the film thickness of the n-side guide layer is made larger than that of the p-side guide layer, or the light guide layer is provided only on the n-side. The above problem is solved by adopting a structure in which a high-refractive index layer having a refractive index similar to the average refractive index of the waveguiding layer including the active layer and the optical guide layer is provided inside the n-clad layer can do.

【0005】[0005]

【作用】従来のDH構造もしくはSCH構造を持つレー
ザ素子では、レーザ内部に導波される光の強度分布は図
3(a)のようになる。光は屈折率の最も大きい活性層を
中心に導波されることとなり、光強度が最大となる導波
モードの中心は活性層内部に存在する。そのため、誘導
放出による発光と同時に強い光吸収を生じ、レーザ端面
近傍での熱の発生を抑えることが難しく光損傷が発生し
やすい。一方、本発明における構造を用いた場合、レー
ザ内部の光強度分布は図3(b)のようになる。SCH構
造を非対称化し、さらにnクラッド層内部に高屈折率層
を設け非対称導波構造とすることによって、導波モード
の中心をn側の光ガイド層内部にシフトさせることがで
き、活性層よりも禁制帯幅が広くレーザ光に対して透明
な光ガイド層を中心に導波することとなる。そのため、
光閉じ込め係数で表される1次元的にみた活性層への光
閉じ込めを同レベルに保って光吸収を低減することがで
き、レーザ端面近傍での光吸収による熱の発生を低減し
て光損傷レベルの向上が図れる。
In the conventional laser device having the DH structure or the SCH structure, the intensity distribution of the light guided inside the laser is as shown in FIG. Light is guided around the active layer having the largest refractive index, and the center of the guided mode in which the light intensity is maximum exists inside the active layer. Therefore, strong light absorption occurs at the same time as light emission due to stimulated emission, and it is difficult to suppress heat generation in the vicinity of the laser facet, and light damage easily occurs. On the other hand, when the structure according to the present invention is used, the light intensity distribution inside the laser is as shown in FIG. By making the SCH structure asymmetric and further providing a high refractive index layer inside the n-clad layer to form an asymmetrical waveguide structure, the center of the waveguide mode can be shifted to the inside of the n-side optical guide layer. However, the light is guided around the optical guide layer, which has a wide band gap and is transparent to the laser light. for that reason,
The optical confinement expressed by the optical confinement coefficient in the one-dimensional view to the active layer can be kept at the same level to reduce the optical absorption, and the heat generation due to the optical absorption near the laser facet can be reduced to reduce the optical damage. The level can be improved.

【0006】図4に膜厚dとシフト量の関係の計算例を
示す。高屈折率層の膜厚dを増していくに従って、次第
に導波モードのピーク位置がシフトする。d = doにおい
て高屈折率層への光閉じ込めが活性層及び光ガイド層へ
の光閉じ込めよりも強くなると、導波モードのピークの
位置が高屈折率層内に移り、シフト量ΔZが不連続に変
化する。さらにdを大きくしていくと活性層への光の閉
じ込めが弱くなり、ΔZが増加すると同時に閾値電流が
増加し始める。膜厚を非常に大きくした場合には高屈折
率層を中心に導波モードが分布するため、活性層内に閉
じ込められたキャリアの分布と光強度分布の重なりが極
端に低下して十分な光学利得が得られずに閾値電流が増
大する。また、高屈折率層(AlxGa1-x)0.5In0.5PのAl組
成xに対しては、Al組成xを小さくするほど屈折率が高く
なりΔZは大きく変化する。これらのことから、ピーク
シフト量ΔZを20nm以上として光吸収を低減し、閾電流
密度を低く出来るように高屈折率層の膜厚dの範囲をAl
組成x、活性層da及び光ガイド層厚dgに対して次のよう
に設定した。
FIG. 4 shows a calculation example of the relationship between the film thickness d and the shift amount. The peak position of the guided mode gradually shifts as the film thickness d of the high refractive index layer increases. When the optical confinement in the high refractive index layer becomes stronger than the optical confinement in the active layer and the light guide layer at d = d o , the position of the peak of the guided mode shifts into the high refractive index layer, and the shift amount ΔZ becomes unclear. It changes continuously. If d is further increased, the light confinement in the active layer becomes weaker, and ΔZ increases, and at the same time, the threshold current starts to increase. When the film thickness is made extremely large, the guided mode is distributed around the high refractive index layer, so that the overlap between the distribution of carriers confined in the active layer and the light intensity distribution is extremely reduced and sufficient optical The threshold current increases without gain. Further, with respect to the Al composition x of the high refractive index layer (Al x Ga 1-x ) 0.5 In 0.5 P, the smaller the Al composition x, the higher the refractive index and the ΔZ changes greatly. From these, the range of the film thickness d of the high refractive index layer is set to Al so that the peak absorption amount ΔZ is set to 20 nm or more to reduce the light absorption and the threshold current density can be lowered.
Composition x, were set as follows: the active layer d a and the light guide layer thickness d g.

【0007】20nm < d < da・x・10+dg この範囲においては、本発明における非対称導波構造を
用いたレーザ素子の閾電流密度が活性層厚daのDH構
造のレーザの閾電流密度を超えることはなく、低閾値で
動作して光損傷レベルが高いレーザ素子が実現できる。
20 nm <d <d a x x 10 + d g In this range, the threshold current density of the laser device using the asymmetrical waveguide structure of the present invention has a threshold current density of a DH structure laser with an active layer thickness d a. It is possible to realize a laser device which does not exceed the current density and operates at a low threshold value and has a high optical damage level.

【0008】また、本発明における構造を用い、高屈折
率層を設けて導波モードをnクラッド層側にシフトさせ
ることは素子抵抗低減にも効果がある。nクラッド層側
に導波モードをシフトさせたことによってpクラッド層
への光の漏れは小さくなり、pクラッド層を0.8μmまで
薄くしてもGaAs埋込層での光吸収による導波損失の増大
は起こらない。閾値電流を低く保ったまま抵抗率の高い
pクラッド層を薄く出来るため、素子抵抗及び熱抵抗の
低減が図れる。素子抵抗低減によって熱の発生を抑え、
かつ、活性層付近の熱を効率良く放熱出来るため高温高
出力動作特性の向上が可能となる。
Further, using the structure of the present invention and providing a high refractive index layer to shift the waveguide mode to the n-clad layer side is also effective in reducing the element resistance. By shifting the waveguide mode to the n-clad layer side, light leakage to the p-clad layer is reduced, and even if the p-clad layer is thinned to 0.8 μm, the waveguide loss due to light absorption in the GaAs buried layer is reduced. No increase will occur. Since the p-clad layer having a high resistivity can be thinned while keeping the threshold current low, the device resistance and the thermal resistance can be reduced. Heat generation is suppressed by reducing element resistance,
In addition, since the heat in the vicinity of the active layer can be efficiently dissipated, it is possible to improve the high temperature and high output operation characteristics.

【0009】[0009]

【実施例】以下、本発明による半導体レーザの具体的な
構造を説明する。
The concrete structure of the semiconductor laser according to the present invention will be described below.

【0010】実施例1 図1は、本発明の半導体レーザ素子の実施例を示す構成
図である。本実施例は、n型GaAs基板上にSCH構造を
設け、nクラッド層内部に高屈折率層を設けた構造であ
る。まず、MOCVD法によりn型GaAs基板1上にn型
GaAsバッファ層2(膜厚0.5μm)、n型(Al0.7Ga0.3)0.5I
n0.5Pクラッド層3(膜厚2.0μm)、Al組成xを0.4とした
n型(AlxGa1-x)0.5In0.5P高屈折率層4(膜厚60nm)、n
型(Al0.7Ga0.3)0.5In0.5Pバリヤ層5(膜厚 20nm)、アン
ドープ(AlyGa1-y)0.5In0.5P光ガイド層6(Al組成y=0.4
膜厚40nm)、歪量を1.5%導入した膜厚13nmのアンドープG
a0.31In0.69P活性層7、アンドープ(AlyGa1-y)0.5In0.5
P光ガイド層8(Al組成y=0.4膜厚5nm)、p型(Al0.7G
a0.3)0.5In0.5Pクラッド層9(膜厚0.2μm)、p型Ga0.5I
n0.5Pエッチストップ層10、p型(Al0.7Ga0.3)0.5In
0.5Pクラッド層10(膜厚0.6〜1.0μm)、p型Ga0.5In
0.5Pバッファ層11およびn型GaAsキャップ層を順次積
層した。次に、SiO2膜(膜厚0.2μm)を蒸着した後、ホト
工程によりSiO2膜をストライプ状に加工した。このSiO2
膜ストライプをマスクとし、クラッド層内部に設けたGa
0.5In0.5P層エッチストップ層11までクラッド層を選
択エッチングした。次に、n型GaAs電流ブロック層13
の埋め込み成長を行い、SiO2とGaAsキャップ層を除去し
た後、p型GaAsコンタクト層14を成長させた。最後
に、p,n両面の電極工程を経た後、チップに劈開し
た。
Embodiment 1 FIG. 1 is a configuration diagram showing an embodiment of a semiconductor laser device of the present invention. In this embodiment, the SCH structure is provided on the n-type GaAs substrate, and the high refractive index layer is provided inside the n-clad layer. First, the n-type is formed on the n-type GaAs substrate 1 by the MOCVD method.
GaAs buffer layer 2 (film thickness 0.5 μm), n-type (Al 0.7 Ga 0.3 ) 0.5 I
n 0.5 P clad layer 3 (film thickness 2.0 μm), n-type (Al x Ga 1-x ) 0.5 In 0.5 P high refractive index layer 4 (film thickness 60 nm) with Al composition x 0.4, n
Type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P barrier layer 5 (film thickness 20 nm), undoped (Al y Ga 1-y ) 0.5 In 0.5 P optical guide layer 6 (Al composition y = 0.4)
Undoped G with a thickness of 40 nm) and a thickness of 13 nm with 1.5% strain introduced.
a 0.31 In 0.69 P Active layer 7, undoped (Al y Ga 1-y ) 0.5 In 0.5
P light guide layer 8 (Al composition y = 0.4 film thickness 5 nm), p-type (Al 0.7 G
a 0.3 ) 0.5 In 0.5 P Clad layer 9 (film thickness 0.2 μm), p-type Ga 0.5 I
n 0.5 P Etch stop layer 10, p-type (Al 0.7 Ga 0.3 ) 0.5 In
0.5 P clad layer 10 (film thickness 0.6 to 1.0 μm), p-type Ga 0.5 In
The 0.5 P buffer layer 11 and the n-type GaAs cap layer were sequentially stacked. Next, after depositing a SiO 2 film (film thickness 0.2 μm), the SiO 2 film was processed into a stripe shape by a photo process. This SiO 2
Ga provided inside the cladding layer using the film stripe as a mask
The cladding layer was selectively etched up to the 0.5 In 0.5 P layer etch stop layer 11. Next, the n-type GaAs current blocking layer 13
After the SiO 2 and GaAs cap layers were removed, the p-type GaAs contact layer 14 was grown. Finally, after undergoing an electrode process on both p and n surfaces, the chip was cleaved.

【0011】作製した素子の特性を測定した結果、最大
光出力は100mW以上であり、単一モードで安定に動作す
るレーザ素子が得られた。閾値電流は30〜40mAであり、
レーザ内部の導波モードをnクラッド層側にシフトさせ
たことによる閾値電流の増大や遠視野像の非対称性は見
られなかった。また、導波モードをシフトさせたことに
よってpクラッド層を0.8μmと薄くしてもレーザ内部の
伝搬損失は増加せず、良好な発振特性を保ったまま素子
抵抗を4〜5Ωと低くすることができた。
As a result of measuring the characteristics of the manufactured device, the maximum optical output was 100 mW or more, and a laser device that stably operates in a single mode was obtained. The threshold current is 30-40mA,
No increase in the threshold current and no asymmetry in the far-field pattern due to the shift of the guided mode inside the laser to the n-clad layer side were observed. In addition, the propagation loss inside the laser does not increase even if the p-clad layer is thinned to 0.8 μm by shifting the waveguide mode, and the device resistance is kept as low as 4 to 5 Ω while maintaining good oscillation characteristics. I was able to.

【0012】実施例2 図2は、本発明の半導体レーザ素子の第2の実施例を示
す構成図である。第1の実施例における高屈折率層4を
多重量子井戸構造4’に置き換えた構造である。多重量
子井戸構造は、GaInP井戸層幅Lzを3nm、AlGaInPバリア
層幅LBを5nmとし、8層の井戸を設けて全膜厚59nmの高
屈折率層とした。他の部分については、第1の実施例と
同様の構造とし、レーザ素子を試作した。
Second Embodiment FIG. 2 is a configuration diagram showing a second embodiment of the semiconductor laser device of the present invention. This is a structure in which the high refractive index layer 4 in the first embodiment is replaced with a multiple quantum well structure 4 '. In the multiple quantum well structure, the GaInP well layer width L z was 3 nm, the AlGaInP barrier layer width L B was 5 nm, and eight wells were provided to form a high refractive index layer having a total film thickness of 59 nm. The other parts had the same structure as in the first embodiment, and a laser device was manufactured as a prototype.

【0013】高屈折率層のAl組成xを小さくすれば屈折
率を高く出来るが、Al組成を小さくするとキャリアに対
して深い井戸を形成し、キャリアをトラップする可能性
がある。そのため、量子サイズ効果を利用して実効的な
井戸の深さを浅くし、キャリアを高屈折率層内に蓄積し
ないように多重量子井戸構造を用いた。
If the Al composition x of the high refractive index layer is reduced, the refractive index can be increased, but if the Al composition is reduced, a deep well may be formed with respect to the carrier and the carrier may be trapped. Therefore, the quantum well effect is used to make the effective well depth shallow, and a multiple quantum well structure is used so that carriers are not accumulated in the high refractive index layer.

【0014】試作した素子を評価した結果、第1の実施
例と同様に100mW以上の高い光出力が得られた。素子抵
抗は4〜5Ωと小さく、キャリアのトラップによる電流−
電圧特性の変化はみられなかった。
As a result of evaluating the prototyped device, a high optical output of 100 mW or more was obtained as in the first embodiment. Element resistance is as small as 4 to 5 Ω, and current due to carrier trapping −
No change in voltage characteristics was observed.

【0015】[0015]

【発明の効果】活性層の両側に光ガイド層を設けたSC
H構造において、nクラッド層側の光ガイド層をpクラ
ッド層側の光ガイド層よりも厚くした非対称SCH構造
とし、さらに、nクラッド層内に高屈折率層を設けた構
造とすることによって、レーザ内部の導波モードの中心
をnクラッド層側にシフトさせた。その結果、レーザ端
面近傍での光吸収を低減し、光損傷レベルを高めてレー
ザの高出力化を図ることができた。従来の構造では、80
℃における最大光出力が40mWであったのに対し、本発明
における構造を用いることによって100℃の高温におい
て100mWの光出力を得ることが出来た。また、導波モー
ドをnクラッド層側にシフトさせることから、光の大部
分がnクラッド層側に集中してpクラッド層への光の漏
れが減少するため、pクラッド層を薄くすることが出来
た。比較的抵抗率が高いp型AlGaInPクラッド層を薄く
することによって素子抵抗の低減を図り、従来10Ω程度
であった素子抵抗を4〜5Ωと半減することが出来た。ま
た、pクラッド層にはレーザのストライプ構造を設ける
ことから、精度良くレーザを作製するためにはpクラッ
ド層が薄い方が好ましく、レーザの作製精度向上が図れ
た。
EFFECT OF THE INVENTION An SC provided with light guide layers on both sides of the active layer.
In the H structure, the optical guide layer on the n-clad layer side has an asymmetrical SCH structure in which the optical guide layer is thicker than the optical guide layer on the p-clad layer side, and further, a high refractive index layer is provided in the n-clad layer. The center of the guided mode inside the laser was shifted to the n-clad layer side. As a result, it was possible to reduce the light absorption in the vicinity of the laser end face, raise the light damage level, and increase the output of the laser. In the conventional structure, 80
While the maximum light output at 40 ° C was 40 mW, it was possible to obtain a light output of 100 mW at a high temperature of 100 ° C by using the structure of the present invention. Further, since the waveguide mode is shifted to the n-clad layer side, most of the light is concentrated on the n-clad layer side, and the leakage of light to the p-clad layer is reduced. done. By reducing the thickness of the p-type AlGaInP clad layer, which has a relatively high resistivity, the device resistance was reduced, and the device resistance, which was about 10Ω in the past, could be halved to 4-5Ω. Further, since the p-cladding layer is provided with a laser stripe structure, it is preferable that the p-cladding layer be thin in order to manufacture the laser with high accuracy, and the laser manufacturing accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例を示すレーザの構造図FIG. 1 is a structural diagram of a laser showing a first embodiment.

【図2】第2の実施例を示すレーザの構造図FIG. 2 is a structural diagram of a laser showing a second embodiment.

【図3】本発明におけるレーザの動作を示す概念図FIG. 3 is a conceptual diagram showing the operation of the laser according to the present invention.

【図4】膜厚dとピークシフト量ΔZ及び閾電流密度の
関係の計算結果の一例
FIG. 4 is an example of a calculation result of a relationship between a film thickness d, a peak shift amount ΔZ, and a threshold current density.

【符号の説明】[Explanation of symbols]

1…n型GaAs基板、2…n型GaAsバッファ層、3…n型
AlGaInPクラッド層、4…n型AlGaInP高屈折率層、5…
n型AlGaInPバリア層、6…アンドープGaInP光ガイド
層、7…アンドープGaInP活性層、8…アンドープGaInP
光ガイド層、9…p型AlGaInPクラッド層、10…p型G
aInPエッチストップ層、11…p型AlGaInPクラッド層
12…p型GaInPバッファ層、13…n型GaAs電流ブロ
ック層、14…p型GaAsコンタクト層、15…p-電
極、16…n-電極、4'…GaInP/AlGaInP多重量子井戸
構造、ΔZ…ピーク位置のシフト量、da…活性層膜
厚、dg…光ガイド層膜厚、dB…バリア層膜厚、d…高
屈折率層膜厚。
1 ... n type GaAs substrate, 2 ... n type GaAs buffer layer, 3 ... n type
AlGaInP clad layer, 4 ... n-type AlGaInP high refractive index layer, 5 ...
n-type AlGaInP barrier layer, 6 ... Undoped GaInP light guide layer, 7 ... Undoped GaInP active layer, 8 ... Undoped GaInP
Optical guide layer, 9 ... p-type AlGaInP cladding layer, 10 ... p-type G
aInP etch stop layer, 11 ... p-type AlGaInP cladding layer 12, p-type GaInP buffer layer, 13 ... n-type GaAs current blocking layer, 14 ... p-type GaAs contact layer, 15 ... p-electrode, 16 ... n-electrode, 4 '... GaInP / AlGaInP multiple quantum well structure, ΔZ ... shift amount of peak position, d a ... active layer film thickness, d g ... optical guide layer film thickness, d B ... barrier layer film thickness, d ... high refractive index layer film Thick.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に設けたAlGaInP活性層およ
びその両側を活性層よりもバンドギャップの大きいAlGa
InPからなる光ガイド層ではさんだ光-キャリア分離閉じ
込め(Separate Confinement Heterostructure:以下、S
CHと略す)構造において、n側のガイド層の膜厚をp
側のガイド層の膜厚よりも大きくした非対称SCH構造
とし、nクラッド層内部にクラッド層よりも屈折率の高
いAlGaInPからなる高屈折率層を設け、高屈折率層の屈
折率を活性層及び光ガイド層からなるSCH構造の平均
の屈折率と同程度としたことを特徴とする半導体レーザ
素子。
1. An AlGaInP active layer provided on a semiconductor substrate and AlGa having a band gap larger on both sides than the active layer.
Light-Carrier Separation and Confinement between the optical guide layers made of InP (hereinafter referred to as S
(Abbreviated as CH) structure, the thickness of the guide layer on the n side is set to p
The asymmetrical SCH structure is made thicker than the thickness of the guide layer on the side, a high refractive index layer made of AlGaInP having a higher refractive index than the cladding layer is provided inside the n cladding layer, and A semiconductor laser device having the same refractive index as that of an SCH structure including an optical guide layer.
【請求項2】特許請求の範囲第1項記載の半導体レーザ
素子において、半導体基板材料はGaAsとし、(AlxGa1-x)
1-αInαP活性層においてIn組成αを0.5以上としてGaAs
基板と格子不整となる圧縮歪を導入し、その歪量を0.8
〜2.5%の範囲で設定したことを特徴とする。
2. The semiconductor laser device according to claim 1, wherein the semiconductor substrate material is GaAs, and (Al x Ga 1-x )
1-α In α P GaAs with In composition α of 0.5 or more in the active layer
Introduce a compressive strain that causes lattice mismatch with the substrate and reduce the strain amount to 0.8.
It is characterized by being set in the range of up to 2.5%.
【請求項3】特許請求の範囲第1項記載の半導体レーザ
素子において、活性層構造は、ダブルヘテロ(Double He
terostructure:以下、DHと略す)構造で活性層厚da
10≦ da ≦ 40nmとするか、多重量子井戸構造で井戸幅L
zを3 ≦ Lz ≦ 10nmでかつ全膜厚daを20 ≦ da ≦ 50nm
とすることを特徴とする。
3. The semiconductor laser device according to claim 1, wherein the active layer structure is a double hetero structure.
terostructure: hereinafter abbreviated as DH), the active layer thickness d a
10 ≤ d a ≤ 40 nm or well width L in multiple quantum well structure
z is 3 ≤ L z ≤ 10 nm and total film thickness d a is 20 ≤ d a ≤ 50 nm
It is characterized by
【請求項4】特許請求の範囲第1項記載の非対称SCH
構造において、pクラッド層側に設ける光ガイド層膜厚
を10nm以下とするか、p側には光ガイド層を設けないも
のとし、nクラッド層側の光ガイド層膜厚dgを10nm〜10
0nmとしたことを特徴とする。
4. An asymmetric SCH according to claim 1.
In the structure, the thickness of the light guide layer provided on the p-clad layer side is 10 nm or less, or the light guide layer is not provided on the p-side, and the light guide layer thickness d g on the n-clad layer side is 10 nm to 10 nm.
The feature is that it is set to 0 nm.
【請求項5】特許請求の範囲第1項記載の半導体レーザ
素子において、nクラッド層内部に設ける(AlxGa1-x)
0.5In0.5P高屈折率層の膜厚dを該高屈折率層のAl組成
x、活性層の膜厚da及びn側光ガイド層の膜厚dgに対し
て、20nm < d < da・x・10+dgとなる範囲に設定したこ
とを特徴とする。
5. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is provided inside an n-clad layer (Al x Ga 1-x ).
0.5 In 0.5 P The film thickness d of the high refractive index layer is defined as the Al composition of the high refractive index layer.
x, the film thickness d a of the active layer and the film thickness d g of the n-side light guide layer are set in a range of 20 nm <d <d a · x · 10 + d g .
【請求項6】特許請求の範囲第1項及び第5項記載の半
導体レーザ素子において、高屈折率層を多重量子井戸構
造とし、該高屈折率層のAl組成xを井戸層及びバリア層
の平均の組成と規定したことを特徴とする。
6. The semiconductor laser device according to claim 1 or 5, wherein the high refractive index layer has a multiple quantum well structure, and the Al composition x of the high refractive index layer is the well layer and the barrier layer. It is characterized in that it is defined as an average composition.
【請求項7】特許請求の範囲第1項記載の半導体レーザ
素子において、高屈折率層と光ガイド層の間に設けるバ
リア層膜厚dBを5nm〜40nmの範囲としたことを特徴とす
る。
7. The semiconductor laser device of the claims preceding claim, characterized in that the barrier layer thickness d B provided between the high refractive index layer and the optical guide layer was in the range of 5nm~40nm ..
JP4283792A 1992-02-28 1992-02-28 Semiconductor laser element Pending JPH05243669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283792A JPH05243669A (en) 1992-02-28 1992-02-28 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4283792A JPH05243669A (en) 1992-02-28 1992-02-28 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH05243669A true JPH05243669A (en) 1993-09-21

Family

ID=12647090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283792A Pending JPH05243669A (en) 1992-02-28 1992-02-28 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH05243669A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050158A1 (en) * 1996-06-24 1997-12-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
JPH11233883A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp Semiconductor laser
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics
JP2004111535A (en) * 2002-09-17 2004-04-08 Mitsubishi Electric Corp Semiconductor laser device
WO2004084366A1 (en) * 2003-03-19 2004-09-30 Bookham Technology Plc High power semiconductor laser with a large optical superlattice waveguide
WO2005074081A1 (en) * 2004-01-30 2005-08-11 Nec Corporation Semiconductor laser
JP2005252153A (en) * 2004-03-08 2005-09-15 Fuji Photo Film Co Ltd Semiconductor laser element
JP2007059488A (en) * 2005-08-22 2007-03-08 Rohm Co Ltd Semiconductor laser
JP2007508687A (en) * 2003-10-11 2007-04-05 インテンス リミテッド Control of output beam divergence in semiconductor waveguide devices.
EP1774628A2 (en) * 2004-06-30 2007-04-18 Finisar Corporation Linear optical amplifier using coupled waveguide induced feedback
JP2007129270A (en) * 2007-02-09 2007-05-24 Sharp Corp Semiconductor laser element and method of manufacturing the same
JP2008113038A (en) * 2008-01-28 2008-05-15 Sony Corp Self oscillation type semiconductor laser
JP2008219050A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser
JP2008219051A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser
US7542498B2 (en) 2005-02-18 2009-06-02 Opnext Japan, Inc. Semiconductor laser diode
JP2010129676A (en) * 2008-11-26 2010-06-10 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same
WO2011023625A1 (en) * 2009-08-28 2011-03-03 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser
WO2013151145A1 (en) * 2012-04-06 2013-10-10 古河電気工業株式会社 Optical semiconductor device, semiconductor laser module and optical fiber amplifier
KR20160057520A (en) * 2014-11-13 2016-05-24 한국전기연구원 Laser diode device and method for producing the same
US9871348B2 (en) 2015-10-22 2018-01-16 Mitsubishi Electric Corporation Semiconductor laser device
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics
US6185237B1 (en) 1996-06-24 2001-02-06 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
WO1997050158A1 (en) * 1996-06-24 1997-12-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
JPH11233883A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp Semiconductor laser
US6285694B1 (en) 1998-02-18 2001-09-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US6618412B2 (en) 1998-02-18 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
JP2004111535A (en) * 2002-09-17 2004-04-08 Mitsubishi Electric Corp Semiconductor laser device
WO2004084366A1 (en) * 2003-03-19 2004-09-30 Bookham Technology Plc High power semiconductor laser with a large optical superlattice waveguide
JP2007508687A (en) * 2003-10-11 2007-04-05 インテンス リミテッド Control of output beam divergence in semiconductor waveguide devices.
WO2005074081A1 (en) * 2004-01-30 2005-08-11 Nec Corporation Semiconductor laser
US7301978B2 (en) 2004-03-08 2007-11-27 Fujifilm Corporation Semiconductor laser element with optical waveguide layer having increased thickness
JP2005252153A (en) * 2004-03-08 2005-09-15 Fuji Photo Film Co Ltd Semiconductor laser element
EP1774628A4 (en) * 2004-06-30 2008-10-15 Finisar Corp Linear optical amplifier using coupled waveguide induced feedback
EP1774628A2 (en) * 2004-06-30 2007-04-18 Finisar Corporation Linear optical amplifier using coupled waveguide induced feedback
US7542498B2 (en) 2005-02-18 2009-06-02 Opnext Japan, Inc. Semiconductor laser diode
JP2007059488A (en) * 2005-08-22 2007-03-08 Rohm Co Ltd Semiconductor laser
JP2007129270A (en) * 2007-02-09 2007-05-24 Sharp Corp Semiconductor laser element and method of manufacturing the same
JP2008113038A (en) * 2008-01-28 2008-05-15 Sony Corp Self oscillation type semiconductor laser
JP2008219050A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser
JP2008219051A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser
US8311070B2 (en) 2008-11-26 2012-11-13 Sharp Kabushiki Kaisha Nitride semiconductor laser device
US8085826B2 (en) 2008-11-26 2011-12-27 Sharp Kabushiki Kaisha Nitride semiconductor laser device
JP2010129676A (en) * 2008-11-26 2010-06-10 Sharp Corp Nitride semiconductor laser device and method of manufacturing the same
US8625648B2 (en) 2009-08-28 2014-01-07 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser
WO2011023625A1 (en) * 2009-08-28 2011-03-03 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser
US10020638B2 (en) 2012-04-06 2018-07-10 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US9083150B2 (en) 2012-04-06 2015-07-14 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US9601905B2 (en) 2012-04-06 2017-03-21 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
WO2013151145A1 (en) * 2012-04-06 2013-10-10 古河電気工業株式会社 Optical semiconductor device, semiconductor laser module and optical fiber amplifier
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11581706B2 (en) 2012-04-06 2023-02-14 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11605935B2 (en) 2012-04-06 2023-03-14 Furukawa Electric Co., Ltd. Wavelength-variable laser
US12009636B2 (en) 2012-04-06 2024-06-11 Furukawa Electric Co., Ltd. Wavelength-variable laser
KR20160057520A (en) * 2014-11-13 2016-05-24 한국전기연구원 Laser diode device and method for producing the same
US9871348B2 (en) 2015-10-22 2018-01-16 Mitsubishi Electric Corporation Semiconductor laser device

Similar Documents

Publication Publication Date Title
JPH05243669A (en) Semiconductor laser element
US7756179B2 (en) Semiconductor laser apparatus
JPH11274635A (en) Semiconductor light emitting device
US20150340840A1 (en) Semiconductor laser
US7092422B2 (en) Self-pulsation type semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
US6411637B1 (en) Semiconductor laser and method of manufacturing the same
JP3645320B2 (en) Semiconductor laser element
JPWO2002021578A1 (en) Semiconductor laser device
JPH10209553A (en) Semiconductor laser element
JPH05211372A (en) Manufacture of semiconductor laser
JPH09129969A (en) Semiconductor laser
JP3403915B2 (en) Semiconductor laser
JP3387976B2 (en) Semiconductor laser
JP3777027B2 (en) Semiconductor laser device
JP3792434B2 (en) Self-oscillation type semiconductor laser
KR100259003B1 (en) Semiconductor laser diode
JP4544665B2 (en) Semiconductor laser
JPH09214058A (en) Semiconductor laser device
JP4603113B2 (en) Semiconductor laser
JP4124921B2 (en) Semiconductor laser device
JPH0728093B2 (en) Semiconductor laser device
JPH0730188A (en) Semiconductor laser element
JPH06237041A (en) High-output semiconductor laser
JPH07193316A (en) Semiconductor laser