JP4544665B2 - Semiconductor laser - Google Patents

Semiconductor laser Download PDF

Info

Publication number
JP4544665B2
JP4544665B2 JP24802999A JP24802999A JP4544665B2 JP 4544665 B2 JP4544665 B2 JP 4544665B2 JP 24802999 A JP24802999 A JP 24802999A JP 24802999 A JP24802999 A JP 24802999A JP 4544665 B2 JP4544665 B2 JP 4544665B2
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
gan
current confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24802999A
Other languages
Japanese (ja)
Other versions
JP2001077470A (en
Inventor
勇 赤崎
浩 天野
智 上山
素顕 岩谷
Original Assignee
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 名城大学 filed Critical 学校法人 名城大学
Priority to JP24802999A priority Critical patent/JP4544665B2/en
Publication of JP2001077470A publication Critical patent/JP2001077470A/en
Application granted granted Critical
Publication of JP4544665B2 publication Critical patent/JP4544665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光情報処理分野などへの応用が期待されているGaN系半導体レーザに関するものである。
【0002】
【従来の技術】
近年、デジタルビデオディスク等の大容量光ディスク装置が実用化され、今後さらに大容量化が進められようとしている。光ディスク装置の大容量化のためにはよく知られるように読み取りや書き込みの光源となる半導体レーザの短波長化が最も有効な手段の一つである。したがって、現在市販されているデジタルビデオディスク用の半導体レーザは、AlGaInP系材料による波長650nmであるが、将来開発が予定されている高密度デジタルビデオディスク用では400nm帯のGaN系半導体レーザが不可欠と考えられている。
【0003】
光ディスク用に用いる半導体レーザは、長寿命、低しきい値電流動作は当然として、他に安定な単一横モード動作、低非点隔差、低雑音、低アスペクト比等が求められるが、現状ではこれら全ての特性を満たす400nm帯半導体レーザは実現されていない。
【0004】
従来、単一横モード型GaN系半導体レーザとして、図5に示す素子の断面構造をもつものが提案されている。サファイア基板101 上に第1の結晶成長によりGaNバッファ層102 、n−GaN層103 、p−GaN電流狭窄層104 が成長され、一旦、成長装置から取り出した後ストライプ状の開口部105 が、例えばCl2 ガスによる反応性イオンエッチングにより形成されている。前記ストライプ状の開口部105 は、少なくともp−GaN電流狭窄層104 を完全に貫通していなければならない。
【0005】
次に、再び、結晶成長装置に導入し、第2の結晶成長によりn−AlGaN第1クラッド層106 、n−GaN第1光ガイド層107 、Ga1-x Inx N/Ga1-y Iny N(0<y<x<1)から成る多重量子井戸活性層108 、p−AlGaNキャップ層109 、p−GaN第2光ガイド層110 、p−AlGaN第2クラッド層111 、p−GaNコンタクト層112 が成長される。
【0006】
最後に、ストライプ状の開口105 の直上に、例えばNi/Auから成るp電極113 、また、一部をn−GaN層103 が露出するまでエッチングした表面に、例えばTi/Alから成るn電極114 が形成され、図5に断面構造を示す単一横モード型GaN系半導体レーザが作製される。
【0007】
この素子においてn電極114 を接地し、p電極113 に電圧を印加すると、多重量子井戸活性層108 に向かってp電極113 側からホールが、また、n電極114 側から電子が注入され、前記多重量子井戸活性層108 内で光学利得を生じ、レーザ発振を起こす。なお、このレーザ駆動時のバイアスはp−GaN電流狭窄層104 とn−AlGaN第1クラッド層106 との接合については、逆バイアスとなるためp−GaN電流狭窄層104 が存在しないストライプ状の開口部105 のみに電流が集中する。
【0008】
一方、ストライプ状の開口部105 上に形成された多重量子井戸活性層108 は、図5に示すように屈曲した形状を有するために成長層に水平な方向に屈折率差が生じ、レーザ光もまた安定してストライプ状の開口部105 の直上の多重量子井戸活性層108 内に閉じこめられる。このため、注入キャリアと光の分布がほぼ一致し、低しきい値電流密度での発振が可能となる。また、前述のように成長層に水平な方向に屈折率差を有する屈折率導波構造なので、光学モードは安定し、また非点隔差も極めて小さい高性能の半導体レーザが実現できるというものである。
【0009】
【発明が解決しようとする課題】
しかしながら、前記単一横モード型GaN系半導体レーザを実際に作製する場合において極めて回避困難な問題点が存在する。図5において、p−GaN電流狭窄層104 が用いられているが、GaNは比較的屈折率の大きい材料である。即ちn−AlGaN第1クラッド層106 よりも屈折率は大きい。多重量子井戸活性層108 が屈曲しているため、図6の成長層に水平な方向における屈折率分布に示すように、n−AlGaN第1クラッド層106 との間の屈折率差により光が閉じ込められる。
【0010】
しかし、n−AlGaN第1クラッド層106 のさらに外側にn−AlGaN第1クラッド層106 よりも屈折率の大きいp−GaN電流狭窄層104 が存在すると、光がp−GaN電流狭窄層104 へ多量に漏れ、多重量子井戸活性層108 への光閉じ込めが著しく低下する。特に、ストライプ幅が3μm以下の狭ストライプ構造ではそれが顕著となる。多重量子井戸活性層108 への光閉じ込めが低下すると、しきい値電流やビーム広がり角のアスペクト比の増大等、光ディスク用光源としての応用上好ましくない特性となる。
【0011】
さらに、垂直横モードを考えた場合、n−AlGaN第1クラッド層106 の膜厚は厚いほど光閉じ込めが強くなり望ましいが、同層を厚く成長すると多重量子井戸活性層108 の屈曲した形状が消失して、横方向の屈折率差が弱まる。さらにn-AlGaN 第1クラッド層106 側から多重量子井戸活性層108 へ注入される電子の横方向の広がりが大きくなるためにしきい値電流の増加を招く。
【0012】
【課題を解決するための手段】
本発明は、以上述べた従来の単一横モード型GaN系半導体レーザの問題点に鑑みてなされたもので、安定な単一横モード動作、低アスペクト比、低しきい値電流等、高性能の単一横モード型GaN系半導体レーザを提供するものである。
本発明は、電流狭窄層に低屈折率のAlGaN系、または光吸収の強いGaInN系、さらにその両方の性質を有するAlGaInN系を用い、水平方向に屈曲した活性層への光閉じ込めを高めるものであり、その結果、低しきい値電流でアスペクト比の小さい安定した屈折率導波による単一横モード型GaN系半導体レーザを実現できる。
【0013】
すなわち、本発明は、基板と、n型層と、Alx Ga1-x-y Iny N(0≦x≦1,0≦y≦1,x+y≦1,x=0のときy≠0,y=0のときx≠0)から成るp型または高抵抗電流狭窄層と、該電流狭窄層を貫通するストライプ状開口部とを備えた半導体レーザである。上記のAlx Ga1-x-y Iny Nは、y=0のとき、Alx Ga1-x N(0<x≦1)であり、x=0のとき、Ga1-y Iny N(0<y≦1)となる。
【0014】
また、本発明は、ストライプ状開口部に沿って屈曲した量子井戸活性層を備えた上記の半導体レーザである。活性層の屈曲によって層に平行な方向の屈折率差が生じ、電流狭窄層の低屈折率あるいは光吸収の作用をさらに強めることができる。したがって、極めて強い光閉じ込め効果が実現できる。特に、ストライプ幅が3μm以下の狭ストライプ構造において上記の強い光閉じ込め効果が特に有効に作用し、低しきい値電流および低アスペクト比の半導体レーザを実現できる。
【0015】
さらに、本発明は、nクラッド層を2層に分け、電流狭窄層の上下に配置することにより、優れた光閉じ込めと電流閉じ込めを両立できるようにし、低しきい値電流の単一横モード型GaN系半導体レーザが実現できる。さらに、クラッド層に超格子を用いることにより、素子の直列抵抗を大幅に低減でき、信頼性の高い単一横モード型GaN系半導体レーザが実現できる。
【0016】
また、本発明は、電流狭窄層上に形成されたn型第1クラッド層と、電流狭窄層下に形成されたn型第3クラッド層とを備えた上記の半導体レーザである。
また、本発明は、光が屈折率の高いn−GaN層へ漏れるのを防ぐために、n型第1クラッド層とn型第3クラッド層との膜厚の合計が1μm以上であることを特徴とする上記の半導体レーザである。
【0017】
また、本発明は、該n型第3クラッド層が超格子であることを特徴とする上記の半導体レーザである。n型クラッド層を超格子とすることで2次元電子ガスが生じ、ストライプ開口部とn電極燗の電気抵抗を大きく低減できる。
【0018】
また、本発明は、p型第2クラッド層が超格子であることを特徴とする上記の半導体レーザである。p型第2クラッド層を超格子とすることで2次元ホールガスが生じ、p型第2クラッド層で水平方向に電流を広げることができるので、p電極の有効面積が広くなり、p電極接触抵抗を大きく低減できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の単一モード型GaN系量子井戸半導体レーザの素子断面図である。
有機金属気相成長法により(0001)サファイア基板1 上に第1の結晶成長によりAlNバッファ層2 、n−GaN層3 、AlGaInN系電流狭窄層4 が成長され、一旦、成長装置から取り出した後幅2μmのストライプ状の開口部5 が、例えばCl2 ガスによる反応性イオンエッチングにより形成されている。前記ストライプ状の開口部5 は少なくともAlx Ga1-x-y Iny N電流狭窄層4 は完全に貫通していなければならない。
【0020】
次に、再び、結晶成長装置に導入し、第2の結晶成長によりn−Al0.07Ga0.93N第1クラッド層6 、n−GaN第1光ガイド層7 、Ga1-x Inx N/Ga1-y Iny N(0<y<x<1)から成る多重量子井戸活性層8 、p−Al0.08Ga0.92Nキャップ層9 、p−GaN第2光ガイド層10、p−Al0.07Ga0.93N第2クラッド層11、p−GaNコンタクト層12が成長される。
【0021】
最後に、ストライプ状の開口5 直上に,例えばNi/Auから成るp電極13、また、一部をn−GaN層3 が露出するまでエッチングした表面に、例えばTi/Alから成るn電極14が形成される。
【0022】
多重量子井戸活性層8 は、例えば厚さ3nmのGa0.9 In0.1 N量子井戸層と9nmのGa0.97In0.03Nバリア層とから構成されている。多重量子井戸活性層8 内で発生した光は垂直方向で見るとn−GaN第1光ガイド層7 、多重量子井戸層8 、p−Al0.08Ga0.92Nキャップ層9 、およびp−GaN第2光ガイド層10の4層内に特に強く閉じ込められるが、段差によって成長層に水平な方向にも屈折率差が生じている。
【0023】
多重量子井戸活性層8 の屈曲部17の幅は、約1.5μmとなり、この幅を実効的なストライプ幅とする屈折率導波構造となっている。この実施形態の場合、狭ストライプ構造を用いているので、水平方向の光はAlx Ga1-x-y Iny N電流狭窄層4 へも広がるが、Alx Ga1-x-y Iny N電流狭窄層4 の組成を選ぶことで、導波機構の制御が可能となる。
【0024】
図2に、Alx Ga1-x-y Iny Nの組成と導波機構との関係を示す。発振波長は400nmと仮定している。GaNとAl0.84In0.16Nとを結んだ直線より下の領域(A)は、GaNよりも屈折率が小さく、光吸収のない領域であり、この領域の組成の電流狭窄層を用いると(実施例1の構造)強い実屈折率導波作用のみが得られる。GaNとAl0.84In0.16Nとを結んだ直線より上で、GaNとAl0.75In0.25Nとを結んだ直線より下の領域(B)では、GaNより屈折率が小さく、光吸収がある領域である。この領域の組成を電流狭窄層として用いると、実屈折率導波作用と損失導波作用を併せ持つ性質が得られる。また、GaNとAl0.75In0.25Nとを結んだ直線より上の領域(C)は、GaNよりも屈折率が大きく、光吸収がある領域であり、この領域の組成の電流狭窄層を用いると(実施例2の構造)強い損失導波作用のみが得られる。
【0025】
これらの組成を使い分けることで、ストライプ幅等他の構造パラメータに対して最適の電流狭窄層を得ることができる。したがって、低しきい値電流で安定な単一横モード、低アスペクト比等、光ディスク用光源に適した高性能が実現できる。なお、本実施の形態においては、Alx Ga1-x-y Iny N電流狭窄層4 を用いたが、p−AlGaInNでもよい。また、図2で示した各組成領域は、発振波長が400nmと仮定した場合のもので、波長が変わると若干変化するがその都度屈折率、光吸収の関係から導けばよい。さらに、多重量子井戸活性層8 は、活性層の屈曲部17がなく平坦な場合でも、Alx Ga1-x-y Iny N電流狭窄層4 によって屈折率差が生じていれば同様の効果が期待できる。
【0026】
【実施例】
実施例1
図1に示すGaN系量子井戸半導体レーザの素子断面構造において、Alx Ga1-x-y Iny N電流狭窄層4 をAl0.08Ga0.92N 電流狭窄層とした。
本実施例の場合、大きい屈折率差のために多重量子井戸活性層8 への光閉じ込め効果が一層強く現れ、90%以上の光閉じ込め係数が得られる。したがって、低しきい値電流で安定な単一横モード、低アスペクト比等、光ディスク用光源に適した高性能が実現できる。
【0027】
なお、本実施例においては、AlNモル分率0.08のAlGaNとしたが、この最適の値は発振波長やストライプ幅、作製法によって変化するため、一般には少しでもAlを含んでいれば、前述の効果が期待できる。さらに多重量子井戸活性層8 は屈曲部17がなく平坦な場合でも、Al0.08Ga0.92N電流狭窄層4 によって屈折率差が生じていれば同様の効果が期待できる。
【0028】
実施例2
図1に示すGaN系量子井戸半導体レーザの素子断面構造において、Alx Ga1-x-y Iny N電流狭窄層4 をGa0.80In0.20N電流狭窄層とした。
本実施例の場合、Ga0.80In0.20N電流狭窄層4 は、導波される光に対して105 cm-1程度の高い吸収係数を有している。このため、損失導波の作用が生じ、多重量子井戸活性層8 への光閉じ込め効果が一層強く現れる。その結果、90%以上の光閉じ込め係数が得られる。
【0029】
実施例1の構造との違いは、一般的な実屈折率導波型と損失導波型の違いと同様である。すなわち、実施例1の構造では狭ストライプ構造でも低い導波損失が実現できるが、ストライプ幅が比較的広くなると高次モードとの利得差が小さくなり単一モードの安定性が低下する。一方、損失導波型では狭ストライプ構造では、導波損失が増加して低しきい値電流密度が得られにくくなるが、ストライプ幅が比較的広くても高次モードとの利得差が大きくとれるので、単一モードの安定性に優れる。したがって、ストライプ幅が例えば2μm以上としたときでも低しきい値電流で安定な単一横モード、低アスペクト比等、光ディスク用光源に適した高性能が実現できる。
【0030】
なお、本実施例においては、InNモル分率0.20のGaInNとしたが、この最適の値は発振波長やストライプ幅、作製法によって変化する。一般には活性層で発光した光を少しでも吸収すればよいのでGa1-x Inx Nの量子井戸を用いた場合、Ga1-z Inz N電流狭窄層のInNモル分率zは、x<z<1の関係を満たせばよい。さらに、多重量子井戸活性層8 は屈曲部17がなく平坦な場合でも、Ga0.80In0.20N電流狭窄層4 によって屈折率差が生じていれば同様の効果が期待できる。
【0031】
実施例3
図3は、本実施例の単一モード型GaN系量子井戸半導体レーザの素子断面図である。実施例1との相違は、第1クラッド層6 を2層に分け、電流狭窄層の下にn型第3クラッド層を形成した点である。
ストライプ状開口部5 下には、n−Al0.07Ga0.93N第3クラッド層6Aがあり、例えばn−Al0.07Ga0.93N第3クラッド層6Aの膜厚を1μm、n−Al0.07Ga0.93N第1クラッド層6 の膜厚を0.5μmとすると、光が屈折率の高いn−GaN層3へ漏れるのをほぼ完全に防ぐことができる。
【0032】
Al0.08Ga0.92N電流狭窄層4 上に成長されるn−Al0.07Ga0.93N第1クラッド層6 の膜厚は0.5μmと比較的薄いので、ストライプ状開口部5 直上の多重量子井戸層8 は平坦化されず屈曲部17を有する。この場合の屈曲部17の幅は約1.5μmとなり、これが実効的なストライプ幅とする屈折率導波構造となっている。さらに、薄いn−Al0.07Ga0.93N第1クラッド層6 によって、ストライプ状開口部5 直上の多重量子井戸層8 へn−Al0.07Ga0.93N第1クラッド層6 側から注入される電子の横方向の広がりも小さくなっている。
本実施例の場合、大きい屈折率差のために多重量子井戸層8 への光閉じ込め効果が一層強く現れ、90%以上の光閉じ込め係数が得られる。したがって、低しきい値電流で安定な単一横モード、低アスペクト比等、光ディスク用光源に適した高性能が再現性よく実現できる。
【0033】
実施例4
図4は、本実施例の単一モード型GaN系量子井戸半導体レーザの素子断面図である。実施例3との相違は、電流狭窄層の下に形成したn型第3クラッド層6Aおよびp−GaNコンタクト層12の下のp型第2クラッド層をn−Al0.14Ga0.86N/GaN超格子クラッドにした点である。
ストライプ状開口部5下にはn−Al0.14Ga0.86N/GaN超格子第3クラッド層6Bがあり、例えばn−Al0.14Ga0.86N/GaN超格子第3クラッド層6Bの膜厚を1μm、n−Al0.07Ga0.93N第1クラッド層6 の膜厚を0.5μmとすると、光が屈折率の高いn−GaN層3 へ漏れるのをほぼ完全に防ぐことができる。
【0034】
また、n−Al0.14Ga0.86N/GaN超格子第3クラッド層6Bおよびp−Al0.14Ga0.86N/GaN超格子第2クラッド層11は、各々2次元電子ガス、2次元ホールガスの効果により厚さ方向よりも層に沿った横方向の電気抵抗が格段に低い。このため、n−Al0.14Ga0.86N/GaN超格子第3クラッド層6Bとn電極14との間の電気抵抗が低減でき、あるいは、p−Al0.14Ga0.86N/GaN超格子第2クラッド層11内で電流が横方向に広がるために、p電極13の実効的な面積が大きくなり、接触抵抗が低減できるので、素子の動作電圧を大幅に低減することが可能となる。
【0035】
したがって、低しきい値電流、低動作電圧で安定な単一横モード、低アスペクト比等、光ディスク用光源に適した高性能が実現できる。n−Al0.14Ga0.86N/GaN超格子第3クラッド層6Bおよびp−Al0.14Ga0.86N/GaN超格子第2クラッド層11については、本実施例では、AlGaN側に各々ドナー、アクセプタをドープしているが、GaN側、あるいはAlGaNとGaN両方にドープしてもよい。
【0036】
【発明の効果】
本発明を用いることにより、低しきい値電流密度を有し、単一横モード、低アスペクト比等、光ディスク用光源に適した高性能な短波長半導体レーザが実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態のGaN系単一横モード半導体レーザの素子断面図である。
【図2】Alx Ga1-x-y Iny N組成の波長400nmの光に対する屈折率と光吸収の関係を示す図である。
【図3】実施例3のGaN系単一横モード半導体レーザの素子断面図である。
【図4】実施例4のGaN系単一横モード半導体レーザの素子断面図である。
【図5】従来例のGaN系単一横モード半導体レーザの素子断面図である。
【図6】図5に示す従来例の成長層に水平な方向における屈折率分布を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a GaN-based semiconductor laser that is expected to be applied to the field of optical information processing.
[0002]
[Prior art]
In recent years, large-capacity optical disk devices such as digital video disks have been put into practical use, and the capacity is going to be further increased in the future. As is well known, one of the most effective means for increasing the capacity of an optical disk device is to shorten the wavelength of a semiconductor laser serving as a light source for reading and writing. Therefore, a semiconductor laser for a digital video disk currently on the market has a wavelength of 650 nm made of an AlGaInP-based material. However, a GaN-based semiconductor laser in the 400 nm band is indispensable for a high-density digital video disk to be developed in the future. It is considered.
[0003]
Semiconductor lasers used for optical discs require long life and low threshold current operation, as well as stable single transverse mode operation, low astigmatism, low noise, low aspect ratio, etc. A 400 nm band semiconductor laser that satisfies all these characteristics has not been realized.
[0004]
Conventionally, a single transverse mode GaN-based semiconductor laser having a cross-sectional structure of the element shown in FIG. 5 has been proposed. A GaN buffer layer 102, an n-GaN layer 103, and a p-GaN current confinement layer 104 are grown on the sapphire substrate 101 by the first crystal growth, and once taken out of the growth apparatus, a stripe-shaped opening 105 is formed, for example. It is formed by reactive ion etching with Cl 2 gas. The stripe-shaped opening 105 must completely penetrate at least the p-GaN current confinement layer 104.
[0005]
Next, it is again introduced into the crystal growth apparatus, and by the second crystal growth, the n-AlGaN first clad layer 106, the n-GaN first light guide layer 107, Ga 1-x In x N / Ga 1-y In are used. y N (0 <y <x <1) multi-quantum well active layer 108 made of, p-AlGaN cap layer 109, p-GaN second optical guide layer 110, p-AlGaN second cladding layer 111, p-GaN contact Layer 112 is grown.
[0006]
Finally, a p-electrode 113 made of, for example, Ni / Au is formed immediately above the stripe-shaped opening 105, and an n-electrode 114 made of, for example, Ti / Al is formed on the surface etched partially until the n-GaN layer 103 is exposed. And a single transverse mode GaN-based semiconductor laser whose cross-sectional structure is shown in FIG. 5 is manufactured.
[0007]
In this device, when the n electrode 114 is grounded and a voltage is applied to the p electrode 113, holes are injected from the p electrode 113 side toward the multiple quantum well active layer 108, and electrons are injected from the n electrode 114 side. An optical gain is generated in the quantum well active layer 108 to cause laser oscillation. Note that the bias at the time of laser driving is a reverse bias at the junction between the p-GaN current confinement layer 104 and the n-AlGaN first clad layer 106, so that the stripe-shaped opening without the p-GaN current confinement layer 104 is present. The current concentrates only on the part 105.
[0008]
On the other hand, the multiple quantum well active layer 108 formed on the stripe-shaped opening 105 has a bent shape as shown in FIG. Further, it is stably confined in the multiple quantum well active layer 108 immediately above the stripe-shaped opening 105. For this reason, the injected carriers and the light distribution substantially match, and oscillation at a low threshold current density is possible. In addition, as described above, since the refractive index waveguide structure has a refractive index difference in the horizontal direction to the growth layer, a high-performance semiconductor laser with a stable optical mode and an extremely small astigmatic difference can be realized. .
[0009]
[Problems to be solved by the invention]
However, there is a problem that is extremely difficult to avoid when actually manufacturing the single transverse mode type GaN-based semiconductor laser. In FIG. 5, a p-GaN current confinement layer 104 is used, but GaN is a material having a relatively high refractive index. That is, the refractive index is larger than that of the n-AlGaN first cladding layer 106. Since the multiple quantum well active layer 108 is bent, light is confined by the refractive index difference with the n-AlGaN first cladding layer 106 as shown in the refractive index distribution in the direction horizontal to the growth layer in FIG. It is done.
[0010]
However, if the p-GaN current confinement layer 104 having a refractive index larger than that of the n-AlGaN first clad layer 106 is present further outside the n-AlGaN first clad layer 106, a large amount of light enters the p-GaN current confinement layer 104. And the optical confinement in the multiple quantum well active layer 108 is significantly reduced. This is particularly noticeable in a narrow stripe structure having a stripe width of 3 μm or less. When the optical confinement in the multi-quantum well active layer 108 is lowered, the characteristics such as an increase in the threshold current and the aspect ratio of the beam divergence angle are unfavorable in terms of application as a light source for optical disks.
[0011]
Further, considering the vertical transverse mode, the thicker the n-AlGaN first cladding layer 106, the more preferable the optical confinement. However, when the same layer is grown thick, the bent shape of the multiple quantum well active layer 108 disappears. As a result, the refractive index difference in the lateral direction is weakened. Furthermore, since the lateral spread of electrons injected from the n-AlGaN first cladding layer 106 side into the multiple quantum well active layer 108 is increased, the threshold current is increased.
[0012]
[Means for Solving the Problems]
The present invention has been made in view of the problems of the conventional single transverse mode type GaN semiconductor laser described above, and has high performance such as stable single transverse mode operation, low aspect ratio, and low threshold current. A single transverse mode type GaN-based semiconductor laser is provided.
The present invention uses a low refractive index AlGaN system or a GaInN system with strong light absorption for the current confinement layer, and an AlGaInN system having both properties, and enhances optical confinement in the active layer bent in the horizontal direction. As a result, it is possible to realize a single transverse mode type GaN-based semiconductor laser with a stable refractive index waveguide having a low threshold current and a small aspect ratio.
[0013]
That is, the present invention relates to a substrate, an n-type layer, and Al x Ga 1 -xy In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1, x = 0, y ≠ 0, y A semiconductor laser comprising a p-type or high-resistance current confinement layer having x ≠ 0 when = 0 and a stripe-shaped opening penetrating the current confinement layer. The above Al x Ga 1 -xy In y N is Al x Ga 1 -x N (0 <x ≦ 1) when y = 0, and Ga 1 -y In y N (when x = 0). 0 <y ≦ 1).
[0014]
The present invention also provides the above semiconductor laser including a quantum well active layer bent along a stripe-shaped opening. Due to the bending of the active layer, a difference in refractive index in the direction parallel to the layer is generated, and the action of the low refractive index or light absorption of the current confinement layer can be further enhanced. Therefore, an extremely strong light confinement effect can be realized. In particular, the above-mentioned strong light confinement effect works particularly effectively in a narrow stripe structure with a stripe width of 3 μm or less, and a semiconductor laser having a low threshold current and a low aspect ratio can be realized.
[0015]
Furthermore, the present invention provides a low threshold current single transverse mode type by dividing the n-cladding layer into two layers and arranging the n-cladding layer above and below the current confinement layer so as to achieve both excellent optical confinement and current confinement. A GaN-based semiconductor laser can be realized. Furthermore, by using a superlattice for the cladding layer, the series resistance of the element can be greatly reduced, and a highly reliable single transverse mode GaN semiconductor laser can be realized.
[0016]
The present invention is also the above semiconductor laser comprising an n-type first cladding layer formed on the current confinement layer and an n-type third cladding layer formed under the current confinement layer.
In the present invention, the total thickness of the n-type first cladding layer and the n-type third cladding layer is 1 μm or more in order to prevent light from leaking to the n-GaN layer having a high refractive index. The above semiconductor laser.
[0017]
The present invention also provides the above semiconductor laser, wherein the n-type third cladding layer is a superlattice. By making the n-type cladding layer a superlattice, a two-dimensional electron gas is generated, and the electrical resistance of the stripe opening and the n-electrode can be greatly reduced.
[0018]
The present invention also provides the semiconductor laser as described above, wherein the p-type second cladding layer is a superlattice. By making the p-type second cladding layer a superlattice, a two-dimensional hole gas is generated, and the current can be spread in the horizontal direction in the p-type second cladding layer, so that the effective area of the p-electrode is increased and the p-electrode contact Resistance can be greatly reduced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an element cross-sectional view of a single mode GaN-based quantum well semiconductor laser according to the present invention.
After an AlN buffer layer 2, an n-GaN layer 3, and an AlGaInN-based current confinement layer 4 are grown on the (0001) sapphire substrate 1 by the first crystal growth by metal organic vapor phase epitaxy, and once taken out from the growth apparatus. A stripe-shaped opening 5 having a width of 2 μm is formed by reactive ion etching using, for example, Cl 2 gas. The stripe-shaped opening 5 must completely penetrate at least the Al x Ga 1 -xy In y N current confinement layer 4.
[0020]
Next, it is again introduced into the crystal growth apparatus, and by the second crystal growth, n-Al 0.07 Ga 0.93 N first clad layer 6, n-GaN first light guide layer 7, Ga 1-x In x N / Ga. Multiple quantum well active layer 8 made of 1-y In y N (0 <y <x <1), p-Al 0.08 Ga 0.92 N cap layer 9, p-GaN second light guide layer 10, p-Al 0.07 Ga A 0.93 N second cladding layer 11 and a p-GaN contact layer 12 are grown.
[0021]
Finally, a p-electrode 13 made of, for example, Ni / Au is formed immediately above the stripe-shaped opening 5, and an n-electrode 14 made of, for example, Ti / Al is formed on the surface partially etched until the n-GaN layer 3 is exposed. It is formed.
[0022]
The multiple quantum well active layer 8 is composed of, for example, a Ga 0.9 In 0.1 N quantum well layer having a thickness of 3 nm and a Ga 0.97 In 0.03 N barrier layer having a thickness of 9 nm. When the light generated in the multiple quantum well active layer 8 is viewed in the vertical direction, the n-GaN first light guide layer 7, the multiple quantum well layer 8, the p-Al 0.08 Ga 0.92 N cap layer 9, and the p-GaN second Although it is confined particularly strongly in the four layers of the light guide layer 10, a difference in refractive index is also generated in the direction horizontal to the growth layer due to the step.
[0023]
The width of the bent portion 17 of the multi-quantum well active layer 8 is about 1.5 μm, and the refractive index waveguide structure has an effective stripe width. In this embodiment, because of the use of narrow stripe structure, the light in the horizontal direction extends also to Al x Ga 1-xy In y N current blocking layer 4, Al x Ga 1-xy In y N current blocking layer By selecting the composition of 4, the waveguide mechanism can be controlled.
[0024]
FIG. 2 shows the relationship between the composition of Al x Ga 1 -xy In y N and the waveguide mechanism. The oscillation wavelength is assumed to be 400 nm. The region (A) below the straight line connecting GaN and Al 0.84 In 0.16 N is a region having a refractive index smaller than that of GaN and no light absorption. When a current confinement layer having the composition of this region is used (implementation) Structure of Example 1) Only a strong real refractive index waveguide effect can be obtained. In the region (B) above the line connecting GaN and Al 0.84 In 0.16 N and below the line connecting GaN and Al 0.75 In 0.25 N, the refractive index is smaller than that of GaN and there is light absorption. is there. When the composition in this region is used as a current confinement layer, a property having both an actual refractive index guiding action and a loss guiding action can be obtained. The region (C) above the straight line connecting GaN and Al 0.75 In 0.25 N is a region having a higher refractive index than that of GaN and light absorption. When a current confinement layer having a composition in this region is used, (Structure of Embodiment 2) Only a strong loss waveguide effect can be obtained.
[0025]
By properly using these compositions, an optimum current confinement layer can be obtained for other structural parameters such as the stripe width. Accordingly, high performance suitable for a light source for optical disks, such as a stable single transverse mode at a low threshold current and a low aspect ratio, can be realized. In this embodiment, the Al x Ga 1 -xy In y N current confinement layer 4 is used, but p-AlGaInN may also be used. Each composition region shown in FIG. 2 is based on the assumption that the oscillation wavelength is 400 nm, and changes slightly as the wavelength changes, but it may be derived from the relationship between refractive index and light absorption each time. Further, the multi-quantum well active layer 8 is expected to have the same effect as long as there is a refractive index difference due to the Al x Ga 1 -xy In y N current confinement layer 4 even when the active layer is not flat 17 and is flat. it can.
[0026]
【Example】
Example 1
In the device cross-sectional structure of the GaN quantum well semiconductor laser shown in FIG. 1, the Al x Ga 1 -xy In y N current confinement layer 4 is an Al 0.08 Ga 0.92 N current confinement layer.
In the case of the present embodiment, the optical confinement effect in the multiple quantum well active layer 8 appears more strongly due to the large refractive index difference, and an optical confinement coefficient of 90% or more is obtained. Accordingly, high performance suitable for a light source for optical disks, such as a stable single transverse mode at a low threshold current and a low aspect ratio, can be realized.
[0027]
In this example, AlGaN having an AlN molar fraction of 0.08 was used. However, since this optimum value varies depending on the oscillation wavelength, the stripe width, and the manufacturing method, generally, if Al is contained even a little, The above effects can be expected. Further, even when the multi-quantum well active layer 8 has no bent portion 17 and is flat, if the refractive index difference is caused by the Al 0.08 Ga 0.92 N current confinement layer 4, the same effect can be expected.
[0028]
Example 2
In the device cross-sectional structure of the GaN-based quantum well semiconductor laser shown in FIG. 1, the Al x Ga 1 -xy In y N current confinement layer 4 is a Ga 0.80 In 0.20 N current confinement layer.
In this embodiment, the Ga 0.80 In 0.20 N current confinement layer 4 has a high absorption coefficient of about 10 5 cm −1 with respect to the guided light. For this reason, the action of loss waveguide occurs, and the optical confinement effect in the multiple quantum well active layer 8 appears more strongly. As a result, an optical confinement factor of 90% or more is obtained.
[0029]
The difference from the structure of the first embodiment is the same as the difference between a general real refractive index waveguide type and a loss waveguide type. That is, in the structure of Example 1, low waveguide loss can be realized even with a narrow stripe structure, but when the stripe width is relatively wide, the gain difference from the higher order mode is reduced and the stability of the single mode is lowered. On the other hand, in the loss waveguide type, in the narrow stripe structure, the waveguide loss increases and it is difficult to obtain a low threshold current density. However, even if the stripe width is relatively wide, the gain difference from the higher order mode is large. Therefore, it has excellent single mode stability. Therefore, even when the stripe width is, for example, 2 μm or more, high performance suitable for an optical disk light source such as a stable single transverse mode with a low threshold current and a low aspect ratio can be realized.
[0030]
In this embodiment, GaInN having an InN molar fraction of 0.20 is used, but this optimum value varies depending on the oscillation wavelength, stripe width, and manufacturing method. In general, since it is sufficient to absorb even a little light emitted from the active layer, when a Ga 1-x In x N quantum well is used, the InN molar fraction z of the Ga 1-z In z N current confinement layer is x <Z <1 may be satisfied. Further, even when the multi-quantum well active layer 8 is flat without the bent portion 17, the same effect can be expected if a refractive index difference is caused by the Ga 0.80 In 0.20 N current confinement layer 4.
[0031]
Example 3
FIG. 3 is a device cross-sectional view of the single mode GaN-based quantum well semiconductor laser of this example. The difference from Example 1 is that the first cladding layer 6 is divided into two layers and an n-type third cladding layer is formed under the current confinement layer.
The 5 lower stripe-like openings, there are n-Al 0.07 Ga 0.93 N third cladding layer 6A, for example n-Al 0.07 Ga 0.93 N 1μm film thickness of the third cladding layer 6A, n-Al 0.07 Ga 0.93 N When the film thickness of the first cladding layer 6 is 0.5 μm, it is possible to almost completely prevent light from leaking to the n-GaN layer 3 having a high refractive index.
[0032]
Since the n-Al 0.07 Ga 0.93 N first cladding layer 6 grown on the Al 0.08 Ga 0.92 N current confinement layer 4 is relatively thin, 0.5 μm, the multiple quantum well layer immediately above the stripe-shaped opening 5 8 has a bent portion 17 without being flattened. In this case, the width of the bent portion 17 is about 1.5 μm, and this has a refractive index waveguide structure that makes an effective stripe width. Further, by the thin n-Al 0.07 Ga 0.93 N first cladding layer 6, the lateral injection of electrons injected from the n-Al 0.07 Ga 0.93 N first cladding layer 6 side into the multiple quantum well layer 8 immediately above the stripe-shaped opening 5. The direction spread is also small.
In the case of this embodiment, the optical confinement effect in the multiple quantum well layer 8 appears more strongly due to the large refractive index difference, and an optical confinement coefficient of 90% or more is obtained. Therefore, high performance suitable for an optical disk light source such as a single transverse mode stable at a low threshold current and a low aspect ratio can be realized with good reproducibility.
[0033]
Example 4
FIG. 4 is an element cross-sectional view of the single mode GaN quantum well semiconductor laser of this example. The difference from Example 3 is that the n-type third cladding layer 6A formed under the current confinement layer and the p-type second cladding layer under the p-GaN contact layer 12 are made of n-Al 0.14 Ga 0.86 N / GaN This is the point where the lattice cladding is used.
Below the stripe-shaped opening 5, there is an n-Al 0.14 Ga 0.86 N / GaN superlattice third cladding layer 6B. For example, the thickness of the n-Al 0.14 Ga 0.86 N / GaN superlattice third cladding layer 6B is 1 μm, When the film thickness of the n-Al 0.07 Ga 0.93 N first cladding layer 6 is 0.5 μm, light can be almost completely prevented from leaking to the n-GaN layer 3 having a high refractive index.
[0034]
Further, the n-Al 0.14 Ga 0.86 N / GaN superlattice third cladding layer 6B and the p-Al 0.14 Ga 0.86 N / GaN superlattice second cladding layer 11 are respectively formed by the effects of the two-dimensional electron gas and the two-dimensional hole gas. The electrical resistance in the lateral direction along the layer is much lower than in the thickness direction. Therefore, the electrical resistance between the n-Al 0.14 Ga 0.86 N / GaN superlattice third cladding layer 6B and the n-electrode 14 can be reduced, or the p-Al 0.14 Ga 0.86 N / GaN superlattice second cladding layer. Since the current spreads in the horizontal direction in 11, the effective area of the p-electrode 13 is increased, and the contact resistance can be reduced, so that the operating voltage of the element can be greatly reduced.
[0035]
Therefore, high performance suitable for a light source for optical discs such as a low threshold current, a single transverse mode stable at a low operating voltage, and a low aspect ratio can be realized. In this embodiment, the n-Al 0.14 Ga 0.86 N / GaN superlattice third cladding layer 6B and the p-Al 0.14 Ga 0.86 N / GaN superlattice second cladding layer 11 are doped with donors and acceptors on the AlGaN side, respectively. However, the GaN side or both AlGaN and GaN may be doped.
[0036]
【The invention's effect】
By using the present invention, a high-performance short-wavelength semiconductor laser having a low threshold current density and having a single transverse mode, a low aspect ratio, and the like suitable for an optical disk light source can be realized.
[Brief description of the drawings]
FIG. 1 is a device sectional view of a GaN-based single transverse mode semiconductor laser according to an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between a refractive index and light absorption with respect to light having a wavelength of 400 nm having an Al x Ga 1 -xy In y N composition.
3 is a device sectional view of a GaN-based single transverse mode semiconductor laser according to Example 3. FIG.
4 is a device sectional view of a GaN-based single transverse mode semiconductor laser according to Example 4. FIG.
FIG. 5 is a device sectional view of a conventional GaN-based single transverse mode semiconductor laser.
6 is a diagram showing a refractive index distribution in a direction horizontal to the growth layer of the conventional example shown in FIG.

Claims (6)

基板と、n型層と、AlGa1−x−yInN層(0≦x≦1,0≦y≦1,x+y≦1,x=0のときy≠0,y=0のときx≠0)から成るp型または高抵抗電流狭窄層と、該電流狭窄層を貫通するストライプ状開口部と、前記n型層の上に形成された量子井戸活性層を備えた半導体レーザであって、
前記n型層が、前記基板より上層に、前記基板側から順番に、n型GaNコンタクト層と、第1のn型AlGaNクラッド層と、n型GaN光ガイド層を備えて構成され、
前記電流狭窄層が、前記n型GaNコンタクト層と前記第1のn型AlGaNクラッド層の間に設けられ、
前記開口部内において、前記第1のn型AlGaNクラッド層が前記n型GaNコンタクト層の上に形成され、
前記電流狭窄層を構成するAl Ga 1−x−y In N層の組成比x及びyが、前記電流狭窄層が発振波長の光を吸収し、且つ、前記電流狭窄層の屈折率がGaNの屈折率より小さくなるように設定されていることを特徴とする半導体レーザ。
Substrate, n-type layer, and Al x Ga 1-xy In y N layer (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1, x = 0, y ≠ 0, y = 0 A semiconductor laser comprising a p-type or high-resistance current confinement layer consisting of x ≠ 0), a stripe-shaped opening penetrating the current confinement layer, and a quantum well active layer formed on the n-type layer Because
The n-type layer includes an n-type GaN contact layer, a first n-type AlGaN cladding layer, and an n-type GaN light guide layer in order from the substrate side above the substrate,
The current confinement layer is provided between the n-type GaN contact layer and the first n-type AlGaN cladding layer;
In the opening, the first n-type AlGaN cladding layer is formed on the n-type GaN contact layer,
The composition ratio x and y of the Al x Ga 1-xy In y N layer constituting the current confinement layer is such that the current confinement layer absorbs light of the oscillation wavelength and the current confinement layer has a refractive index of A semiconductor laser characterized by being set to be smaller than the refractive index of GaN .
前記量子井戸活性層が前記開口部に沿って屈曲していることを特徴とする請求項1記載の半導体レーザ。 2. The semiconductor laser according to claim 1, wherein the quantum well active layer is bent along the opening. 前記n型層が、前記n型GaNコンタクト層と前記第1のn型AlGaNクラッド層の間に第2のn型AlGaNクラッドを更に備え、
前記電流狭窄層が、前記第1のn型AlGaNクラッド層と前記第2のn型AlGaNクラッド層の間に設けられていることを特徴とする請求項1または2記載の半導体レーザ。
The n-type layer further comprises a second n-type AlGaN cladding between the n-type GaN contact layer and the first n-type AlGaN cladding layer;
3. The semiconductor laser according to claim 1 , wherein the current confinement layer is provided between the first n-type AlGaN cladding layer and the second n-type AlGaN cladding layer .
前記第1のn型AlGaNクラッド層と前記第2のn型AlGaNクラッド層との膜厚の合計が1μm以上であることを特徴とする請求項3に記載の半導体レーザ。 4. The semiconductor laser according to claim 3, wherein a total thickness of the first n-type AlGaN cladding layer and the second n-type AlGaN cladding layer is 1 μm or more. 5. 前記開口部の幅が3μm以下の狭ストライプ構造であることを特徴とする請求項1〜4の何れか1項に記載の半導体レーザ。The semiconductor laser according to any one of claims 1-4, wherein the width of the opening is less narrow stripe structure 3 [mu] m. 前記基板側から順番に、p型AlGaNキャップ層と、p型GaN光ガイド層と、p型AlGaNクラッド層と、p型GaNコンタクト層を備えて構成されるP型層が、前記量子井戸活性層上に形成されていることを特徴とする請求項1〜5の何れか1項に記載の半導体レーザ。
A P-type layer including a p-type AlGaN cap layer, a p-type GaN light guide layer, a p-type AlGaN cladding layer, and a p-type GaN contact layer in order from the substrate side is the quantum well active layer. the semiconductor laser according to any one of claims 1-5, characterized in that it is formed thereon.
JP24802999A 1999-09-01 1999-09-01 Semiconductor laser Expired - Lifetime JP4544665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24802999A JP4544665B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24802999A JP4544665B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Publications (2)

Publication Number Publication Date
JP2001077470A JP2001077470A (en) 2001-03-23
JP4544665B2 true JP4544665B2 (en) 2010-09-15

Family

ID=17172149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24802999A Expired - Lifetime JP4544665B2 (en) 1999-09-01 1999-09-01 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP4544665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508001B2 (en) 2004-06-21 2009-03-24 Panasonic Corporation Semiconductor laser device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH1117277A (en) * 1997-06-20 1999-01-22 Sharp Corp Nitride based semiconductor laser device and manufacture therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260771A (en) * 1996-03-25 1997-10-03 Nichia Chem Ind Ltd Nitride semiconductor laser element and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335757A (en) * 1997-01-09 1998-12-18 Nichia Chem Ind Ltd Nitride semiconductor element
JPH1117277A (en) * 1997-06-20 1999-01-22 Sharp Corp Nitride based semiconductor laser device and manufacture therefor

Also Published As

Publication number Publication date
JP2001077470A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6252894B1 (en) Semiconductor laser using gallium nitride series compound semiconductor
EP1328050B1 (en) Semiconductor laser structure
US7756177B2 (en) Semiconductor light-emitting device
JP3862894B2 (en) Semiconductor laser device
JP3742203B2 (en) Semiconductor laser
JPH11214788A (en) Gallium nitride type semiconductor laser element
JPH10242512A (en) Semiconductor light emitting device
JPH11243251A (en) Semiconductor laser
KR101254817B1 (en) Semiconductor laser diode
JPH05243669A (en) Semiconductor laser element
US8379682B2 (en) Nitride semiconductor laser chip and method of fabrication thereof
JP3519990B2 (en) Light emitting device and manufacturing method thereof
US6333946B1 (en) Semiconductor laser device and process for manufacturing the same
JPH11274642A (en) Semiconductor light emitting element and fabrication thereof
US7542498B2 (en) Semiconductor laser diode
JPH06260716A (en) Semiconductor laser
JP3655066B2 (en) Gallium nitride compound semiconductor laser and manufacturing method thereof
JP4700154B2 (en) Semiconductor laser
JP4544665B2 (en) Semiconductor laser
JP3300657B2 (en) Compound semiconductor laser device
US20100238963A1 (en) Gallium nitride based semiconductor laser device
JP4603113B2 (en) Semiconductor laser
JP2005175450A (en) Compound semiconductor device, manufacturing method therefor, and optical disk apparatus equipped with this compound semiconductor device
JP2011055009A (en) Semiconductor laser
JP3439168B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term