JPH10242512A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH10242512A
JPH10242512A JP3934597A JP3934597A JPH10242512A JP H10242512 A JPH10242512 A JP H10242512A JP 3934597 A JP3934597 A JP 3934597A JP 3934597 A JP3934597 A JP 3934597A JP H10242512 A JPH10242512 A JP H10242512A
Authority
JP
Japan
Prior art keywords
layer
active layer
gan
composition
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3934597A
Other languages
Japanese (ja)
Other versions
JP3433038B2 (en
Inventor
Leney John
ジョン・レニー
Genichi Hatagoshi
玄一 波多腰
Katsunobu Sasanuma
克信 笹沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12550503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10242512(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03934597A priority Critical patent/JP3433038B2/en
Publication of JPH10242512A publication Critical patent/JPH10242512A/en
Application granted granted Critical
Publication of JP3433038B2 publication Critical patent/JP3433038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield and quality of a semiconductor light emitting device and, at the same time, to decrease the threshold current density of the device, by forming an active layer to contain either a barrier layer or a well layer having a different composition or thickness from those of a barrier layer and a well layer as the central part of a super lattice in its terminating section. SOLUTION: In order to solve such a problem that the light output of a central well layer is absorbed by an outside well layer, InGaN/GaN strain relaxing layers 12 and 13 are formed adjacently to the upper end lower surface of an InGaN/GaN multiple quantum well(MQW) active layer 6. It can be considered that the layers 12 and 13 also have super lattice structure and the structures at both ends of the active layer 6 are different from that at the central part. The InGaN/GaN strain relaxing super lattices 12 and 13 work as buffer layers for making the strain applied to the MQW active layer 6 from a GaN guide layer zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体発光装置に係
り、特に低動作電圧及び低しきい値電流密度を有するG
aN系半導体半導体発光装置に使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device having a low operating voltage and a low threshold current density.
It is used for an aN-based semiconductor semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来GaN系半導体発光装置は、Mgの
添加によりp型GaN(以下p−GaNと略称する)の
結晶成長に成功して以来、紫外及び青色領域の可視半導
体レーザ及び半導体発光ダイオード(以下半導体レーザ
をLD、発光ダイオードをLEDと略称)として商品化
が進められてきた。
2. Description of the Related Art Conventional GaN-based semiconductor light-emitting devices have succeeded in crystal growth of p-type GaN (hereinafter abbreviated as p-GaN) by the addition of Mg, and have been used for visible semiconductor lasers and semiconductor light-emitting diodes in the ultraviolet and blue regions. (Hereinafter, the semiconductor laser is abbreviated as LD and the light emitting diode is abbreviated as LED.)

【0003】GaN系LD、LEDの主な問題点は動作
電圧が高いこと、及びLD発光のしきい値電流密度が大
きく活性層の発光効率が本来の値を示さないことであ
る。その理由はLDの場合、SCH(Separate Confine
ment Heterostructure)型のMQW(Multi Quantum We
ll)量子井戸構造を有する活性層(以下MQW活性層と
略称)に大きな歪みが存在し、活性層の結晶の品質が低
下すること、及び特にMQW活性層の最初の数個の井戸
層と最後の数個の井戸層に大きな歪みが発生し、前記活
性層の中央部に比べて両端部の光放出と吸収が長波長側
にずれことのためである。
The main problems of GaN-based LDs and LEDs are that the operating voltage is high, the threshold current density of LD light emission is large, and the luminous efficiency of the active layer does not show its original value. The reason is that in the case of LD, SCH (Separate Confine
ment Heterostructure) type MQW (Multi Quantum We)
ll) A large strain is present in an active layer having a quantum well structure (hereinafter abbreviated as MQW active layer), which degrades the crystal quality of the active layer, and particularly, the first few well layers and the last of the MQW active layer. This is because a large strain is generated in some of the well layers, and light emission and absorption at both ends are shifted to the longer wavelength side as compared with the central part of the active layer.

【0004】ガイド層及びクラッド層から加わる歪み
は、前記外側の井戸層で緩和され、MQW活性層の中央
部に加わる歪みを低減する。歪み量が大きい外側の井戸
層は中央部に比べてバンドギャップが小となり、MQW
活性層からの光出力が吸収されて減衰しGaN系LDの
しきい値電流密度が増加する。
[0004] The strain applied from the guide layer and the cladding layer is relaxed in the outer well layer, and the strain applied to the central portion of the MQW active layer is reduced. The band gap of the outer well layer having a large strain amount is smaller than that of the central part, and the MQW
The light output from the active layer is absorbed and attenuated, and the threshold current density of the GaN-based LD increases.

【0005】また前記ガイド層及びクラッド層から加わ
る歪みにより、外側の井戸層には格子欠陥が発生するの
で、この欠陥により生じた欠陥準位を通じて活性領域に
注入された電子、正孔が再結合により消滅しGaN系L
Dの発光効率が低下する。同様な問題は均一な活性層を
有するGaN系LEDについてもみられる。
[0005] Further, a lattice defect is generated in the outer well layer due to the strain applied from the guide layer and the cladding layer, so that electrons and holes injected into the active region through defect levels caused by the defect are recombined. GaN L
The luminous efficiency of D decreases. Similar problems are seen with GaN-based LEDs having a uniform active layer.

【0006】これらの問題点を回避するために、従来M
QW活性層の井戸層の数を例えば20個以上に増加する
方法がとられてきた。このように井戸層の数を増加すれ
ば、外側の井戸層の光吸収や電子、正孔の再結合による
光出力の減衰効果を薄めることができる。
In order to avoid these problems, a conventional M
A method of increasing the number of well layers of the QW active layer to, for example, 20 or more has been adopted. By increasing the number of well layers in this manner, the light absorption effect of the outer well layers and the effect of attenuating the light output due to recombination of electrons and holes can be reduced.

【0007】このほか、MQW活性層を構成する井戸層
と障壁層との間にはヘテロ界面が形成され、このヘテロ
界面には格子不整合によりある程度の欠陥が発生する。
井戸層の数が多くなれば、MQW活性層に井戸層と障壁
層の多くの界面が含まれることになり、界面における欠
陥の発生によりMQW活性層中に再結合中心が導入され
光利得が減少する。
In addition, a hetero interface is formed between the well layer and the barrier layer constituting the MQW active layer, and a certain degree of defect occurs at the hetero interface due to lattice mismatch.
When the number of well layers increases, many interfaces between the well layers and the barrier layers are included in the MQW active layer, and recombination centers are introduced into the MQW active layer due to generation of defects at the interfaces, thereby reducing optical gain. I do.

【0008】このためGaN系LDにおいては、MQW
活性層中でLD発光に必要な十分な利得を得るため、井
戸層の数を増加しなければならないと考えられてきた。
しかし、MQWの井戸数が多ければ電子、正孔の輸送が
妨げられ、実際にLD発光に寄与する井戸層の数は2個
〜3個程度に限定される。従って、例えばIII−V族
のMQW活性層を有するLDにおいて、最高の発光効率
が得られる井戸層の数は大抵の場合10個以下とされて
きた。
For this reason, in a GaN-based LD, the MQW
It has been considered that the number of well layers must be increased in order to obtain sufficient gain required for LD light emission in the active layer.
However, if the number of MQW wells is large, the transport of electrons and holes is hindered, and the number of well layers actually contributing to LD emission is limited to about two to three. Therefore, for example, in an LD having a group III-V MQW active layer, the number of well layers at which the highest luminous efficiency is obtained has been generally set to 10 or less.

【0009】近年、高密度光ディスクの読み出し、書き
込み用の短波長LDの必要性が高まりつつあるが、現在
実用化されたInGaAlP系LDの発光波長はおよそ
600nmであり、次世代DVDシステムに求められる
波長400nm〜430nmのLDを実現することは困
難である。
In recent years, the need for short-wavelength LDs for reading and writing high-density optical disks has been increasing. However, the emission wavelength of currently practiced InGaAlP-based LDs is about 600 nm, which is required for next-generation DVD systems. It is difficult to realize an LD having a wavelength of 400 nm to 430 nm.

【0010】GaN系LD、LEDは上記の波長領域の
みならず、さらに短波長の光源となりうることが知られ
ている。しかしGaN系LD、LEDは、従来の材料に
比べて製造方法に多くの技術的問題点が含まれる。その
主なものは主要材料のGaNとInx Ga1-x N(0≦
x≦0.3)との格子定数が異なることである。
It is known that GaN-based LDs and LEDs can be used as a light source not only in the above wavelength range but also in a shorter wavelength. However, GaN-based LDs and LEDs have many technical problems in their manufacturing methods compared to conventional materials. The main ones are GaN and In x Ga 1-x N (0 ≦
x ≦ 0.3).

【0011】InGaN(以下とくに必要な場合を除
き、組成を示すサフィックスを省略)は通常活性層とし
て用いられ、GaNはガイド層として用いられるが、両
者の格子不整合が大きいため、活性層中のInの平均組
成が10%を越えれば、活性層とガイド層の界面におけ
る歪みが大きくなる。このときp−GaNガイド層形成
に必要な200℃〜400℃程度の温度上昇を行えば、
InGaN活性層が劣化又は破壊することが実験的に知
られている。
InGaN (the suffix indicating the composition is omitted except where particularly necessary) is usually used as an active layer, and GaN is used as a guide layer. If the average composition of In exceeds 10%, the strain at the interface between the active layer and the guide layer increases. At this time, if a temperature rise of about 200 ° C. to 400 ° C. necessary for forming the p-GaN guide layer is performed,
It is experimentally known that the InGaN active layer is deteriorated or destroyed.

【0012】従って通常活性層中のInの平均組成は1
0%以下とされるが、この場合にも活性層の劣化は存在
し歩留まりが低下する。活性層の劣化は前記格子不整合
によるもののほか、活性層中のInが移動または蒸発す
ることが他の原因の1つと考えられ、このため活性層中
のIn組成が不均一になり、低電圧動作のLD、LE
D、低しきい値電流密度のLDを得ることが困難にな
る。
Therefore, the average composition of In in the active layer is usually 1
Although it is set to 0% or less, also in this case, the active layer is deteriorated and the yield is reduced. The degradation of the active layer is considered to be caused by the migration or evaporation of In in the active layer, in addition to the lattice mismatch. One of the other causes is that the In composition in the active layer becomes non-uniform. Operation LD, LE
D. It becomes difficult to obtain an LD having a low threshold current density.

【0013】一方Inの平均組成を下げれば電子及び正
孔がLD発光に寄与する活性領域から外部に溢れるキャ
リアオーバーフロー効果を生じやすくなり、キャリア閉
じ込めはもとより、光閉じ込めも悪くなるのでLD発光
の効率向上のためには好ましくない。
On the other hand, if the average composition of In is lowered, a carrier overflow effect in which electrons and holes overflow from the active region contributing to LD light emission tends to occur, and not only carrier confinement but also light confinement deteriorates, so that LD light emission efficiency is reduced. It is not preferable for improvement.

【0014】このように、現状ではキャリア閉じ込めと
光閉じ込めの双方から要求されるIn組成の大きい活性
層を用いることができず、GaN系LD、LEDの活性
層の平均In組成は10%以下(井戸層のIn組成15
%以下)に限定されてきた。
As described above, at present, an active layer having a large In composition required for both carrier confinement and light confinement cannot be used, and the average In composition of the active layers of GaN-based LDs and LEDs is 10% or less ( In composition of well layer 15
%).

【0015】MQW活性層とp型ガイド層の間にキャッ
プ層を導入することにより、p型ガイド層形成時の昇温
過程で活性層に生じる劣化を保護し、かつキャリアオー
バーフローを防止する技術も開発されているが、現状で
は劣化を完全に防止するに至っていない。
By introducing a cap layer between the MQW active layer and the p-type guide layer, there is also a technique for protecting the active layer from being deteriorated during the temperature rise process during the formation of the p-type guide layer and preventing carrier overflow. Although it has been developed, it has not yet completely prevented deterioration.

【0016】また、GaN系LDにおいてはキャリアを
構成する電子と正孔の内、電子密度が正孔密度に比べて
大きいため、電子が活性層を通過してp側電極まで流れ
るキャリアオーバーフロー効果を生じやすく、これを防
止するため前記キャップ層としてAlx Ga1-x N(x
>0.1)を用いる必要があり、キャップ層のAl組成
が大きいために動作電圧が高くなるという問題があっ
た。
In a GaN-based LD, the electron density of the electrons and holes constituting the carriers is larger than the hole density. Therefore, the carrier overflow effect in which the electrons pass through the active layer to the p-side electrode is reduced. Al x Ga 1 -xN (x
> 0.1), and there was a problem that the operating voltage was increased due to the large Al composition of the cap layer.

【0017】[0017]

【発明が解決しようとする課題】上記したように、従来
のGaN系LDはMQW活性層における歪みの影響を回
避することを目的に、MQW活性層中の井戸数を過剰に
設けていたため、LDの動作電圧としきい値電流密度が
過大になるという欠点があった。
As described above, the conventional GaN LD has an excessive number of wells in the MQW active layer for the purpose of avoiding the influence of strain in the MQW active layer. There is a disadvantage that the operating voltage and the threshold current density become excessive.

【0018】もし、MQW活性層の内部、及びその周辺
層との格子定数の差による歪みの影響がなければ、井戸
の数は少ない方がLD発光の効率は高くなる。本発明は
上記の問題点を解決すべくなされたものであり、MQW
活性層に加わる歪の影響を除去することにより、少ない
井戸数で高い発光効率を示すGaN系半導体発光装置を
得ようとするものである。
If there is no influence of distortion due to a difference in lattice constant between the inside of the MQW active layer and its surrounding layers, the smaller the number of wells, the higher the efficiency of LD emission. The present invention has been made to solve the above problems, and has been developed in accordance with MQW.
An object of the present invention is to obtain a GaN-based semiconductor light-emitting device that exhibits high luminous efficiency with a small number of wells by removing the influence of strain applied to an active layer.

【0019】従来、GaN系LD、LEDの活性層とそ
れに隣接するガイド層との格子不整合が大きく、このた
め活性層のIn組成が大きい場合には、前記活性層とガ
イド層との界面に歪みのエネルギーが蓄積し、前記界面
領域や活性層内部に格子欠陥を発生し、高品質のLDが
得られず歩留まりも悪いという問題があった。また活性
層のIn組成が小さい場合には、キャリアオーバーフロ
ー効果が生じやすく、しきい値電流密度の低いLDが実
現できないという問題があった。
Conventionally, the lattice mismatch between the active layer of a GaN-based LD or LED and the guide layer adjacent to the active layer is large. Therefore, when the In composition of the active layer is large, the interface between the active layer and the guide layer becomes large. There is a problem in that energy of strain is accumulated, lattice defects are generated in the interface region and the inside of the active layer, and a high-quality LD cannot be obtained and the yield is poor. Also, when the In composition of the active layer is small, there is a problem that the carrier overflow effect easily occurs, and an LD with a low threshold current density cannot be realized.

【0020】本発明は上記の問題点を解決すべくなされ
たもので、ガイド層とMQW活性層との間に、このMQ
W活性層の井戸層・障壁層とは異なるIn組成または厚
さを有する井戸層と障壁層と介在させることにより、上
記の相反する2つの問題を同時に解決し、歩留まりが高
く高品質で、かつ、しきい値電流密度が低いGaN系L
Dを提供し、またLEDへの適用を図ることを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and has a structure in which the MQW is provided between the guide layer and the MQW active layer.
By interposing a well layer and a barrier layer having an In composition or thickness different from those of the well layer and the barrier layer of the W active layer, the above two conflicting problems can be solved at the same time, the yield is high, the quality is high, and , GaN-based L with low threshold current density
It is intended to provide D and to be applied to LED.

【0021】[0021]

【課題を解決するための手段】本発明の半導体発光装置
は、MQW活性層とガイド層又はクラッド層と隣接する
領域に、格子定数の差から生じる歪みの影響を吸収する
ための井戸層と障壁層を設けることに特徴がある。この
ようにして、MQW活性層の井戸数を増加することな
く、ストライプ状の活性層全域に亘って均一なLD発光
を得ることができる。
A semiconductor light emitting device according to the present invention comprises a well layer and a barrier in a region adjacent to an MQW active layer and a guide layer or a cladding layer for absorbing the influence of strain caused by a difference in lattice constant. It is characterized by providing a layer. In this manner, uniform LD light emission can be obtained over the entire stripe-shaped active layer without increasing the number of wells in the MQW active layer.

【0022】また本発明の半導体発光装置は、MQW活
性層とガイド層又はクラッド層と隣接する領域に、前記
MQW活性層とは組成が異なる井戸層と障壁層を設け、
その井戸層と障壁層の平均組成が隣接するガイド層又は
クラッド層に近くなるようにして、ガイド層又はクラッ
ド層と前記MQW活性層との界面に生ずる歪みを減少さ
せ、また同時にMQW活性層を構成する井戸層と障壁層
のバンドギャップ差を界面に近づくに従って広げること
により、キャリアオーバーフロー効果を防止することに
特徴がある。
In the semiconductor light emitting device of the present invention, a well layer and a barrier layer having compositions different from those of the MQW active layer are provided in a region adjacent to the MQW active layer and the guide layer or the clad layer,
The average composition of the well layer and the barrier layer is made closer to the adjacent guide layer or clad layer to reduce the strain generated at the interface between the guide layer or clad layer and the MQW active layer. It is characterized in that the carrier overflow effect is prevented by widening the band gap difference between the well layer and the barrier layer, which are closer to the interface.

【0023】具体的には本発明の半導体発光装置は、障
壁層と井戸層とが交互に積層された超格子構造からなる
活性層を有し、前記活性層は、前記超格子の中央部の障
壁層及び井戸層とは少なくとも組成及び厚さのいずれか
が異なる、少なくとも1つの障壁層及び井戸層のいずれ
かを終端部に含むものであることを特徴とする。
Specifically, the semiconductor light emitting device of the present invention has an active layer having a superlattice structure in which barrier layers and well layers are alternately stacked, and the active layer is located at a central portion of the superlattice. It is characterized in that at least one of the barrier layer and the well layer, which differs from the barrier layer and the well layer in at least one of the composition and the thickness, is included in the terminal portion.

【0024】好ましくは前記超格子構造からなる活性層
は、Inx Aly Ga1-x-y N(0<x≦1、0≦y≦
1、0≦x+y≦1)からなる障壁層と、Inz Alw
Ga1-z-w N(x<z、0<z≦1、0≦z+w≦1)
からなる井戸層とが交互に積層された超格子からなるも
のであり、前記組成は少なくともxおよびzのいずれか
1つであることを特徴とする。
Preferably, the active layer having the superlattice structure comprises In x Al y Ga 1 -xy N (0 <x ≦ 1, 0 ≦ y ≦
1, 0 ≦ x + y ≦ 1) and In z Al w
Ga 1-zw N (x <z, 0 <z ≦ 1, 0 ≦ z + w ≦ 1)
And a superlattice alternately laminated with well layers made of, and the composition is at least one of x and z.

【0025】本発明の半導体発光装置は、超格子構造か
らなる活性層が、ガイド層及びクラッド層のいずれかと
隣接する領域に、活性層の中央部と比べて井戸層と障壁
層との平均組成がガイド層及びクラッドのいずれかの組
成に近い積層領域を含むことをを特徴とする。
According to the semiconductor light emitting device of the present invention, the active layer having a superlattice structure has an average composition of a well layer and a barrier layer in a region adjacent to one of a guide layer and a cladding layer as compared with a central portion of the active layer. Includes a laminated region close to any one of the composition of the guide layer and the cladding.

【0026】また本発明の半導体発光装置は、超格子構
造からなる活性層が、ガイド層及びクラッド層のいずれ
かと隣接する領域に、活性層の中央部と比べて井戸層と
障壁層のバンドギャップの差を広げた積層領域を含むこ
とを特徴とする。
In the semiconductor light emitting device of the present invention, the active layer having the superlattice structure has a band gap between the well layer and the barrier layer in a region adjacent to one of the guide layer and the cladding layer as compared with the central portion of the active layer. Is characterized in that it includes a stacked region in which the difference between the two is increased.

【0027】また好ましくは本発明の半導体発光装置
は、超格子構造からなる活性層が、ガイド層及びクラッ
ド層のいずれかとの間に、キャップ層を具備することを
特徴とするものである。
Preferably, in the semiconductor light emitting device according to the present invention, the active layer having a superlattice structure includes a cap layer between at least one of the guide layer and the clad layer.

【0028】[0028]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。はじめに各実施の形態に共
通する事項について具体的に説明する。現在開発されて
いるGaN系LDの断面構造を図11に示す。GaN系
LDは、サファイア基板1、n−GaNコンタト層2、
Ti/Au下部電極3、n−AlGaNクラッド層4、
n−GaNガイド層5、Inx Ga1-x N/GaNから
なるMQW活性層6(以下InGaN/GaN・MQW
活性層と略称)、p−GaNガイド層7、p−AlGa
Nクラツド層8、p−GaNコンタクト層9、SiO2
膜10、Ni/Au上部電極11からなっている。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, items common to the embodiments will be specifically described. FIG. 11 shows a cross-sectional structure of a GaN-based LD currently being developed. The GaN LD includes a sapphire substrate 1, an n-GaN contact layer 2,
Ti / Au lower electrode 3, n-AlGaN cladding layer 4,
n-GaN guide layer 5, MQW active layer 6 of In x Ga 1-x N / GaN (hereinafter referred to as InGaN / GaN MQW)
Active layer), p-GaN guide layer 7, p-AlGa
N clad layer 8, p-GaN contact layer 9, SiO 2
The film 10 includes a Ni / Au upper electrode 11.

【0029】活性層は通常Inx Ga1-x N/GaN
(0<x<0.3)の井戸数が20程度のMQW活性層
により構成されている。AlGaNクラッド層はバンド
ギャップの値が大きく、キャリア閉じ込めと光出力の活
性層への閉じ込めを行うことができる。
The active layer is usually made of In x Ga 1 -xN / GaN
(0 <x <0.3) The MQW active layer has about 20 wells. The AlGaN cladding layer has a large band gap value and can confine carriers and confine optical output to the active layer.

【0030】図11に示すGaN系LDは、LDを構成
する多層構造がサファイア基板上に形成されている。ま
たLD発光のしきい値電流密度を低減するため、SiO
2 絶縁膜10を用いてストライプ状の電流狭窄構造を形
成する。このほか、例えば埋め込みストライプ型のよう
な他の電流狭窄構造を用いることもできる。
The GaN-based LD shown in FIG. 11 has a multilayer structure constituting the LD formed on a sapphire substrate. In order to reduce the threshold current density of LD light emission, SiO
(2) A stripe-shaped current confinement structure is formed using the insulating film 10. In addition, other current confinement structures such as a buried stripe type can be used.

【0031】図12は前記GaN系LDの活性領域近傍
の詳細を示すバンド構造図である。簡単のため井戸数は
5個の場合が示されている。通常の2重ヘテロ接合型L
Dの構造から、図12に示すようなMQW活性層を有す
るGaN系LDの構造を類推することができる。
FIG. 12 is a band structure diagram showing details in the vicinity of the active region of the GaN-based LD. For simplicity, the number of wells is five. Normal double heterojunction type L
From the structure of D, the structure of a GaN-based LD having an MQW active layer as shown in FIG.

【0032】しかし、活性領域とこれを囲む光ガイド領
域との間には格子定数の差があるので、これがMQW活
性層を有するLDの構造を制限する。GaN系LDを構
成する材料の組成とバンドギャップ、及び格子定数との
間の関係を図13に示す。
However, since there is a difference in lattice constant between the active region and the light guide region surrounding the active region, this limits the structure of the LD having the MQW active layer. FIG. 13 shows the relationship between the composition of the material constituting the GaN-based LD, the band gap, and the lattice constant.

【0033】GaN系LDの活性層はInx Ga1-x
を用いて形成し、ガイド層は通常GaN、クラッド層は
Gay Al1-y Nを用いて形成される。図13において
xを1から0まで変化すれば、図のGaNの点とInN
の点とを結ぶ直線に沿ってバンドギャップと格子定数と
が変化し、yを1から0まで変化すればGaNの点とA
lNの点とを結ぶ直線に沿ってバンドギャップと格子定
数とが変化する。
The active layer of the GaN-based LD is made of In x Ga 1 -xN
The guide layer is usually formed using GaN, and the cladding layer is formed using Ga y Al 1 -yN. When x changes from 1 to 0 in FIG. 13, the point of GaN and InN
The band gap and the lattice constant change along a straight line connecting the point of and the point of GaN and A when the y changes from 1 to 0.
The band gap and the lattice constant change along a straight line connecting the point 1N.

【0034】LDの発光効率を高めるためには、活性層
と導波層との間及び導波層とクラッド層との間に一定の
バンドギャップの差を設けることが必要となる。図13
からGaNとInNとを結ぶ直線の横軸に対する傾斜
は、GaNとAlNとを結ぶ直線の横軸との傾斜に比べ
て大きいので、同程度のバンドギャップの差に対して、
GaN導波層とInGaN活性層との間の格子定数の差
の方が、GaN導波層とAlGaNクラッドとの間の格
子定数の差に比べて大きいことがわかる。なお図13で
は、一例としてInx Ga1-x N活性層の組成x=0.
2の場合の活性層とGaN導波層との間に生じる格子不
整合の程度が示されている。
In order to increase the luminous efficiency of the LD, it is necessary to provide a certain band gap difference between the active layer and the waveguide layer and between the waveguide layer and the cladding layer. FIG.
Since the inclination of the straight line connecting GaN and InN with respect to the horizontal axis is larger than the inclination of the straight axis connecting GaN and AlN with the horizontal axis, the difference between the band gaps of the same degree is
It can be seen that the difference in lattice constant between the GaN waveguide layer and the InGaN active layer is larger than the difference in lattice constant between the GaN waveguide layer and the AlGaN cladding. In FIG. 13, as an example, the composition of the In x Ga 1 -xN active layer x = 0.
2 shows the degree of lattice mismatch between the active layer and the GaN waveguide layer.

【0035】このように、InGaN活性層に対してそ
の周辺材料から加わる歪みに着目すれば、前記InGa
N活性層に隣接するGaN導波層によるものが大きく、
これに比べてAlGaNクラッド層の組成変化から加わ
るものは小さい。従ってInGaN/GaN・MQW活
性層についても、同様にGaNガイド層との格子不整合
によって前記MQW活性層とガイド層の界面に歪みが蓄
積されることを図13から読み取ることができる。
As described above, when attention is paid to the strain applied to the InGaN active layer from the surrounding material, the InGa
The GaN waveguide layer adjacent to the N active layer is large,
On the other hand, what is added by the change in the composition of the AlGaN cladding layer is small. Accordingly, it can be read from FIG. 13 that strain is accumulated at the interface between the MQW active layer and the guide layer due to the lattice mismatch between the InGaN / GaN MQW active layer and the GaN guide layer.

【0036】上記の説明では、MQW活性層の上下に隣
接してGaNガイド層が形成され、さらにその上下に隣
接してAlGaNクラッド層が形成される場合について
のべたが、GaN系LD、LEDの構造は必ずしもこれ
に限定されるものではなく、活性層にクラッド層が隣接
する場合や、均一な活性層にガイド層、クラッド層が隣
接する場合等、種々の組み合わせが存在する。
In the above description, the case where the GaN guide layer is formed adjacently above and below the MQW active layer and the AlGaN cladding layer is formed adjacently above and below the MQW active layer has been described. The structure is not necessarily limited to this, and there are various combinations such as a case where the cladding layer is adjacent to the active layer and a case where the guide layer and the cladding layer are adjacent to the uniform active layer.

【0037】例えばMQW活性層にAlGaNクラッド
層が直接隣接する場合についても、図13から両者の格
子不整合が大きく、その界面に歪みが蓄積するは明らか
である。また活性層がMQW構造でなくて均一なInG
aNであっても、GaN導波層との界面に歪みが蓄積さ
れることがわかる。
For example, also in the case where the AlGaN cladding layer is directly adjacent to the MQW active layer, it is clear from FIG. 13 that the lattice mismatch between the two is large and strain accumulates at the interface. In addition, the active layer is not MQW structure,
It can be seen that even with aN, strain is accumulated at the interface with the GaN waveguide layer.

【0038】格子歪み零のLD、LEDを形成する方法
として、例えばInz Alw Ga1-z-w N(0≦z+w
≦1)のような4元化合物を用いる方法がある。このと
きzとwとを制御すれば、図12の3角形の範囲内にお
いて格子定数の値を変化することなくバンドギャップの
みを連続的に変化することができるので、原理的には格
子歪み零のLD,LEDを設計することができる。
As a method of forming an LD or LED having zero lattice distortion, for example, In z Al w Ga 1 -z w N (0 ≦ z + w)
There is a method using a quaternary compound such as ≦ 1). At this time, if z and w are controlled, only the band gap can be continuously changed without changing the value of the lattice constant within the range of the triangle in FIG. LD and LED can be designed.

【0039】しかし、実際には2個の組成パラメータz
とwとを最適条件に制御しつつ良好な結晶成長を行うこ
とはいちじるしく困難であり、また、このような4元系
化合物の材料特性も十分には解明されていないのが現状
である。
However, actually, two composition parameters z
It is extremely difficult to perform good crystal growth while controlling w and w to optimal conditions, and at present, the material properties of such quaternary compounds have not been sufficiently elucidated.

【0040】従って実際上GaN系LD、LEDの構成
材料は2元、3元化合物に限定され、上記格子不整合に
より生じた歪みにより、MQW活性層は図14に示すよ
うな構造のものとなる。すなわちGaN導波層からの歪
みにより、図12に示した無歪み状態のMQW活性層の
バンド構造が変形し、外側の井戸層は中央部の井戸層に
比べてバンドギャップの幅が狭くなる。
Therefore, the constituent materials of the GaN-based LD and LED are actually limited to binary and ternary compounds, and the MQW active layer has a structure as shown in FIG. 14 due to the strain caused by the lattice mismatch. . That is, the band structure of the unstrained MQW active layer shown in FIG. 12 is deformed by the strain from the GaN waveguide layer, and the band width of the outer well layer is narrower than that of the central well layer.

【0041】図14から、中央部の井戸層から放出され
た光は、歪みによりバンドギャップが縮小した外側の井
戸層において吸収されることがわかる。またこのような
歪みは外側の井戸層のバンド間に欠陥準位を生じ、その
光吸収も無視することができない。
FIG. 14 shows that the light emitted from the central well layer is absorbed in the outer well layer whose band gap is reduced by the strain. Further, such a distortion causes a defect level between the bands of the outer well layer, and the light absorption thereof cannot be ignored.

【0042】次に図1に基づき本発明の第1の実施の形
態について説明する。図1は、本発明の第1の実施の形
態に係る、MQW活性層を有するGaN系LDの構造を
示す断面図である。上記したように、中央部の井戸層の
光出力が外側の井戸層により吸収されるという問題を解
決するために、InGaN/GaN・MQW活性層6の
上下に隣接してInGaN/GaN歪緩和層12、13
を導入した。なお図2に示すように、前記歪緩和層も超
格子構造を有し、MQW活性層の両端の構造を中央部と
変化させたものとみなすことができる。
Next, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a structure of a GaN-based LD having an MQW active layer according to the first embodiment of the present invention. As described above, in order to solve the problem that the light output of the central well layer is absorbed by the outer well layer, an InGaN / GaN strain relaxation layer is provided adjacently above and below the InGaN / GaN MQW active layer 6. 12, 13
Was introduced. As shown in FIG. 2, the strain relaxation layer also has a superlattice structure, and it can be considered that the structure at both ends of the MQW active layer is changed to the central part.

【0043】その他のLDの構造は図11に示したもの
と同様である。前記InGaN/GaN歪緩和超格子1
2、13は、GaNガイド層からMQW活性層6に加わ
る歪みを零にするバッファ層として作用する。
Other structures of the LD are the same as those shown in FIG. The InGaN / GaN strain-relaxed superlattice 1
Reference numerals 2 and 13 function as buffer layers for reducing the strain applied to the MQW active layer 6 from the GaN guide layer to zero.

【0044】MQW活性層6、歪緩和層12、13、G
aN導波層5、7、AlGaNクラッド層4、8からな
る本第1の実施の形態に係るGaN系LDのバンド構造
を図2に示す。但し図2においては、前記材料間の格子
定数の差に基づく歪効果は考慮せず、単に材料の組成の
みで決まるバンド構造を示している。
The MQW active layer 6, the strain relaxation layers 12, 13, G
FIG. 2 shows a band structure of the GaN-based LD according to the first embodiment including the aN waveguide layers 5 and 7 and the AlGaN cladding layers 4 and 8. However, FIG. 2 shows a band structure determined only by the composition of the material without considering the distortion effect based on the difference in the lattice constant between the materials.

【0045】ここにMQW活性層6の井戸層となるIn
x Ga1-x Nの組成はx=0.2であり、図1で説明し
た従来の典型的なGaN系LDのxの値の範囲内であ
る。MQW活性層の障壁層は、GaNか又はIn組成の
非常に小さいInx Ga1-x N(0<x<0.05)を
用いた。
Here, In serving as a well layer of the MQW active layer 6 is referred to as In.
The composition of x Ga 1-x N is x = 0.2, in the range of values of x of the conventional typical GaN-based LD as described in FIG. For the barrier layer of the MQW active layer, GaN or In x Ga 1 -xN (0 <x <0.05) having a very small In composition was used.

【0046】歪緩和層中の井戸層は、Inx Ga1-x
(x=0.05)を用いて形成したが、このときIn組
成xはMQW活性層の井戸層のIn組成の1/4〜1/
3の値までのものを用いることができた。歪緩和層中の
障壁層はGaNか又はIn組成の非常に小さいInx
1-x N(0<x<0.05)を用いた。図2では歪緩
和層中の障壁層としてGaNを用いる場合が示されてい
る。
The well layer in the strain relaxation layer is made of In x Ga 1 -xN.
(X = 0.05), where the In composition x is 1/4 to 1/1 of the In composition of the well layer of the MQW active layer.
Values up to 3 could be used. The barrier layer in the strain relaxation layer is made of GaN or In x G having a very small In composition.
a 1-x N (0 <x <0.05) was used. FIG. 2 shows a case where GaN is used as a barrier layer in the strain relaxation layer.

【0047】歪緩和層の井戸数はMQW活性層の井戸層
となる材料の組成で定まる。歪緩和層の井戸層のIn組
成とMQW活性層の井戸層のIn組成との比が大きい程
歪み量は大きく、歪みを零にするための歪緩和層の井戸
数も大きくしなければならない。しかし、前記井戸数の
範囲としては2〜5程度で十分な効果が得られた。
The number of wells in the strain relaxation layer is determined by the composition of the material forming the well layer of the MQW active layer. The greater the ratio of the In composition of the well layer of the strain relaxation layer to the In composition of the well layer of the MQW active layer, the greater the amount of strain, and the greater the number of wells in the strain relaxation layer to reduce the strain to zero. However, a sufficient effect was obtained when the number of wells was in the range of about 2 to 5.

【0048】歪効果を考慮した本第1の実施の形態にお
けるGaN系LDのInGaN/GaN・MQW活性
層、InGaN/GaN歪緩和層、GaN導波層のバン
ド構造を図3に示す。このように歪緩和層中の井戸層の
材料が適切に選択されていれば、歪効果を考慮しても前
記歪緩和層のバンドギャップはMQW活性層のバンドギ
ヤップより大きな値を維持することができる。
FIG. 3 shows the band structure of the InGaN / GaN MQW active layer, the InGaN / GaN strain relaxation layer, and the GaN waveguide layer of the GaN-based LD according to the first embodiment in consideration of the distortion effect. As described above, if the material of the well layer in the strain relaxation layer is appropriately selected, the band gap of the strain relaxation layer can maintain a value larger than the band gap of the MQW active layer even in consideration of the strain effect. it can.

【0049】また歪みにより前記歪緩和層中に生じた欠
陥の深い準位についても、図3に示すように、MQW活
性層のバンドギヤップの外側に位置することになり、欠
陥の深い準位によるキャリア再結合の確率は、MQW活
性層におけるキャリアの直接再結合の確率に比べて無視
できることがわかった。
Also, as shown in FIG. 3, the deep level of the defect generated in the strain relaxation layer due to the strain is located outside the band gap of the MQW active layer. It has been found that the probability of carrier recombination is negligible compared to the probability of direct carrier recombination in the MQW active layer.

【0050】次に図4乃至図6に基づき、本発明の第2
の実施の形態について説明する。図13から明らかなよ
うに、井戸層のIn組成は障壁層のIn組成より大きく
なっている。MQW活性層は通常3から30程度の井戸
層と障壁層の繰り返しから構成される。
Next, a second embodiment of the present invention will be described with reference to FIGS.
An embodiment will be described. As is clear from FIG. 13, the In composition of the well layer is larger than the In composition of the barrier layer. The MQW active layer is usually composed of a repetition of about 3 to 30 well layers and barrier layers.

【0051】ガイド層は通常単層のGaNからなり、ま
たクラッド層はAlx Ga1-x N(0<x≦0.3)か
ら構成される。MQW活性層の平均In組成が10%を
越えれば、MQW活性層とガイド層との界面に歪みが生
じ、高品質なMQW活性層が得られないことが知られて
いる。
The guide layer is usually composed of a single layer of GaN, and the cladding layer is composed of Al x Ga 1 -xN (0 <x ≦ 0.3). It is known that if the average In composition of the MQW active layer exceeds 10%, distortion occurs at the interface between the MQW active layer and the guide layer, and a high quality MQW active layer cannot be obtained.

【0052】図12に示すように、通常InGaN/G
aN・MQW活性層中では、井戸層と障壁層の組成及び
膜厚は一定にされるため、井戸層の示すバンドギャップ
と障壁層の示すバンドギャップは活性層中でそれぞれ一
定に保たれる。
As shown in FIG. 12, usually InGaN / G
In the aN · MQW active layer, the composition and thickness of the well layer and the barrier layer are kept constant, so that the band gap of the well layer and the band gap of the barrier layer are kept constant in the active layer.

【0053】図6は図4に示す構造のGaN系LDのM
QW活性層及びその近傍における井戸層のIn組成、障
壁層のIn組成、活性層の平均In組成、及びバンドギ
ャップを模式的に示したものである。第2の実施の形態
においては、Inx Ga1-xN/Iny Ga1-y Nから
なるMQW活性層(以下InGaN・MQW活性層と略
称)を用いた場合について説明する。
FIG. 6 shows the GaN LD having the structure shown in FIG.
3 schematically shows the In composition of a well layer, the In composition of a barrier layer, the average In composition of an active layer, and the band gap in the QW active layer and its vicinity. In the second embodiment, it will be described using the In x Ga 1-x N / In y Ga MQW active layer made of 1-y N (hereinafter referred to as InGaN · MQW active layer).

【0054】井戸層のIn組成20%、厚さ2nm、障
壁層のIn組成5%、厚さ4nmとすれば、このときの
Inの平均組成は約10%になる。このようにInの平
均組成が10%に近いか又はそれ以上であれば、InG
aN・MQW活性層とGaNガイド層との間に生じる歪
みが過大になり、高品質のGaN系LDを得ることが困
難であった。
If the In composition of the well layer is 20%, the thickness is 2 nm, the In composition of the barrier layer is 5%, and the thickness is 4 nm, the average composition of In at this time is about 10%. As described above, if the average composition of In is close to or more than 10%, InG
The strain generated between the aN · MQW active layer and the GaN guide layer became excessive, and it was difficult to obtain a high-quality GaN-based LD.

【0055】この問題を解決するために、本第2の実施
の形態において、図4に示す断面構造のGaN系LDを
試作した。図11の従来構造との違いはInx Ga1-x
N/Iny Ga1-y NからなるMQW活性層(以下In
GaN・MQW活性層と略称)6と、GaNガイド層
5、7との間に、InGaN・MQW活性層6の障壁層
に比べて、障壁層のIn組成が低いInz Ga1-z N/
Inw Ga1-w Nからなる組成変調層(以下InGaN
組成変調層と略称)14、15を設け、全体として前記
InGaN・MQW活性層とGaN導波層との界面近傍
における平均In組成を減少させたことに特徴がある。
In order to solve this problem, in the second embodiment, a GaN-based LD having a sectional structure shown in FIG. 4 was prototyped. The difference from the conventional structure of FIG. 11 is that In x Ga 1 -x
An MQW active layer (hereinafter referred to as In) of N / In y Ga 1-y N
Between the GaN MQW active layer 6 and the GaN guide layers 5 and 7, In z Ga 1 -z N / has a lower In composition of the barrier layer than the barrier layer of the InGaN MQW active layer 6.
A composition modulation layer (hereinafter referred to as InGaN) composed of In w Ga 1-w N
This is characterized in that the average In composition near the interface between the InGaN MQW active layer and the GaN waveguide layer is reduced as a whole.

【0056】InGaN・MQW活性層とその両側のG
aN導波層との間に形成されたInGaN組成変調層等
のバンド構造を図5に示す。このように本第2の実施の
形態においては、InGaN・MQW活性層とその両側
のInGaN組成変調層を含めて、基本的にはMQW活
性層の周期性が保たれ、単に障壁層の組成を変化するこ
とにより、エネルギーバンドの振幅が変調されたように
なるので、前記InGaN・MQW活性層とGaN導波
層との間に導入した層をInGaN組成変調層とよぶこ
とにした。
The InGaN MQW active layer and G on both sides thereof
FIG. 5 shows a band structure of the InGaN composition modulation layer and the like formed between the aN waveguide layer. As described above, in the second embodiment, the periodicity of the MQW active layer is basically maintained, including the InGaN MQW active layer and the InGaN composition modulation layers on both sides thereof, and the composition of the barrier layer is simply reduced. Since the amplitude of the energy band is modulated by the change, the layer introduced between the InGaN MQW active layer and the GaN waveguide layer is referred to as an InGaN composition modulation layer.

【0057】次に本第2の実施の形態のGaN系LDの
しきい値電圧及びしきい値電流密度について、シミュレ
ーションを行った結果について説明する。本シミュレー
ションにおいては、InGaN組成変調層中の障壁層の
In組成を0%、すなわちこの障壁層をGaNであると
した。
Next, the results of a simulation performed on the threshold voltage and the threshold current density of the GaN-based LD according to the second embodiment will be described. In this simulation, the In composition of the barrier layer in the InGaN composition modulation layer was 0%, that is, this barrier layer was GaN.

【0058】しかし、井戸層と障壁層との材料物性に急
激な変化を生じないことが高品質のLDの多層構造を得
る上から望ましいので、前記障壁層をGaNとせず、I
nを数%程度添加した障壁層とすることもできる。但し
InGaN・MQW活性層の中心付近における障壁層の
In組成に比べれば、組成変調層中の障壁層のIn組成
は大幅に減少させるようにした。
However, it is desirable from the viewpoint of obtaining a high-quality LD multilayer structure not to cause a sudden change in the material properties of the well layer and the barrier layer.
A barrier layer to which n is added by about several percent can be used. However, as compared with the In composition of the barrier layer near the center of the InGaN MQW active layer, the In composition of the barrier layer in the composition modulation layer was significantly reduced.

【0059】図5は、図4に示すGaN系LDの活性層
6と組成変調層14、15とガイド層5、7及びクラッ
ド層4、8のバンド構造を示す模式図である。図5から
InGaN・MQW活性層の両端部のInGaN組成変
調層において、井戸層と障壁層のバンドギャップの差が
MQW活性層中心付近に比べて広がる様子が示されてい
る。
FIG. 5 is a schematic diagram showing the band structure of the active layer 6, the composition modulation layers 14, 15, the guide layers 5, 7, and the cladding layers 4, 8 of the GaN-based LD shown in FIG. FIG. 5 shows that the difference in band gap between the well layer and the barrier layer in the InGaN composition modulation layers at both ends of the InGaN MQW active layer is larger than that near the center of the MQW active layer.

【0060】図6は図5の活性層6の近傍領域を取り出
して、バンド構造と平均In組成との関連を示したもの
である。上記のようにInGaN・MQW活性層の両端
部にInGaN組成変調層を導入したGaN系LDは、
第1の実施の形態でのべたように、InGaN・MQW
活性層とGaNガイド層の界面での歪みの影響を緩和す
る作用があるばかりでなく、LD装置として次のような
の特性上の利点がある。
FIG. 6 shows the relationship between the band structure and the average In composition by extracting a region near the active layer 6 of FIG. As described above, a GaN-based LD in which an InGaN composition modulation layer is introduced at both ends of an InGaN MQW active layer,
As described in the first embodiment, InGaN MQW
In addition to the effect of alleviating the influence of strain at the interface between the active layer and the GaN guide layer, the LD device has the following advantages in characteristics.

【0061】GaN系LDの動作電圧と、InGaN・
MQW活性層中の井戸数との関係を図7に示す。図の実
線は前記第2の実施の形態に係るInGaN組成変調層
を有する場合であり、破線は比較のために示した組成変
調層を有しない、従来のGaN系LDに関するシシミュ
レーション結果である。このシミュレーションでは、p
型ガイド層、p型クラッド層のキャリア密度は共に1×
1016cm-3として計算を行った。なおシミュレーショ
ン結果を示す各曲線に付したパラメータは、前記InG
aN・MQW活性層の(井戸層のIn組成/障壁層のI
n組成)を例えば(20%/5%)等として示してい
る。
The operating voltage of the GaN-based LD and InGaN
FIG. 7 shows the relationship with the number of wells in the MQW active layer. The solid line in the drawing is a case where the InGaN composition modulation layer according to the second embodiment is provided, and the broken line is a simulation result of a conventional GaN-based LD having no composition modulation layer shown for comparison. In this simulation, p
The carrier density of both the mold guide layer and the p-type cladding layer is 1 ×
The calculation was performed at 10 16 cm -3 . The parameters given to each curve showing the simulation results are the same as those of the InG
(In composition of well layer / I of barrier layer)
n composition) is shown as, for example, (20% / 5%).

【0062】前述したようにInGaN組成変調層の障
壁層はGaN、その井戸層のIn組成は前記InGaN
・MQW活性層中の井戸層のIn組成と等しくしてい
る。シミュレーションに用いた井戸層の厚さは2nm、
障壁層の厚さは4nmである。また組成変調層を含む場
合、図8横軸のMQW井戸数は、MQW活性層の井戸数
に組成変調層に含まれる井戸数を加えたものであり、組
成変調層を含まない場合のMQW井戸数は、MQW活性
層の井戸数そのものである。
As described above, the barrier layer of the InGaN composition modulation layer is GaN, and the In composition of the well layer is InGaN.
-The In composition of the well layer in the MQW active layer is made equal. The thickness of the well layer used in the simulation was 2 nm,
The thickness of the barrier layer is 4 nm. When a composition modulation layer is included, the number of MQW wells on the horizontal axis in FIG. 8 is obtained by adding the number of wells included in the composition modulation layer to the number of wells of the MQW active layer. The number is the number of wells of the MQW active layer itself.

【0063】図7に示すように、InGaN・MQW活
性層を有するGaN系LDの動作電圧は井戸数の増加と
共に増加する。さらに同一のパラメータの値20%/5
%について比較すれば、実線で示す組成変調層を含むG
aN系LDの動作電圧は、MQW井戸数の増加と共に、
組成変調層を含まない従来のGaN系LDの動作電圧に
比べて低くなることがわかる。
As shown in FIG. 7, the operating voltage of a GaN-based LD having an InGaN MQW active layer increases as the number of wells increases. Furthermore, the value of the same parameter 20% / 5
%, G including the composition modulation layer indicated by the solid line
The operating voltage of the aN LD increases as the number of MQW wells increases.
It can be seen that the operating voltage is lower than that of the conventional GaN-based LD that does not include the composition modulation layer.

【0064】動作電圧が低くなる理由は、InGaN・
MQW活性層とGaNガイド層との間にInGaN組成
変調層を含む本発明のLDでは、前記活性層と前記ガイ
ド層の界面に前記組成変調層の障壁層が存在することに
より、図6に示すように、実効的なヘテロ障壁が界面に
おいてなだらかになるためである。
The reason for the lower operating voltage is that InGaN
In the LD of the present invention including the InGaN composition modulation layer between the MQW active layer and the GaN guide layer, the LD shown in FIG. 6 is provided by the presence of the barrier layer of the composition modulation layer at the interface between the active layer and the guide layer. This is because the effective hetero barrier becomes gentle at the interface.

【0065】次にしきい値電流密度のMQW井戸数依存
性を図8に示す。p−GaNガイド層、p−AlGaN
クラッド層のキャリア密度は共に1×1016cm-3とし
て計算を行った。その他のシミュレーション条件や、各
曲線に付したパラメータの意味は図7と同様である。
FIG. 8 shows the dependence of the threshold current density on the number of MQW wells. p-GaN guide layer, p-AlGaN
The calculation was performed assuming that the carrier density of each of the cladding layers was 1 × 10 16 cm −3 . The other simulation conditions and the meaning of the parameters assigned to each curve are the same as those in FIG.

【0066】図8に示すように、MQW活性層を有する
GaN系LDのしきい値電流密度もMQW井戸数の増加
と共に増加する。しかし井戸層/障壁層のIn組成比が
20%/5%の場合、組成変調層を含むGaN系LDは
組成変調層を含まない従来のGaN系LDに比べてしき
い値電流密度が最大30%も減少することがわかる。
As shown in FIG. 8, the threshold current density of a GaN-based LD having an MQW active layer also increases as the number of MQW wells increases. However, when the In composition ratio of the well layer / barrier layer is 20% / 5%, the GaN-based LD including the composition modulation layer has a threshold current density of at most 30 as compared with the conventional GaN-based LD not including the composition modulation layer. It can be seen that the percentage also decreases.

【0067】このことから、InGaN・MQW活性層
の両端にIn組成の低い障壁層を設けて、組成変調層と
して作用する前記障壁層のバンドギャップの値をMQW
活性層内の障壁層より拡大すれば、キャリアのオーバー
フロー効果が抑制され、かつしきい値電流密度が大幅に
減少することがわかる。
Accordingly, a barrier layer having a low In composition is provided at both ends of the InGaN MQW active layer, and the value of the band gap of the barrier layer acting as a composition modulation layer is set to MQW.
It can be seen that if the width is larger than the barrier layer in the active layer, the overflow effect of carriers is suppressed and the threshold current density is greatly reduced.

【0068】図7と図8に破線で示した組成変調層を含
まない従来のMQW活性層のシミュレーション結果を比
較すれば、In組成比の変化に対して、同一井戸数にお
ける動作電圧と動作電流密度との大小関係が逆転してお
り、従来のGaN系LDにおいて、動作電圧の低減とし
きい値電流密度の低減とは互いに相反する課題であった
ことがわかる。
Comparing the simulation results of the conventional MQW active layer not including the composition modulation layer shown by the broken lines in FIGS. 7 and 8, it can be seen that the operating voltage and operating current at the same number of wells with respect to the change in the In composition ratio. The magnitude relationship with the density is reversed, and it can be seen that in the conventional GaN-based LD, the reduction of the operating voltage and the reduction of the threshold current density were mutually contradictory subjects.

【0069】これに対して組成変調層を含む本第2の実
施の形態におけるMQW活性層では、動作電圧低減とし
きい値電流密度の低減とが同時に達成されることに大き
な特徴がある。すなわち、従来相反する要求として解決
できなかった低電圧、低しきい値電流密度で動作すると
いう、実用的上もっとも重要な課題が本第2の実施の形
態に示した組成変調層を含むMQW活性層により始めて
達成されることが明らかになった。
On the other hand, the MQW active layer according to the second embodiment including the composition modulation layer is characterized in that the operating voltage and the threshold current density can be simultaneously reduced. That is, the most practically important problem of operating at a low voltage and a low threshold current density, which could not be solved as a contradictory request in the past, is the MQW activity including the composition modulation layer described in the second embodiment. It turned out that this was achieved only by layers.

【0070】次に図9に基づき本発明の第3の実施の形
態について説明する。従来しきい値電流密度を下げるた
めには、活性層とp型ガイド層との間にAlGaNキャ
ップ層をはさむ必要があったが、AlGaNキャップ層
はしきい値電流密度の低減には効果的であるが、動作電
圧低減の目的に対しては不利である。
Next, a third embodiment of the present invention will be described with reference to FIG. Conventionally, in order to lower the threshold current density, it was necessary to insert an AlGaN cap layer between the active layer and the p-type guide layer. However, the AlGaN cap layer is effective in reducing the threshold current density. However, it is disadvantageous for the purpose of reducing the operating voltage.

【0071】Alx Ga1-x Nキャップ層をInGaN
・MQW活性層とp−GaNガイド層との間に介在さ
せ、前記キャップ層のAl組成xを変化させた場合につ
いて、GaN系LDの動作電圧のMQW井戸数依存性を
シミュレーションにより求めた結果を図9に示す。この
シミュレーションに用いたGaN系LDの構造は、活性
層がInGaN・MQWであること、またx>0の場
合、前記InGaN・MQW活性層6とp−GaNガイ
ド層7との間にAlGa1Nキャップ層が存在すること
が図11に示すGaN系LDと異なる。
The Al x Ga 1 -xN cap layer is made of InGaN
The results obtained by simulating the dependence of the operating voltage of the GaN-based LD on the number of MQW wells in the case where the Al composition x of the cap layer is changed while being interposed between the MQW active layer and the p-GaN guide layer. As shown in FIG. The structure of the GaN-based LD used in this simulation is that the active layer is InGaN MQW, and when x> 0, an AlGa1N cap layer is formed between the InGaN MQW active layer 6 and the p-GaN guide layer 7. Is different from the GaN-based LD shown in FIG.

【0072】前記シミュレーションに用いたLDの主要
部は、n−GaNコンタクト層2(3×1018cm-3
厚さ0.1μm)、n−AlGaNクラッド層4(1×
1018cm-3、厚さ0.3μm)、アンドープのi−G
aNガイド層5(厚さ0.1μm)、In0.15Ga0.85
N(2.5nm)/In0.05Ga0.95N(5nm)・M
QW活性層6、p型又はアンドープi型Alx Ga1-x
Nキャップ層(p型の場合1×1016cm-3、厚さ20
nm)、p型又はアンドープi型GaNガイド層7(p
型の場合1×1016cm-3、厚さ0.1μm)、p−A
0.15Ga0.85Nクラッド層8(1×1016cm-3、厚
さ0.3μm)、p−GaNコンタクト層9(1×10
17cm-3、厚さ0.1μm)からなっている。
The main part of the LD used in the simulation is an n-GaN contact layer 2 (3 × 10 18 cm −3 ,
0.1 μm thick), n-AlGaN cladding layer 4 (1 ×
10 18 cm −3 , thickness 0.3 μm), undoped i-G
aN guide layer 5 (thickness 0.1 μm), In 0.15 Ga 0.85
N (2.5 nm) / In 0.05 Ga 0.95 N (5 nm) · M
QW active layer 6, p-type or undoped i-type Al x Ga 1-x
N cap layer (1 × 10 16 cm −3 for p-type, thickness 20)
nm), p-type or undoped i-type GaN guide layer 7 (p
In the case of a mold, 1 × 10 16 cm −3 , thickness 0.1 μm), pA
l 0.15 Ga 0.85 N cladding layer 8 (1 × 10 16 cm −3 , thickness 0.3 μm), p-GaN contact layer 9 (1 × 10 16
17 cm -3 and a thickness of 0.1 μm).

【0073】図9に示すように、キャップ層を加えれば
キャップ層がない場合に比べて動作電圧が増加する。キ
ャップ層のAl組成xを増加すれば、前記キャップ層の
障壁高さが増加するので動作電圧は増加することがわか
る。キャップ層とガイド層とを導電性とした場合とアン
ドープi型とした場合との差は小さいが、導電性とする
方がやや動作電圧を低くすることができる。
As shown in FIG. 9, when the cap layer is added, the operating voltage increases as compared with the case where no cap layer is provided. It can be seen that when the Al composition x of the cap layer is increased, the operating voltage is increased because the barrier height of the cap layer is increased. Although the difference between the case where the cap layer and the guide layer are conductive and the case where the cap layer and the guide layer are undoped i-type are small, the operation voltage can be slightly lowered when the cap layer and the guide layer are conductive.

【0074】第3の実施の形態におけるGaN系LD
は、前記第2の実施の形態で説明した組成変調層のしき
い値電流密度の低減効果と、前記キャップ層のしきい値
電流密度の低減効果との相乗効果により動作電圧の増加
を抑制しつつ最適化を図り、低消費電力のGaN系LD
を得ようとするものである。
GaN-based LD in Third Embodiment
Suppresses an increase in operating voltage by a synergistic effect of the effect of reducing the threshold current density of the composition modulation layer described in the second embodiment and the effect of reducing the threshold current density of the cap layer. GaN-based LD with low power consumption
It is trying to get.

【0075】すなわち第2の実施の形態の組成変調層を
含むGaN系LD作製する際、前記組成変調層とこれに
隣接する導波層との間にさらに前記キャップ層を用いれ
ば、しきい値電流密度低減のため従来求められていたA
l組成の大きいAlx Ga1-x N(0.1≦x≦0.
2)キャップ層を用いる必要がなくなり、Al組成の小
さいAlx Ga1-x N(x≦0.05)を用いることが
できので、図9のシミュレーション結果から動作電圧低
減に極めて効果的であることがわかる。このときキャッ
プ層の作用として、このキャップ層がない場合に比べて
しきい値電流密度がさらに低下することはいうまでもな
い。
That is, when manufacturing the GaN-based LD including the composition modulation layer of the second embodiment, if the cap layer is further used between the composition modulation layer and the waveguide layer adjacent thereto, the threshold A, which was conventionally required to reduce the current density
Al x Ga 1-x N having a large composition (0.1 ≦ x ≦ 0.
2) Since it is not necessary to use a cap layer and Al x Ga 1 -xN (x ≦ 0.05) having a small Al composition can be used, it is extremely effective in reducing the operating voltage from the simulation result of FIG. You can see that. At this time, as a function of the cap layer, it goes without saying that the threshold current density is further reduced as compared with the case without the cap layer.

【0076】次に図10に基づき、本発明の第4の実施
の形態について説明する。本第4の実施の形態における
GaN系LDは、前記第1の実施の形態で説明した歪緩
和層の作用と前記第2の実施の形態で説明した組成変調
層の作用とを組み合わせることにより、両者の利点を相
乗的に発揮しようとするものである。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The GaN-based LD according to the fourth embodiment combines the function of the strain relaxation layer described in the first embodiment with the function of the composition modulation layer described in the second embodiment. It seeks to demonstrate the benefits of both.

【0077】すなわち図10に示すように、InGaN
・MQW活性層の両側に隣接してInGaN組成変調層
を形成し、さらにその外側に隣接してInGaN/Ga
N歪緩和層を形成し、その両端に隣接してGaN導波層
を形成する。
That is, as shown in FIG.
Forming an InGaN composition modulation layer adjacent to both sides of the MQW active layer, and further forming an InGaN / Ga
An N strain relaxation layer is formed, and a GaN waveguide layer is formed adjacent to both ends thereof.

【0078】このようにすれば、前記歪緩和層及び前記
組成変調層の作用により、GaN導波層とInGaNか
らなるMQW活性層との間の格子定数差に基づく歪みを
前記MQW活性層中でほぼ零とすることができ、また歪
み緩和の際、前記歪緩和層に生じた欠陥準位やバンドギ
ャップの変化を、全てMQW活性層の井戸層のバンドギ
ャップの外側の範囲内とすることにより過剰吸収を除外
することができる。
In this way, the strain based on the lattice constant difference between the GaN waveguide layer and the MQW active layer made of InGaN is generated in the MQW active layer by the action of the strain relaxation layer and the composition modulation layer. It can be set to almost zero, and when the strain is relaxed, the change in the defect level and the band gap generated in the strain relaxing layer are all within the range outside the band gap of the well layer of the MQW active layer. Excess absorption can be ruled out.

【0079】またInGaNからなる組成変調層の作用
として、さらに歪低減に役立つことのほか、キャリアオ
ーバーフロー効果を抑制し、GaN系LDのしきい値電
流密度を大幅に低減することができる。さらに動作電圧
を高めることなくしきい値電流密度を低減するには、第
3の実施の形態にのべたキャップ層を組み合わせること
が有効であることはいうまでもない。
As a function of the composition modulation layer made of InGaN, in addition to helping to further reduce the strain, the carrier overflow effect can be suppressed, and the threshold current density of the GaN-based LD can be greatly reduced. Needless to say, in order to further reduce the threshold current density without increasing the operating voltage, it is effective to combine the third embodiment with the solid cap layer.

【0080】なお本発明は上記の実施の形態に限定され
ることはない。上記の実施の形態において、歪緩和層及
び組成変調層はいずれもMQW構造に形成され、歪緩和
層は主として井戸層のIn組成をMQW活性層の井戸層
よりも小さくし、また組成変調層は主として障壁層のI
n組成を前記MQW活性層の障壁層よりも小さくして、
それぞれバンドギャップの値を制御することによりその
機能を達成している。
The present invention is not limited to the above embodiment. In the above embodiment, both the strain relaxation layer and the composition modulation layer are formed in the MQW structure, and the strain relaxation layer mainly has the In composition of the well layer smaller than that of the MQW active layer. Mainly I of barrier layer
n composition is made smaller than the barrier layer of the MQW active layer,
The function is achieved by controlling the value of each band gap.

【0081】また組成変調層の機能として、障壁層と井
戸層の組成と厚さを調整し、これらの平均組成を隣接す
るガイド層やクラッド層に近付けることをのべた。しか
しMQW又は井戸数が1つのSQW( Single Quantum
Well)構造において、とくに井戸層の厚さが極めて小さ
い領域では、井戸層の実効的なバンドギップの値は井戸
層の組成ばかりでなく井戸層の厚さのみによつても変化
することができる。
As a function of the composition modulation layer, the composition and thickness of the barrier layer and the well layer were adjusted, and the average composition of these layers was brought closer to the adjacent guide layer and cladding layer. However, MQW or SQW (Single Quantum) with one well
In the well structure, particularly in a region where the thickness of the well layer is extremely small, the effective band gap value of the well layer can be changed not only by the composition of the well layer but also by the thickness of the well layer alone.

【0082】従って前記歪緩和層や組成変調層と同様の
機能をMQWを構成する層の組成のみならず、厚さを変
化することによっても達成することができる。このとき
厚さとIn組成とを共に変化することにより、機能の最
適化が図れることはいうまでもない。
Therefore, the same functions as those of the strain relaxation layer and the composition modulation layer can be achieved by changing not only the composition of the layer constituting the MQW but also the thickness. At this time, it is needless to say that the function can be optimized by changing both the thickness and the In composition.

【0083】また上記の実施の形態において、活性層、
歪緩和層及び組成変調層の構造として、井戸層/障壁層
がInx Ga1-x N/GaN(0<x≦1)またはIn
x Ga1-x N/Iny Ga1-y N(0<x≦1、x>
y、0<y≦1、0≦x+y≦1)からなるMQWであ
る場合について説明したが、Inx Aly Ga1-x-y
/Inz Alw Ga1-z-w N(0<x≦1、0≦y≦
1、0≦x+y≦1及びx>z、0<z≦1、0≦w≦
1、0≦z+w≦1)からなるMQWを用いる場合にも
Inの組成を制御することにより、同様の機能を得るこ
とができる。
In the above embodiment, the active layer,
As the structure of the strain relaxation layer and composition modulation layer, well layer / barrier layer In x Ga 1-x N / GaN (0 <x ≦ 1) or In
x Ga 1-x N / In y Ga 1-y N (0 <x ≦ 1, x>
y, 0 <has been described is a y ≦ 1,0 ≦ x + y ≦ 1) made of MQW, In x Al y Ga 1 -xy N
/ In z Al w Ga 1- zw N (0 <x ≦ 1,0 ≦ y ≦
1, 0 ≦ x + y ≦ 1 and x> z, 0 <z ≦ 1, 0 ≦ w ≦
The same function can be obtained by controlling the composition of In also in the case of using MQW composed of 1, 0 ≦ z + w ≦ 1).

【0084】また本発明はMQW活性層を有するGaN
系LDについて説明したが、必ずしもGaN系LDに限
定されるものではない。MQW活性層を有する化合物半
導体からなる発光装置であれば全て本発明を適用するこ
とができる。また例えば本発明の歪緩和層はMQW活性
層に隣接して形成することに限定されるものではなく、
従来の均一な組成の活性層を有するGaN系LEDに対
しても同様の機能を発揮することができる。その他本発
明の要旨を逸脱しない範囲で、種々に変形して実施する
ことができる。
The present invention also relates to a GaN having an MQW active layer.
Although the system LD has been described, it is not necessarily limited to the GaN LD. The present invention can be applied to any light emitting device made of a compound semiconductor having an MQW active layer. Further, for example, the strain relaxation layer of the present invention is not limited to being formed adjacent to the MQW active layer.
The same function can be exerted on a conventional GaN-based LED having an active layer having a uniform composition. In addition, various modifications can be made without departing from the spirit of the present invention.

【0085】[0085]

【発明の効果】上述したように本発明の半導体発光装置
によれば、活性層とガイド層または活性層とクラッド層
との間の格子不整合を緩和し、界面における歪みを減少
させ、低電圧、低しきい値電流密度で動作する高品質な
GaN系半導体発光装置を高い歩留まりで作製すること
が可能となる。特に活性層の平均In成が10%以上の
場合に本発明の半導体発光装置が優れた効果を発揮す
る。
As described above, according to the semiconductor light emitting device of the present invention, the lattice mismatch between the active layer and the guide layer or between the active layer and the clad layer is reduced, the distortion at the interface is reduced, and the low voltage is obtained. In addition, a high-quality GaN-based semiconductor light emitting device that operates at a low threshold current density can be manufactured with a high yield. In particular, when the average In composition of the active layer is 10% or more, the semiconductor light emitting device of the present invention exhibits excellent effects.

【0086】また活性層とガイド層との界面に近い領域
において、活性層中の井戸層及び障壁層のバンドギャッ
プの差を広大することにより、キャリア閉じ込めの効率
を高めてキャリアオーバーフロー効果を防止し、レーザ
発光のしきい値電流密度を低減することができる。
In a region close to the interface between the active layer and the guide layer, the difference in band gap between the well layer and the barrier layer in the active layer is widened to increase the efficiency of carrier confinement and prevent the carrier overflow effect. As a result, the threshold current density of laser emission can be reduced.

【0087】さらに活性層の平均組成とガイド層の組成
との差が界面に近い領域において減少するため、界面に
生じる実効的なヘテロ障壁が低くなり、キャリアオーバ
ーフローの抑制効果を維持しつつ動作電圧を低減するこ
とができる。さらにキャップ層の付加による動作電圧の
増加を最小限に抑制する効果がある。
Further, since the difference between the average composition of the active layer and the composition of the guide layer is reduced in a region near the interface, the effective hetero barrier generated at the interface is reduced, and the operating voltage is maintained while suppressing the effect of carrier overflow. Can be reduced. Further, there is an effect of minimizing an increase in operating voltage due to the addition of the cap layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る半導体発光装
置の構造を示す断面図。
FIG. 1 is a sectional view showing a structure of a semiconductor light emitting device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る半導体発光装
置のMQW活性層、ガイド層、クラッド層の歪み効果を
無視したバンド構造図。
FIG. 2 is a band structure diagram of the semiconductor light emitting device according to the first embodiment of the present invention, in which distortion effects of the MQW active layer, the guide layer, and the cladding layer are ignored.

【図3】本発明の第1の実施の形態に係る半導体発光装
置のMQW活性層、ガイド層、クラッド層の歪み効果を
考慮したバンド構造図。
FIG. 3 is a band structure diagram of the semiconductor light emitting device according to the first embodiment of the present invention, taking into account the distortion effect of the MQW active layer, the guide layer, and the cladding layer.

【図4】本発明の第2の実施の形態に係る半導体発光装
置の構造を示す断面図。
FIG. 4 is a sectional view showing a structure of a semiconductor light emitting device according to a second embodiment of the present invention.

【図5】本発明の第2の実施の形態に係る半導体発光装
置のMQW活性層、ガイド層、クラッド層のバンド構造
図。
FIG. 5 is a band structure diagram of an MQW active layer, a guide layer, and a clad layer of the semiconductor light emitting device according to the second embodiment of the present invention.

【図6】本発明の第2の実施の形態に係る半導体発光装
置のMQW活性層の平均In組成とバンド構造との関係
を示す図。
FIG. 6 is a diagram showing a relationship between an average In composition of an MQW active layer and a band structure of a semiconductor light emitting device according to a second embodiment of the present invention.

【図7】本発明の第2の実施の形態に係る半導体発光装
置の動作電圧のMQW井戸数依存性を、従来の半導体発
光装置と比較した図。
FIG. 7 is a diagram comparing the dependence of the operating voltage of a semiconductor light emitting device according to a second embodiment of the present invention on the number of MQW wells with a conventional semiconductor light emitting device.

【図8】本発明の第2の実施の形態に係る半導体発光装
置のしきい値電流密度のMQW井戸数依存性を、従来の
半導体発光装置と比較した図。
FIG. 8 is a diagram comparing the dependency of the threshold current density of a semiconductor light emitting device according to a second embodiment of the present invention on the number of MQW wells with a conventional semiconductor light emitting device.

【図9】本発明の第3の実施の形態に係るAlGaNキ
ャップ層のAl組成に対する動作電圧のMQW井戸数依
存性の変化を示す図。
FIG. 9 is a diagram showing a change in the number of MQW wells of an operating voltage with respect to an Al composition of an AlGaN cap layer according to a third embodiment of the present invention.

【図10】本発明の第4の実施の形態に係る半導体発光
装置のMQW活性層近傍領域のバンド構造図。
FIG. 10 is a band structure diagram of a region near an MQW active layer of a semiconductor light emitting device according to a fourth embodiment of the present invention.

【図11】従来のMQW活性層を有する半導体発光装置
の断面図。
FIG. 11 is a cross-sectional view of a conventional semiconductor light emitting device having an MQW active layer.

【図12】従来の半導体発光装置のMQW活性層近傍領
域のバンド構造図。
FIG. 12 is a band structure diagram of a region near an MQW active layer of a conventional semiconductor light emitting device.

【図13】半導体発光装置を構成するInN、GaN、
AlN混晶の格子定数とバンドギャップの関係を示す
図。
FIG. 13 shows InN, GaN,
The figure which shows the relationship between the lattice constant and band gap of AlN mixed crystal.

【図14】従来の半導体発光装置におけるMQW活性層
のGaNガイド層と隣接する領域の歪みの影響を示すバ
ンド構造図。
FIG. 14 is a band structure diagram showing the influence of strain in a region adjacent to a GaN guide layer of an MQW active layer in a conventional semiconductor light emitting device.

【図15】従来の半導体発光装置のMQW活性層の特徴
を示すバンド構造図。
FIG. 15 is a band structure diagram showing characteristics of an MQW active layer of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1…サファイア基板 2…n−GaNコンタクト層 3…Ti/Au下部電極 4…n−AlGaNクラッド層 5…n−GaNガイド層 6…InGaN/GaN、MQW活性層 7…p−GaNガイド層 8…p−AlGaNクラッド層 9…p−GaNコンタクト層 10…SiO2 膜 11…Ni/Au又はPt/Au上部電極 12、13…InGaN/GaN歪み緩和層 14、15…InGaN組成変調層DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... n-GaN contact layer 3 ... Ti / Au lower electrode 4 ... n-AlGaN cladding layer 5 ... n-GaN guide layer 6 ... InGaN / GaN, MQW active layer 7 ... p-GaN guide layer 8 ... p-AlGaN cladding layer 9 ... p-GaN contact layer 10 ... SiO 2 film 11 ... Ni / Au or Pt / Au upper electrode 12, 13 ... InGaN / GaN strain reducing layer 14, 15 ... InGaN composition modulation layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 障壁層と井戸層とが交互に積層された超
格子からなる活性層を有する半導体発光装置において、 前記超格子からなる活性層は、前記超格子の中央部の障
壁層及び井戸層とは少なくとも組成及び厚さのいずれか
が異なる、少なくとも1つの障壁層及び井戸層のいずれ
かを終端部に含むものであることを特徴とする半導体発
光装置。
1. A semiconductor light emitting device having an active layer composed of a superlattice in which barrier layers and well layers are alternately stacked, wherein the active layer composed of the superlattice is a barrier layer and a well in a central portion of the superlattice. A semiconductor light emitting device characterized in that at least one of a barrier layer and a well layer, which differs in at least one of composition and thickness from a layer, is included in a termination portion.
【請求項2】 前記超格子からなる活性層は、Inx
y Ga1-x-y N(0<x≦1、0≦y≦1、0≦x+
y≦1)からなる障壁層と、Inz AlwGa1-z-w
(x<z、0<z≦1、0≦w≦1、0≦z+w≦1)
からなる井戸層とが交互に積層された超格子からなるも
のであり、前記組成は少なくともx及びzのいずれか1
つであることを特徴とする請求項1記載の半導体発光装
置。
2. An active layer comprising the superlattice, wherein the active layer is made of In x A
l y Ga 1-xy N ( 0 <x ≦ 1,0 ≦ y ≦ 1,0 ≦ x +
y ≦ 1) and In z Al w Ga 1 -zwN
(X <z, 0 <z ≦ 1, 0 ≦ w ≦ 1, 0 ≦ z + w ≦ 1)
And a superlattice alternately laminated with well layers composed of at least one of x and z.
The semiconductor light emitting device according to claim 1, wherein:
【請求項3】 ガイド層及びクラッド層及び障壁層と井
戸層とが交互に積層された超格子からなる活性層を有す
る半導体発光装置において、 前記超格子からなる活性層は、前記ガイド層及び前記ク
ラッド層のいずれかと隣接する領域に、前記活性層の中
央部と比べて前記井戸層と前記障壁層との平均組成が前
記ガイド層及び前記クラッド層のいずれかの組成に近い
積層領域を含むことを特徴とする半導体発光装置。
3. A semiconductor light emitting device having an active layer composed of a superlattice in which a guide layer, a clad layer, and a barrier layer and a well layer are alternately stacked, wherein the active layer composed of the superlattice is the guide layer and the active layer. A region adjacent to any one of the cladding layers includes a stacked region in which the average composition of the well layer and the barrier layer is closer to any one of the composition of the guide layer and the cladding layer as compared with the central portion of the active layer. A semiconductor light emitting device characterized by the above-mentioned.
【請求項4】 ガイド層及びクラッド層及び障壁層と井
戸層とが交互に積層された超格子からなる活性層を有す
る半導体発光装置において、 前記超格子からなる活性層は、前記ガイド層及び前記ク
ラッド層のいずれかと隣接する領域に、前記活性層の中
央部と比べて前記井戸層と前記障壁層のバンドギャップ
の差を広げた積層領域を含むことを特徴とする半導体発
光装置。
4. A semiconductor light emitting device having an active layer composed of a superlattice in which a guide layer, a clad layer, and a barrier layer and a well layer are alternately stacked, wherein the active layer composed of the superlattice is the guide layer and the active layer. A semiconductor light emitting device comprising: a region adjacent to any one of the cladding layers, a laminated region in which a difference in band gap between the well layer and the barrier layer is widened as compared with a central portion of the active layer.
【請求項5】 前記超格子構造からなる活性層は、前記
ガイド層及び前記クラッド層のいずれかとの間に、キャ
ップ層を具備することを特徴とする請求項1乃至請求項
4のいずれか1つに記載の半導体発光装置。
5. The method according to claim 1, wherein the active layer having the superlattice structure includes a cap layer between any one of the guide layer and the clad layer. 4. The semiconductor light emitting device according to any one of the above.
JP03934597A 1997-02-24 1997-02-24 Semiconductor light emitting device Expired - Lifetime JP3433038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03934597A JP3433038B2 (en) 1997-02-24 1997-02-24 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03934597A JP3433038B2 (en) 1997-02-24 1997-02-24 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10242512A true JPH10242512A (en) 1998-09-11
JP3433038B2 JP3433038B2 (en) 2003-08-04

Family

ID=12550503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03934597A Expired - Lifetime JP3433038B2 (en) 1997-02-24 1997-02-24 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3433038B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039282A3 (en) * 1999-11-19 2001-12-06 Osram Opto Semiconductors Gmbh Optical semiconductor device comprising a multiple quantum well structure
US6459096B1 (en) * 1998-01-14 2002-10-01 Manijeh Razeghi Multi quantum well grinsch detector
WO2002099942A1 (en) 2001-06-05 2002-12-12 Sony Corporation Nitride semiconductor laser
WO2003030273A1 (en) * 2001-07-25 2003-04-10 Shin-Etsu Handotai Co., Ltd. Light emitting element and method for manufacture thereof
JP2005217059A (en) * 2004-01-28 2005-08-11 Sumitomo Electric Ind Ltd Semiconductor device
JP2006210630A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Group iii nitride semiconductor laser device
JP2006332365A (en) * 2005-05-26 2006-12-07 Toyoda Gosei Co Ltd Group iii nitride based compound semiconductor light emitting element and light emitting device using the same
JP2007059913A (en) * 2005-08-25 2007-03-08 Samsung Electro Mech Co Ltd Nitride semiconductor led
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
WO2007116713A1 (en) * 2006-03-31 2007-10-18 Dowa Electronics Materials Co., Ltd. Planar light emitting element
JP2008034848A (en) * 2006-07-26 2008-02-14 Lg Electronics Inc Nitride-based light-emitting device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
KR100863927B1 (en) * 2000-12-28 2008-10-17 소니 가부시끼 가이샤 Semiconductor luminous element and method for manufacture thereof, and semiconductor device and method for manufacture thereof
WO2009036730A2 (en) * 2007-09-18 2009-03-26 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor chip having quantum well structure
KR100906972B1 (en) 2007-09-20 2009-07-10 서울옵토디바이스주식회사 Nitride based light emitting device
KR100906921B1 (en) * 2002-12-09 2009-07-10 엘지이노텍 주식회사 Manufacturing method of light emitting diode
JP2009277932A (en) * 2008-05-15 2009-11-26 Sharp Corp Nitride semiconductor light emitting diode structure
US7646009B2 (en) 2000-07-07 2010-01-12 Nichia Corporation Nitride semiconductor device
JP2010251811A (en) * 2010-08-11 2010-11-04 Sumitomo Electric Ind Ltd Semiconductor device
US7851813B2 (en) * 2007-08-29 2010-12-14 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
WO2010077810A3 (en) * 2008-12-16 2011-03-31 Corning Incorporated Mqw laser structure comprising plural mqw regions
JP2012038958A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device
JP2012169662A (en) * 2010-08-26 2012-09-06 Toshiba Corp Semiconductor light-emitting device
JP2013009013A (en) * 2005-07-29 2013-01-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, optoelectronic module, and method for producing optoelectronic semiconductor chip
KR101252556B1 (en) * 2006-07-26 2013-04-08 엘지이노텍 주식회사 Nitride based light emitting diode
JP2013219386A (en) * 2013-06-24 2013-10-24 Toshiba Corp Semiconductor light-emitting element
JP2014033185A (en) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd Light emitting element and light emitting element package
US8742439B2 (en) 2006-05-23 2014-06-03 Lg Electronics Inc. Nitride based light emitting device
JP2014116542A (en) * 2012-12-12 2014-06-26 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
JP2014146684A (en) * 2013-01-29 2014-08-14 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
JP2014239149A (en) * 2013-06-07 2014-12-18 株式会社東芝 Nitride semiconductor wafer, nitride semiconductor element, and method of manufacturing nitride semiconductor wafer
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element
US9324903B2 (en) 2013-11-13 2016-04-26 Stanley Electric Co., Ltd. Multiple quantum well semiconductor light emitting element
US9502607B2 (en) 2012-05-30 2016-11-22 Osram Opto Semiconductors Gmbh Method for producing an active zone for an optoelectronic semiconductor chip and optoelectronic semiconductor chip
KR20160136717A (en) * 2015-05-20 2016-11-30 엘지이노텍 주식회사 Light emitting device
US10305257B2 (en) 2015-05-26 2019-05-28 Nichia Corporation Semiconductor laser device
CN111883622A (en) * 2020-06-11 2020-11-03 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178173A (en) 2015-03-19 2016-10-06 豊田合成株式会社 Light-emitting element and method for manufacturing the same

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element
US6459096B1 (en) * 1998-01-14 2002-10-01 Manijeh Razeghi Multi quantum well grinsch detector
US6605485B2 (en) 1998-01-14 2003-08-12 Mp Technologies, Llc III-nitride optoelectronic device
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
EP2273572A3 (en) * 1998-03-12 2012-08-29 Nichia Corporation A nitride semiconductor device
EP2273571A3 (en) * 1998-03-12 2012-06-27 Nichia Corporation A nitride semiconductor device
US7947994B2 (en) 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
US7402838B2 (en) 1998-03-12 2008-07-22 Nichia Corporation Nitride semiconductor device
KR100889144B1 (en) * 1999-11-09 2009-03-16 오스람 옵토 세미컨덕터스 게엠베하 Optical semiconductor device comprising a multiple quantum well structure
JP4681186B2 (en) * 1999-11-19 2011-05-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical semiconductor device having multiple quantum well structure
JP2011035433A (en) * 1999-11-19 2011-02-17 Osram Opto Semiconductors Gmbh Method of manufacturing optical semiconductor device, and optical semiconductor device
US7556974B2 (en) 1999-11-19 2009-07-07 Osram Opto Semiconductors Gmbh Optical semiconductor device with multiple quantum well structure
US6849881B1 (en) 1999-11-19 2005-02-01 Osram Gmbh Optical semiconductor device comprising a multiple quantum well structure
WO2001039282A3 (en) * 1999-11-19 2001-12-06 Osram Opto Semiconductors Gmbh Optical semiconductor device comprising a multiple quantum well structure
US7106090B2 (en) 1999-11-19 2006-09-12 Osram Opto Semiconductors Gmbh Optical semiconductor device with multiple quantum well structure
KR100722031B1 (en) * 1999-11-19 2007-05-25 오스람 옵토 세미컨덕터스 게엠베하 Optical semiconductor device comprising a multiple quantum well structure
KR100799793B1 (en) * 1999-11-19 2008-01-31 오스람 옵토 세미컨덕터스 게엠베하 Optical semiconductor device comprising a multiple quantum well structure
US9130121B2 (en) 2000-07-07 2015-09-08 Nichia Corporation Nitride semiconductor device
US7750337B2 (en) 2000-07-07 2010-07-06 Nichia Corporation Nitride semiconductor device
US9444011B2 (en) 2000-07-07 2016-09-13 Nichia Corporation Nitride semiconductor device
US8698126B2 (en) 2000-07-07 2014-04-15 Nichia Corporation Nitride semiconductor device
US7646009B2 (en) 2000-07-07 2010-01-12 Nichia Corporation Nitride semiconductor device
US8309948B2 (en) 2000-07-07 2012-11-13 Nichia Corporation Nitride semiconductor device
KR100863927B1 (en) * 2000-12-28 2008-10-17 소니 가부시끼 가이샤 Semiconductor luminous element and method for manufacture thereof, and semiconductor device and method for manufacture thereof
KR100866269B1 (en) * 2000-12-28 2008-11-03 소니 가부시끼 가이샤 Semiconductor luminous element and method for manufacture thereof, and semiconductor device and method for manufacture thereof
EP1394912A1 (en) * 2001-06-05 2004-03-03 Sony Corporation Nitride semiconductor laser
EP1394912B1 (en) * 2001-06-05 2009-12-02 Sony Corporation Nitride semiconductor laser
WO2002099942A1 (en) 2001-06-05 2002-12-12 Sony Corporation Nitride semiconductor laser
US6982438B2 (en) 2001-07-25 2006-01-03 Shin-Etsu Handotai Co., Ltd. Light emitting device and method for fabricating the same
CN100356590C (en) * 2001-07-25 2007-12-19 信越半导体株式会社 Light emitting element and method for manufacturing thereof
WO2003030273A1 (en) * 2001-07-25 2003-04-10 Shin-Etsu Handotai Co., Ltd. Light emitting element and method for manufacture thereof
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US7667226B2 (en) 2001-11-05 2010-02-23 Nichia Corporation Semiconductor device
KR100906921B1 (en) * 2002-12-09 2009-07-10 엘지이노텍 주식회사 Manufacturing method of light emitting diode
JP2005217059A (en) * 2004-01-28 2005-08-11 Sumitomo Electric Ind Ltd Semiconductor device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
JP2006210630A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Group iii nitride semiconductor laser device
JP2006332365A (en) * 2005-05-26 2006-12-07 Toyoda Gosei Co Ltd Group iii nitride based compound semiconductor light emitting element and light emitting device using the same
JP2013009013A (en) * 2005-07-29 2013-01-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, optoelectronic module, and method for producing optoelectronic semiconductor chip
US8994000B2 (en) 2005-07-29 2015-03-31 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2007059913A (en) * 2005-08-25 2007-03-08 Samsung Electro Mech Co Ltd Nitride semiconductor led
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device
US8741686B2 (en) 2005-08-29 2014-06-03 Kabushiki Kaisha Toshiba Semiconductor device
US8466477B2 (en) 2005-08-29 2013-06-18 Kabushiki Kaisha Toshiba Semiconductor device
US8835950B2 (en) 2005-08-29 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor device
US9035336B2 (en) 2005-08-29 2015-05-19 Kabushiki Kaisha Toshiba Semiconductor device
US7989799B2 (en) 2006-03-31 2011-08-02 Dowa Electronics Materials Co., Ltd. Surface light emitting element
WO2007116713A1 (en) * 2006-03-31 2007-10-18 Dowa Electronics Materials Co., Ltd. Planar light emitting element
US8742439B2 (en) 2006-05-23 2014-06-03 Lg Electronics Inc. Nitride based light emitting device
KR101252556B1 (en) * 2006-07-26 2013-04-08 엘지이노텍 주식회사 Nitride based light emitting diode
US8350250B2 (en) 2006-07-26 2013-01-08 Lg Electronics Inc. Nitride-based light emitting device
JP2008034848A (en) * 2006-07-26 2008-02-14 Lg Electronics Inc Nitride-based light-emitting device
US7851813B2 (en) * 2007-08-29 2010-12-14 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
US8148740B2 (en) 2007-08-29 2012-04-03 Lg Innotek Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
WO2009036730A2 (en) * 2007-09-18 2009-03-26 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor chip having quantum well structure
WO2009036730A3 (en) * 2007-09-18 2009-08-06 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor chip having quantum well structure
KR100906972B1 (en) 2007-09-20 2009-07-10 서울옵토디바이스주식회사 Nitride based light emitting device
JP2009277932A (en) * 2008-05-15 2009-11-26 Sharp Corp Nitride semiconductor light emitting diode structure
WO2010077810A3 (en) * 2008-12-16 2011-03-31 Corning Incorporated Mqw laser structure comprising plural mqw regions
JP2012512546A (en) * 2008-12-16 2012-05-31 コーニング インコーポレイテッド MQW laser structure with multiple MQW regions
US8121165B2 (en) 2008-12-16 2012-02-21 Corning Incorporated MQW laser structure comprising plural MQW regions
US7983317B2 (en) 2008-12-16 2011-07-19 Corning Incorporated MQW laser structure comprising plural MQW regions
JP2012038958A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device
EP2418697A3 (en) * 2010-08-09 2012-12-05 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2010251811A (en) * 2010-08-11 2010-11-04 Sumitomo Electric Ind Ltd Semiconductor device
JP2012169662A (en) * 2010-08-26 2012-09-06 Toshiba Corp Semiconductor light-emitting device
US9502607B2 (en) 2012-05-30 2016-11-22 Osram Opto Semiconductors Gmbh Method for producing an active zone for an optoelectronic semiconductor chip and optoelectronic semiconductor chip
JP2014033185A (en) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd Light emitting element and light emitting element package
JP2014116542A (en) * 2012-12-12 2014-06-26 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
JP2014146684A (en) * 2013-01-29 2014-08-14 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
JP2014239149A (en) * 2013-06-07 2014-12-18 株式会社東芝 Nitride semiconductor wafer, nitride semiconductor element, and method of manufacturing nitride semiconductor wafer
JP2013219386A (en) * 2013-06-24 2013-10-24 Toshiba Corp Semiconductor light-emitting element
US9324903B2 (en) 2013-11-13 2016-04-26 Stanley Electric Co., Ltd. Multiple quantum well semiconductor light emitting element
KR20160136717A (en) * 2015-05-20 2016-11-30 엘지이노텍 주식회사 Light emitting device
US10305257B2 (en) 2015-05-26 2019-05-28 Nichia Corporation Semiconductor laser device
US10686298B2 (en) 2015-05-26 2020-06-16 Nichia Corporation Method of manufacturing semiconductor laser device
CN111883622A (en) * 2020-06-11 2020-11-03 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Also Published As

Publication number Publication date
JP3433038B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP3433038B2 (en) Semiconductor light emitting device
US9130121B2 (en) Nitride semiconductor device
JP4328366B2 (en) Semiconductor element
JP4075324B2 (en) Nitride semiconductor device
JP4441563B2 (en) Nitride semiconductor laser device
JP3786114B2 (en) Nitride semiconductor device
JPH11243251A (en) Semiconductor laser
JPH11298090A (en) Nitride semiconductor element
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JP4401610B2 (en) Nitride semiconductor laser device
JP4284946B2 (en) Nitride semiconductor light emitting device
JP5507792B2 (en) Group III nitride semiconductor optical device
JP2005302784A (en) Semiconductor light emitting element and its manufacturing method
JP2002124737A (en) Nitride semiconductor laser element
JP2000223790A (en) Nitride-based semiconductor laser device
US20080175293A1 (en) Semiconductor laser device
JP3813472B2 (en) Nitride semiconductor light emitting device
JP5002976B2 (en) Nitride semiconductor device
JP4342134B2 (en) Nitride semiconductor laser device
KR20050082251A (en) Semiconductor laser device
JP2003163418A (en) Nitride gallium system compound semiconductor laser
JP3644446B2 (en) Nitride semiconductor device
JP2000349396A (en) Iii-v nitride semiconductor laser
JP2002324946A (en) Iii group nitride semiconductor light emitting element
JP2006332713A (en) Nitride-based semiconductor laser element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term