JP2006210630A - Group iii nitride semiconductor laser device - Google Patents

Group iii nitride semiconductor laser device Download PDF

Info

Publication number
JP2006210630A
JP2006210630A JP2005020467A JP2005020467A JP2006210630A JP 2006210630 A JP2006210630 A JP 2006210630A JP 2005020467 A JP2005020467 A JP 2005020467A JP 2005020467 A JP2005020467 A JP 2005020467A JP 2006210630 A JP2006210630 A JP 2006210630A
Authority
JP
Japan
Prior art keywords
layer
group iii
nitride semiconductor
iii nitride
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005020467A
Other languages
Japanese (ja)
Other versions
JP4671702B2 (en
Inventor
Katsumi Sugiura
勝己 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005020467A priority Critical patent/JP4671702B2/en
Publication of JP2006210630A publication Critical patent/JP2006210630A/en
Application granted granted Critical
Publication of JP4671702B2 publication Critical patent/JP4671702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain impurities from diffusing into an active layer so as to provide a group III nitride semiconductor laser device which is kept stable in optical output characteristics and excellent in reliability as a result. <P>SOLUTION: The group III nitride semiconductor laser device has a configuration in which a p-type impurity diffusion restricting layer 7 that has an electrical field which extends from a p-type clad layer 10 toward the active layer 5 in an equilibrium state is provided between the active layer 5 and the p-type clad layer 10, so that the electrical field functions as a means for pulling back the p-type impurities which are turned negative ions toward the p-type clad layer 10. The p-type impurities can be restrained from diffusing, the diffusion of the p-type impurities can be controlled, and as a result the group III nitride semiconductor laser device can be provided which is stable in optical output characteristics and excellent in reliability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はIII族窒化物半導体を用いた半導体レーザ装置に関する。   The present invention relates to a semiconductor laser device using a group III nitride semiconductor.

近年、次世代の高密度光ディスク用光源として青紫色光を出力する半導体レーザ装置に対する要望が高まり、禁制帯幅が1.9eVから6.2eVにわたる直接遷移半導体であるIII族窒化物半導体からなる発光装置の研究開発が盛んに行われている。   In recent years, there has been a growing demand for semiconductor laser devices that output blue-violet light as light sources for next-generation high-density optical disks, and light emission made of group III nitride semiconductors, which are direct transition semiconductors with a forbidden bandwidth ranging from 1.9 eV to 6.2 eV. Research and development of equipment is actively conducted.

III族窒化物半導体からなるレーザ装置においては、クラッド層にAlを含んだAlGaN等が用いられることが多いが、このような結晶ではAl組成比の増大に伴いp型キャリアの生成が困難になる傾向がある。そのためp型クラッド層には、1018cm−3を超える高濃度のp型不純物が添加される。また、活性層からp型クラッド層への電子の漏れを抑制するためにp型クラッド層の手前にp型クラッド層よりもさらにAl組成比の大きいAlGaNからなる電子ブロック層が設けられることがあるが、この層にも高濃度のp型不純物が添加される。 In a laser device made of a group III nitride semiconductor, AlGaN containing Al in the cladding layer is often used, but with such a crystal, it becomes difficult to generate p-type carriers as the Al composition ratio increases. Tend. Therefore, a high-concentration p-type impurity exceeding 10 18 cm −3 is added to the p-type cladding layer. In addition, in order to suppress leakage of electrons from the active layer to the p-type cladding layer, an electron block layer made of AlGaN having an Al composition ratio larger than that of the p-type cladding layer may be provided before the p-type cladding layer. However, a high-concentration p-type impurity is also added to this layer.

一方、高濃度のp型不純物は光の吸収損失をもたらす要因になり、また活性層に拡散すると欠陥準位を形成しレーザ特性を悪化させる原因に成り得る。
従来、p側クラッド層をn型層およびp型層の積層で構成し、活性層とp型層の間に距離を置く構造が開示されている。
On the other hand, high-concentration p-type impurities cause light absorption loss, and when diffused in the active layer, they can form defect levels and deteriorate laser characteristics.
Conventionally, there has been disclosed a structure in which a p-side cladding layer is constituted by a stack of an n-type layer and a p-type layer and a distance is provided between the active layer and the p-type layer.

以下、従来のIII族窒化物半導体レーザ装置について図12を用いて説明する。
図12は従来のIII族窒化物半導体レーザ装置の構造を示す断面図である。
図12に示すように、従来のIII族窒化物半導体レーザ装置は、サファイア基板101上にエピタキシャル成長されたn型コンタクト層102、n型クラッド層103、アンドープn側光ガイド層104、多重量子井戸(MQW)活性層105、アンドープp側光ガイド層106、アンドープp側第1クラッド層108、p型電子ブロック層109、p型第2クラッド層110、p型コンタクト層111からなる積層構造に絶縁膜112、p側電極113およびn側電極114が設けられた構成である(例えば、特許文献1参照)。
Hereinafter, a conventional group III nitride semiconductor laser device will be described with reference to FIG.
FIG. 12 is a cross-sectional view showing the structure of a conventional group III nitride semiconductor laser device.
As shown in FIG. 12, the conventional III-nitride semiconductor laser device includes an n-type contact layer 102, an n-type cladding layer 103, an undoped n-side light guide layer 104, and a multiple quantum well (epitaxially grown) grown on a sapphire substrate 101. MQW) Insulating film with a laminated structure comprising an active layer 105, an undoped p-side light guide layer 106, an undoped p-side first cladding layer 108, a p-type electron blocking layer 109, a p-type second cladding layer 110, and a p-type contact layer 111 112, a p-side electrode 113 and an n-side electrode 114 are provided (see, for example, Patent Document 1).

しかしながら、上記構造は、動作電圧の低減を目的としていることもあり、イオン化不純物の拡散に影響が大きい電界の向きや大きさは考慮されていない。
特開2003−289176
However, the above structure may be intended to reduce the operating voltage, and the direction and magnitude of the electric field that has a great influence on the diffusion of ionized impurities is not considered.
JP 2003-289176 A

本発明は、p型不純物の活性層への拡散を抑制することにより、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することを目的とする。   An object of the present invention is to provide a group III nitride semiconductor laser device having stable light output characteristics by suppressing diffusion of p-type impurities into an active layer and, as a result, having high reliability. To do.

前記の目的を達成するため、本発明の請求項1記載のIII族窒化物半導体レーザ装置は、活性層とp型クラッド層との間に、少なくとも平衡状態においてp型クラッド層から活性層方向に向かう電界を有するp型不純物拡散抑制層を含むことを特徴とする。   In order to achieve the above object, a group III nitride semiconductor laser device according to claim 1 of the present invention is provided in a direction from the p-type cladding layer to the active layer at least in an equilibrium state between the active layer and the p-type cladding layer. It includes a p-type impurity diffusion suppression layer having an electric field toward it.

請求項2記載のIII族窒化物半導体レーザ装置は、n側電極を設けたn型III族窒化物半導体領域と、p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、前記活性層と前記p型III族窒化物半導体領域の間にAlx1Ga1−x1−y1Iny1N(x1+y1≦1)で構成されるp型不純物拡散抑制層とを有することを特徴とする。 The group III nitride semiconductor laser device according to claim 2, wherein an n-type group III nitride semiconductor region provided with an n-side electrode, a p-type group III nitride semiconductor region provided with a p-side electrode and provided with a cladding layer, An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region, the active layer, and the p-type group III nitride semiconductor region And a p-type impurity diffusion suppression layer composed of Al x1 Ga 1-x1-y1 In y1 N (x1 + y1 ≦ 1).

請求項3記載のIII族窒化物半導体レーザ装置は、n側電極を設けたn型III族窒化物半導体領域と、p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、前記活性層と前記p型III族窒化物半導体領域の間にAlx1Ga1−x1−y1Iny1N(x1+y1≦1)で構成される第1のp型不純物拡散抑制層と、前記活性層と前記第1のp型不純物拡散抑制層の間にAlx2Ga1−x2−y2Iny2N(x2+y2≦1)で構成される第2のp型不純物拡散抑制層とを有することを特徴とする。 The group III nitride semiconductor laser device according to claim 3, wherein an n-type group III nitride semiconductor region provided with an n-side electrode, a p-type group III nitride semiconductor region provided with a p-side electrode and provided with a cladding layer, An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region, the active layer, and the p-type group III nitride semiconductor region Between the first p-type impurity diffusion suppression layer composed of Al x1 Ga 1-x1-y1 In y1 N (x1 + y1 ≦ 1), and the active layer and the first p-type impurity diffusion suppression layer And a second p-type impurity diffusion suppression layer composed of Al x2 Ga 1-x2-y2 In y2 N (x2 + y2 ≦ 1).

請求項4記載のIII族窒化物半導体レーザ装置は、n側電極を設けたn型III族窒化物半導体領域と、p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、前記活性層と前記p型III族窒化物半導体領域の間にGa1−y1Iny1N(0<y1≦1)で構成されるp型不純物拡散抑制層とを有し、前記p型III族窒化物半導体領域の前記p型不純物拡散抑制層と隣接する領域がGaN層であることを特徴とする。 The group III nitride semiconductor laser device according to claim 4, wherein an n-type group III nitride semiconductor region provided with an n-side electrode, a p-type group III nitride semiconductor region provided with a p-side electrode and provided with a cladding layer, An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region, the active layer, and the p-type group III nitride semiconductor region A p-type impurity diffusion suppression layer composed of Ga 1-y1 In y1 N (0 <y1 ≦ 1), and the p-type impurity diffusion suppression layer in the p-type group III nitride semiconductor region, The adjacent region is a GaN layer.

請求項5記載のIII族窒化物半導体レーザ装置は、n側電極を設けたn型III族窒化物半導体領域と、p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、前記活性層と前記p型III族窒化物半導体領域の間に複数層のAlxan1Ga1−xan1−yan1Inyan1N(層n1=1,2,・・・,m1、xan1+yan1≦1)で構成される第1のp型不純物拡散抑制層と、前記活性層と前記第1のp型不純物拡散抑制層の間にAlx2Ga1−x2−y2Iny2N(x2+y2≦1)で構成される第2のp型不純物拡散抑制層とを有し、前記第2のp型不純物拡散抑制層の歪み量が前記第1のp型不純物拡散抑制層の歪量を超えないことを特徴とする。 The group III nitride semiconductor laser device according to claim 5, wherein an n-type group III nitride semiconductor region provided with an n-side electrode, a p-type group III nitride semiconductor region provided with a p-side electrode and provided with a cladding layer, An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region, the active layer, and the p-type group III nitride semiconductor region A first p-type impurity diffusion suppression layer composed of a plurality of layers of Al xan1 Ga 1-xan1-yan1 In yan1 N (layers n1 = 1, 2,..., M1, xan1 + yan1 ≦ 1), and a Al x2 Ga 1-x2-y2 in y2 N (x2 + y2 ≦ 1) second p-type impurity diffusion suppression layer composed between the active layer and the first p-type impurity diffusion suppression layer , The strain amount of the second p-type impurity diffusion suppression layer is the first Characterized in that does not exceed the amount of strain type impurity diffusion suppression layer.

請求項6記載のIII族窒化物半導体レーザ装置は、請求項5記載のIII族窒化物半導体レーザ装置において、前記第1のp型不純物拡散抑制層のIn組成比を前記第2のp型不純物拡散抑制層のIn組成比よりも大きくすることを特徴とする。   The group III nitride semiconductor laser device according to claim 6 is the group III nitride semiconductor laser device according to claim 5, wherein the In composition ratio of the first p-type impurity diffusion suppression layer is set to the second p-type impurity. It is characterized by being larger than the In composition ratio of the diffusion suppressing layer.

請求項7記載のIII族窒化物半導体レーザ装置は、請求項5または請求項6のいずれかに記載のIII族窒化物半導体レーザ装置において、前記層数mが5以下であることを特徴とする。   The group III nitride semiconductor laser device according to claim 7 is the group III nitride semiconductor laser device according to claim 5, wherein the number m of layers is 5 or less. .

請求項8記載のIII族窒化物半導体レーザ装置は、請求項5または請求項6または請求項7のいずれかに記載のIII族窒化物半導体レーザ装置において、前記第2のp型不純物拡散抑制層の少なくとも一部にn型不純物を添加することを特徴とする。   The group III nitride semiconductor laser device according to claim 8 is the group III nitride semiconductor laser device according to any one of claims 5, 6, or 7, wherein the second p-type impurity diffusion suppression layer is used. An n-type impurity is added to at least a part of the structure.

以上により、p型不純物の活性層への拡散を抑制することにより、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することができる。   As described above, by suppressing the diffusion of the p-type impurity into the active layer, it is possible to provide a group III nitride semiconductor laser device having stable light output characteristics and, as a result, having high reliability.

本発明による半導体レーザ装置では、活性層とp型クラッド層との間に、少なくとも平衡状態においてp型クラッド層から活性層方向に向かう電界を有するp型不純物拡散抑制層を設ける構成とすることにより、この電界が、マイナスイオンになっているp型不純物をp型クラッド層方向へ引き戻すように働き、p型不純物の拡散を抑制することができるため、p型不純物の制御が可能になり、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することが可能になる。   In the semiconductor laser device according to the present invention, a p-type impurity diffusion suppression layer having an electric field from the p-type cladding layer toward the active layer in at least an equilibrium state is provided between the active layer and the p-type cladding layer. This electric field works to pull back the p-type impurities that are negative ions in the direction of the p-type cladding layer and can suppress the diffusion of the p-type impurities, so that the control of the p-type impurities becomes possible and stable. As a result, it is possible to provide a group III nitride semiconductor laser device having high light output characteristics and high reliability.

本発明のIII族窒化物半導体レーザ装置は、活性層とp型クラッド層との間に、少なくとも平衡状態においてp型クラッド層から活性層方向に向かう電界(以降、負電界と呼ぶ)を有するp型不純物拡散抑制層を設ける構成とする。   The group III nitride semiconductor laser device of the present invention has a p-type electric field (hereinafter referred to as a negative electric field) between the active layer and the p-type cladding layer at least in an equilibrium state from the p-type cladding layer toward the active layer. A type impurity diffusion suppression layer is provided.

p型不純物は正孔の放出によりマイナスイオンになっているため、活性層とp型クラッド層との間に存在する負電界は、p型不純物をp型クラッド層方向へ引き戻すように働き、p型不純物の活性層への拡散を抑制することができる。   Since the p-type impurity becomes negative ions due to the emission of holes, the negative electric field existing between the active layer and the p-type cladding layer works to pull the p-type impurity back toward the p-type cladding layer. Diffusion of type impurities into the active layer can be suppressed.

本発明の半導体レーザ装置は、活性層とp型クラッド層との間にAlx1Ga1−x1−y1Iny1Nからなるp型不純物拡散抑制層を有し、前記Alx1Ga1−x1−y1Iny1Nと前記活性層との間に前記Alx1Ga1−x1−y1Iny1Nに接してAlx2Ga1−x2−y2Iny2Nが配置され、前記Alx1Ga1−x1−y1Iny1Nが圧縮歪みを有し、更に前記Alx2Ga1−x2−y2Iny2Nの歪量がAlx1Ga1−x1−y1Iny1Nの歪量を超えない構成である。 The semiconductor laser device of the present invention has a p-type impurity diffusion suppression layer made of Al x1 Ga 1-x1-y1 In y1 N between the active layer and the p-type cladding layer, and the Al x1 Ga 1-x1- Al x2 Ga 1-x2-y2 In y2 N is disposed between y1 In y1 N and the active layer in contact with the Al x1 Ga 1-x1-y1 In y1 N, and the Al x1 Ga 1-x1- y1 an in y1 N has a compressive strain, is configured to further distortion amount of the Al x2 Ga 1-x2-y2 in y2 N it does not exceed the amount of strain Al x1 Ga 1-x1-y1 in y1 N.

AlGaInN系材料は、他のIII−V族半導体に比べて自然分極Pspおよびピエゾ分極Ppzが大きいという特徴を有するため、これらの分極を利用して、電界の大きさおよび極性を制御することができる。Pspの大きさは材料により一律的に決まるが、Ppzは、面内の歪みε(=(a−a)/a、a:歪み状態での面内の格子定数、a:緩和状態での面内の格子定数)を用いて次式で表される。 Since the AlGaInN-based material has a characteristic that the natural polarization Psp and the piezopolarization Ppz are larger than those of other III-V group semiconductors, the magnitude and polarity of the electric field can be controlled using these polarizations. Can do. The size of P sp is uniformly determined by the material, but P pz is the in-plane strain ε 1 (= (a−a 0 ) / a 0 , a: in-plane lattice constant in the strain state, a 0 : In-plane lattice constant in a relaxed state).

pz=2ε*(e31−e33*C13/C33) (1)
31、e33:圧電係数
13、C33:弾性定数
(1)式から、Ppzの大きさは歪量に比例して大きくなり、その符号は歪みの方向で決まることが分かる。AlGaInN系材料では、(1)式の括弧内が必ず負になる(参考文献: O. Ambacher et al., J. Phys.:Condens. Matter, Vol. 14, 3399−3434(2002))ことから、Ppzは圧縮歪みのときに正になり、引張歪みでは負になる。
P pz = 2ε 1 * (e 31 −e 33 * C 13 / C 33 ) (1)
e 31 , e 33 : Piezoelectric coefficient
C 13 , C 33 : Elastic constant From the equation (1), it can be seen that the magnitude of P pz increases in proportion to the amount of strain, and its sign is determined by the direction of strain. In AlGaInN-based materials, the parentheses in the formula (1) must be negative (reference: O. Ambacher et al., J. Phys .: Condens. Matter, Vol. 14, 3399-3434 (2002)). , P pz is positive for compressive strain and negative for tensile strain.

また、分極P(=Psp+Ppz)により誘起される電荷は次式で表され、
ρ=−∇P (2)
Alx1Ga1−x1−y1Iny1N/Alx2Ga1−x2−y2Iny2Nヘテロ界面(Alx1Ga1−x1−y1Iny1Nが上層、Alx2Ga1−x2−y2Iny2Nが下層)では、次式で示すような固定電荷が誘起される。
The charge induced by the polarization P (= P sp + P pz ) is expressed by the following equation:
ρ P = −∇P (2)
Al x1 Ga 1-x1-y1 In y1 N / Al x2 Ga 1-x2-y2 In y2 N hetero interface (Al x1 Ga 1-x1- y1 In y1 N upper layer, Al x2 Ga 1-x2- y2 In y2 In the case where N is the lower layer, a fixed charge as shown by the following formula is induced.

σ= P−P
=(PSP2+PPZ2)−(PSP1+PPZ1
=(PSP2−PSP1)+(PPZ2−PPZ1) (3)
ここで、PおよびPはそれぞれAlx1Ga1−x1−y1Iny1NおよびAlx2Ga1−x2−y2Iny2Nの分極を表す。
σ = P 2 −P 1
= (P SP2 + P PZ2 ) − (P SP1 + P PZ1 )
= (P SP2 -P SP1 ) + (P PZ2 -P PZ1 ) (3)
Here, representing the polarization of each P 1 and P 2 Al x1 Ga 1-x1-y1 In y1 N and Al x2 Ga 1-x2-y2 In y2 N.

上記Alx1Ga1−x1−y1Iny1N層中に負電界を生じさせるためには、上記σを負にする必要がある。上記へテロ界面が同じ材料系の半導体層で形成されていることから、PSP1とPSP2との差は小さいと考えることができる。そのため、σを負にするためには、PPZ1が正であり、PPZ2<PPZ1を満たせばよい。つまり、Alx1Ga1−x1−y1Iny1Nが圧縮歪みを有し、Alx2Ga1−x2−y2Iny2Nの歪量がAlx1Ga1−x1−y1Iny1N歪量を超えないようにすることで負電界が実現できる。 In order to generate a negative electric field in the Al x1 Ga 1-x1-y1 In y1 N layer, it is necessary to make the σ negative. Since the hetero interface is formed of a semiconductor layer made of the same material, it can be considered that the difference between P SP1 and P SP2 is small. Therefore, in order to make σ negative, P PZ1 is positive and P PZ2 <P PZ1 may be satisfied. That, Al x1 Ga 1-x1- y1 In y1 N has a compressive strain, Al x2 strain of the Ga 1-x2-y2 In y2 N exceeds the Al x1 Ga 1-x1-y1 In y1 N strain of By avoiding this, a negative electric field can be realized.

この場合に、p型不純物拡散抑制層がGa1−yInN層で構成され、前記Ga1−yInNと前記活性層との間に前記Ga1−yInNに接してGaNが配置され、前記Ga1−yInNのIn組成比yが0.03以上であることが好ましい。この構成は、この材料系において負電界を実現できる元素数が最小の組み合わせであり、最も容易に作製することができる。 In this case, p-type impurity diffusion suppression layer is composed of Ga 1-y In y N layer, in contact with the Ga 1-y In y N between the active layer and the Ga 1-y In y N GaN is disposed, and the In composition ratio y of the Ga 1-y In y N is preferably 0.03 or more. This configuration is the combination with the smallest number of elements that can realize a negative electric field in this material system, and can be most easily manufactured.

また、p型不純物拡散抑制層を複数のAlxanGa1−xan−yanInyanN層(n=1,2,・・・,m)で構成し、前記AlxanGa1−xan−yanInyanN層と前記活性層との間に前記各AlxanGa1−xan−yanInyanN層に接してAlxbnGa1−xbn−ybnInybnN層(n=1,2,・・・,m)を配置し、前記AlxanGa1−xan−yanInyanN層が圧縮歪みを有し、更に前記各AlxbnGa1−xbn−ybnInybnN層の歪量がp型クラッド層側で接したAlxanGa1−xan−yanInyanN層の歪量をそれぞれ超えない構造としても良い。p型不純物拡散抑制層の薄膜化および多層化によって更に高負電界を得、p型不純物の拡散抑制効果を高めることが可能になる。 The p-type impurity diffusion suppression layer is composed of a plurality of Al xan Ga 1-xan-yan In yan N layers (n = 1, 2,..., M), and the Al xan Ga 1-xan-yan In layer is formed. Al xbn Ga 1-xbn-ybn In ybn N layer (n = 1, 2,... in contact with each Al xan Ga 1-xan-yan In yan N layer between the yan N layer and the active layer M), the Al xan Ga 1-xan-yan In yan N layer has compressive strain, and the strain amount of each Al xbn Ga 1-xbn-ybn In ybn N layer is p-type cladding layer A structure that does not exceed the amount of strain of the Al xan Ga 1-xan-yan In yan N layer in contact with each other may be used. By making the p-type impurity diffusion suppression layer thinner and multi-layered, a higher negative electric field can be obtained, and the diffusion suppression effect of the p-type impurity can be enhanced.

この場合、前記AlxanGa1−xan−yanInyanN層の層数mは5以下にすることが望ましい。mを5以下とすると、素子抵抗の増大を抑制したまま、p型不純物の拡散抑制効果を高めることができる。 In this case, the number m of the Al xan Ga 1-xan-yan In yan N layer is desirably 5 or less. When m is 5 or less, the effect of suppressing the diffusion of p-type impurities can be enhanced while suppressing an increase in device resistance.

また、p型不純物拡散抑制層を構成する各AlxanGa1−xan−yanInyanN層(n=1,2,・・・・,m)に接して配置されたAlxbnGa1−xbn−ybnInybnN層(n=1,2,・・・・,m)の少なくとも一部にn型不純物を添加しても良い。n型不純物にもp型不純物の拡散を抑制する効果が期待されることから、負電界との相乗効果によりp型不純物の拡散抑制効果を高めることが可能になる。 Further, Al xbn Ga 1-xbn arranged in contact with each Al xan Ga 1-xan-yan In yan N layer (n = 1, 2,..., M ) constituting the p-type impurity diffusion suppression layer. -Ybn In ybn An n-type impurity may be added to at least a part of the N layer (n = 1, 2,..., M ). Since the effect of suppressing the diffusion of the p-type impurity is also expected for the n-type impurity, the effect of suppressing the diffusion of the p-type impurity can be enhanced by a synergistic effect with the negative electric field.

以下、図面を参照して本発明の実施の形態について具体的に説明する。
(実施の形態1)
本発明の実施の形態1について図1,図2を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS.

図1は実施の形態1に係わる半導体レーザ装置の構成を示す断面図、図2は実施の形態1に係わる半導体レーザ装置の電界分布を示す図である。
初めに、実施の形態1における半導体レーザ装置の製造方法を説明する。
FIG. 1 is a cross-sectional view showing the configuration of the semiconductor laser device according to the first embodiment, and FIG. 2 is a diagram showing the electric field distribution of the semiconductor laser device according to the first embodiment.
First, a method for manufacturing the semiconductor laser device in the first embodiment will be described.

まず、直径が約51mm(2インチ)のサファイアからなる基板1を用意し、その表面を酸性の水溶液により洗浄する。続いて、洗浄した基板1を、例えば、有機金属気相成長(MOVPE)装置の反応炉内のサセプタに保持し、反応炉を真空に排気する。続いて、反応炉内を、圧力が約300×133.322Pa(300Torr)の水素雰囲気とし、温度を約1100℃まで昇温し基板1を加熱して基板表面のサーマルクリーニングを約10分間行う。   First, a substrate 1 made of sapphire having a diameter of about 51 mm (2 inches) is prepared, and the surface thereof is washed with an acidic aqueous solution. Subsequently, the cleaned substrate 1 is held on, for example, a susceptor in a reaction furnace of a metal organic chemical vapor deposition (MOVPE) apparatus, and the reaction furnace is evacuated to a vacuum. Subsequently, the inside of the reaction furnace is set to a hydrogen atmosphere having a pressure of about 300 × 133.322 Pa (300 Torr), the temperature is raised to about 1100 ° C., the substrate 1 is heated, and the substrate surface is thermally cleaned for about 10 minutes.

次に、反応炉を約500℃にまで降温した後、基板1上に、供給量が約25μmol/minのトリメチルガリウム(TMG)と、供給量が約7.5L/minのアンモニア(NH)ガスと、水素からなるキャリアガスとを同時に供給することにより、厚さが約20nmの窒化ガリウム(GaN)からなる低温バッファ層(図示せず)を成長する。このとき、V族原料であるアンモニアガスとIII族原料であるTMGとの供給比の値は、約6500である。 Next, after the temperature of the reaction furnace is lowered to about 500 ° C., trimethylgallium (TMG) with a supply amount of about 25 μmol / min and ammonia (NH 3 ) with a supply amount of about 7.5 L / min on the substrate 1. By simultaneously supplying a gas and a carrier gas made of hydrogen, a low-temperature buffer layer (not shown) made of gallium nitride (GaN) having a thickness of about 20 nm is grown. At this time, the value of the supply ratio between the ammonia gas as the group V material and the TMG as the group III material is about 6500.

続いて、反応炉内の温度を約1000℃にまで昇温し、n型ドーパントとしてシラン(SiH)ガスをも供給しながら、低温バッファ層(図示せず)上に、厚さが約4μmでシリコン(Si)の不純物濃度が約1×1018cm−3のn型GaNからなるn型コンタクト層2を成長する。続いて、n型コンタクト層2の上にIII族原料としてトリメチルアルミニウム(TMA)をも供給しながら、厚さが約1.2μmでSiの不純物濃度が約5×1017cm−3のn型Al0.05Ga0.95Nからなるn型クラッド層3を成長する。 Subsequently, the temperature in the reaction furnace is raised to about 1000 ° C., and while supplying silane (SiH 4 ) gas as an n-type dopant, a thickness of about 4 μm is formed on a low-temperature buffer layer (not shown). Then, an n-type contact layer 2 made of n-type GaN having a silicon (Si) impurity concentration of about 1 × 10 18 cm −3 is grown. Subsequently, while also supplying trimethylaluminum (TMA) as a group III material on the n-type contact layer 2, the n-type having a thickness of about 1.2 μm and an Si impurity concentration of about 5 × 10 17 cm −3 . An n-type cladding layer 3 made of Al 0.05 Ga 0.95 N is grown.

その後、n型クラッド層3の上に、厚さが約90nmでSiの不純物濃度が約1×1017cm−3のn型GaNと厚さが約7.5nmのGa0.98In0.02Nとを積層してn側光ガイド層4を成長する。ここで、Ga0.98In0.02Nの成長は、反応炉内の温度を約800℃にまで降温し、キャリアガスを水素から窒素に変更した後に行う。また、In0.02Ga0.98Nの成長時には、III族原料にトリメチルインジウム(TMI)とTMGとを供給する。 Thereafter, on the n-type cladding layer 3, n-type GaN having a thickness of about 90 nm and an Si impurity concentration of about 1 × 10 17 cm −3 and Ga 0.98 In 0. The n-side light guide layer 4 is grown by laminating 02 N. Here, the growth of Ga 0.98 In 0.02 N is performed after the temperature in the reactor is lowered to about 800 ° C. and the carrier gas is changed from hydrogen to nitrogen. Further, during the growth of In 0.02 Ga 0.98 N, trimethylindium (TMI) and TMG are supplied to the group III raw material.

その後、n側光ガイド層4の上に、厚さが約3nmのGa0.9In0.1Nからなる3層の歪み量子井戸と厚さが約7.5nmのGa0.98In0.02Nからなる2層のバリア層とを交互に積層して、多重量子井戸(MQW)活性層5を成長する。 Thereafter, on the n-side light guide layer 4, three strained quantum wells made of Ga 0.9 In 0.1 N having a thickness of about 3 nm and Ga 0.98 In 0 having a thickness of about 7.5 nm are formed. Two barrier layers made of 0.02 N are alternately stacked to grow a multiple quantum well (MQW) active layer 5.

その後、MQW活性層5の上に、厚さが約35nmのGa0.98In0.02Nと厚さが約45nmのAl0.02Ga0.98Nとを積層してp側第1光ガイド層6を成長する。ここで、Al0.02Ga0.98Nの成長は、再度、反応炉内の温度を約1000℃にまで昇温し、キャリアガスを窒素から水素に戻した後に行う。 Thereafter, Ga 0.98 In 0.02 N having a thickness of about 35 nm and Al 0.02 Ga 0.98 N having a thickness of about 45 nm are stacked on the MQW active layer 5 to form a p-side first layer. The light guide layer 6 is grown. Here, the growth of Al 0.02 Ga 0.98 N is performed again after raising the temperature in the reactor to about 1000 ° C. and returning the carrier gas from nitrogen to hydrogen.

その後、p側第1光ガイド層6の上に、厚さが約10nmのAl0.02Ga0.92In0.06Nからなるp型不純物拡散抑制層7を成長する。続いて、p型不純物拡散抑制層7の上に厚さが約15nmのGaNからなるp側第2光ガイド層8を成長する。 Thereafter, a p-type impurity diffusion suppression layer 7 made of Al 0.02 Ga 0.92 In 0.06 N having a thickness of about 10 nm is grown on the p-side first light guide layer 6. Subsequently, the p-side second light guide layer 8 made of GaN having a thickness of about 15 nm is grown on the p-type impurity diffusion suppression layer 7.

その後、III族原料のTMAおよびTMGと、V族原料のアンモニアガスと、p型ドーパントであるビスシクロペンタジエニルマグネシウム(CpMg)ガスとを供給しながら、p側第2光ガイド層8の上に、厚さが約10nmでMgの不純物濃度が約1×1019cm−3のp型Al0.16Ga0.84Nからなる電子ブロック層9を成長する。続いて、電子ブロック層9の上に、厚さが約0.5μmでMgの不純物濃度が約1×1019cm−3のp型Al0.05Ga0.95Nからなるp型クラッド層10を成長する。p型クラッド層10はAl0.10Ga0.90N/GaN超格子(SL)で構成しても良い。 Thereafter, while supplying Group III source materials TMA and TMG, Group V source material ammonia gas, and p-type dopant biscyclopentadienylmagnesium (Cp 2 Mg) gas, the p-side second light guide layer 8 An electron blocking layer 9 made of p-type Al 0.16 Ga 0.84 N having a thickness of about 10 nm and an Mg impurity concentration of about 1 × 10 19 cm −3 is grown thereon. Subsequently, a p-type cladding layer made of p-type Al 0.05 Ga 0.95 N having a thickness of about 0.5 μm and an Mg impurity concentration of about 1 × 10 19 cm −3 on the electron block layer 9. Grow 10 The p-type cladding layer 10 may be composed of Al 0.10 Ga 0.90 N / GaN superlattice (SL).

その後、p型クラッド層10の上に、厚さが約50nmでMgの不純物濃度が約1×1020cm−3のp型GaNからなるp型コンタクト層11を成長する。
次に、p型コンタクト層11まで成長した基板1を反応炉から取り出し、p型コンタクト層11の表面を有機溶剤により洗浄し、さらにフッ酸系のウェットエッチングによりクリーニングした後、例えばプラズマCVD法を用いて、p型コンタクト層11の全面にわたって厚さが約0.1μmの二酸化シリコン(SiO)からなる絶縁膜(図示せず)を堆積する。その後、この絶縁膜上にフォトリソグラフィー法によりメサ部の形状に対応した所定形状のレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、例えばフッ酸系の水溶液を用いたウェットエッチングにより絶縁膜にパターンを形成する。次に、この所定形状の絶縁膜をマスクとして、n型コンタクト層2が露出するまで、例えば塩素(Cl)ガスを用いたドライエッチングを行う。このエッチングにより、n型コンタクト層2の上層部、n型クラッド層3、n側光ガイド層4、MQW活性層5、p側第1光ガイド層6、p型不純物拡散抑制層7、p側第2光ガイド層8、電子ブロック層9、p型クラッド層10およびp型コンタクト層11がメサ形状にパターニングされる。
Thereafter, a p-type contact layer 11 made of p-type GaN having a thickness of about 50 nm and an Mg impurity concentration of about 1 × 10 20 cm −3 is grown on the p-type cladding layer 10.
Next, the substrate 1 grown up to the p-type contact layer 11 is taken out of the reaction furnace, the surface of the p-type contact layer 11 is washed with an organic solvent, and further cleaned by hydrofluoric acid-based wet etching. Then, an insulating film (not shown) made of silicon dioxide (SiO 2 ) having a thickness of about 0.1 μm is deposited over the entire surface of the p-type contact layer 11. Thereafter, a resist pattern (not shown) having a predetermined shape corresponding to the shape of the mesa portion is formed on the insulating film by a photolithography method, and wet etching using, for example, a hydrofluoric acid-based aqueous solution is performed using the resist pattern as a mask. Thus, a pattern is formed on the insulating film. Next, dry etching using, for example, chlorine (Cl 2 ) gas is performed until the n-type contact layer 2 is exposed using the insulating film having a predetermined shape as a mask. By this etching, the upper layer portion of the n-type contact layer 2, the n-type cladding layer 3, the n-side light guide layer 4, the MQW active layer 5, the p-side first light guide layer 6, the p-type impurity diffusion suppression layer 7, and the p-side The second light guide layer 8, the electron block layer 9, the p-type cladding layer 10 and the p-type contact layer 11 are patterned into a mesa shape.

次に、エッチングマスクとして用いた絶縁膜を、例えばフッ酸系の水溶液を用いたウェットエッチングにより除去する。その後、再度、例えばプラズマCVD法を用いて、基板全面に厚さが約0.2μmの二酸化シリコン(SiO)からなる絶縁膜(図示せず)を堆積する。その後、この絶縁膜上にフォトリソグラフィー法によりリッジ部の形状に対応した所定形状のレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、例えばフッ酸系の水溶液を用いたウェットエッチングにより絶縁膜にパターンを形成する。次に、この所定形状の絶縁膜をマスクとして、p型クラッド層10の途中まで、例えば塩素(Cl)ガスを用いたドライエッチングを行い、リッジを形成する。p型クラッド層10の残し厚は、光放射角やキンクレベルに対する設計により決められる。 Next, the insulating film used as an etching mask is removed by wet etching using, for example, a hydrofluoric acid aqueous solution. Thereafter, an insulating film (not shown) made of silicon dioxide (SiO 2 ) having a thickness of about 0.2 μm is deposited on the entire surface of the substrate again using, for example, plasma CVD. Thereafter, a resist pattern (not shown) having a predetermined shape corresponding to the shape of the ridge portion is formed on the insulating film by photolithography, and wet etching using, for example, a hydrofluoric acid-based aqueous solution is performed using the resist pattern as a mask. Thus, a pattern is formed on the insulating film. Next, dry etching using, for example, chlorine (Cl 2 ) gas is performed to the middle of the p-type cladding layer 10 using the insulating film having a predetermined shape as a mask to form a ridge. The remaining thickness of the p-type cladding layer 10 is determined by the design with respect to the light emission angle and the kink level.

次に、エッチングマスクとして用いた絶縁膜を、例えばフッ酸系の水溶液を用いたウェットエッチングにより除去する。その後、再度、例えばプラズマCVD法を用いて、基板全面に厚さが約0.2μmの二酸化シリコン(SiO)からなる絶縁膜12を堆積する。その後、この絶縁膜12の上にフォトリソグラフィー法によりn側電極形成領域を除いた所定形状のレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、例えばフッ酸系の水溶液を用いたウェットエッチングにより絶縁膜12にパターンを形成する。次に、レジストパターンを残したままの状態で基板全面に例えば真空蒸着法により、チタン(Ti)膜およびアルミニウム(Al)膜を順次形成した後、レジストパターンをその上に形成されたTi膜およびAl膜とともに除去する。これによって絶縁膜12の開口を通じてn型コンタクト層2に接触したn側電極14が形成される。次に、n側電極14をオーミック接触させるためのアロイ処理を行う。 Next, the insulating film used as an etching mask is removed by wet etching using, for example, a hydrofluoric acid aqueous solution. Thereafter, the insulating film 12 made of silicon dioxide (SiO 2 ) having a thickness of about 0.2 μm is deposited on the entire surface of the substrate again using, for example, plasma CVD. Thereafter, a resist pattern (not shown) having a predetermined shape excluding the n-side electrode formation region is formed on the insulating film 12 by photolithography, and using this resist pattern as a mask, for example, a hydrofluoric acid aqueous solution is used. A pattern is formed on the insulating film 12 by wet etching. Next, a titanium (Ti) film and an aluminum (Al) film are sequentially formed on the entire surface of the substrate with the resist pattern remaining, for example, by vacuum evaporation, and then the resist pattern is formed on the Ti film and It is removed together with the Al film. As a result, an n-side electrode 14 in contact with the n-type contact layer 2 through the opening of the insulating film 12 is formed. Next, the alloy process for making the n side electrode 14 ohmic-contact is performed.

次に、同様なプロセスで、リッジ上部の絶縁膜12を除去し、p型コンタクト層11を露出させた後、n側電極14と同様にして、p型コンタクト層11と電気的に接続したニッケル(Ni)と金(Au)との積層体からなるp側電極13を形成する。   Next, in the same process, the insulating film 12 above the ridge is removed to expose the p-type contact layer 11, and then the nickel electrically connected to the p-type contact layer 11 in the same manner as the n-side electrode 14. A p-side electrode 13 made of a laminate of (Ni) and gold (Au) is formed.

次に、図示はしていないが、レーザ素子の共振器構造をへき開などによって形成し、その後、へき開した共振器の各端面に端面コーティングを施す。ここで、共振器長は例えば600μm、フロント側の端面反射率は例えば10%、リア側の端面反射率は例えば95%である。   Next, although not shown, the resonator structure of the laser element is formed by cleavage or the like, and then end face coating is applied to each end face of the cleaved resonator. Here, the resonator length is, for example, 600 μm, the front-side end surface reflectance is, for example, 10%, and the rear-side end surface reflectance is, for example, 95%.

以上により、目的の構造を有するGaN系半導体レーザ装置が形成される。
上記半導体レーザ装置の電界分布を計算した結果について図2を用いて説明する。
p型不純物拡散抑制層7を構成するAl0.02Ga0.92In0.06Nは約0.6%の圧縮歪みを有し、p側第1光ガイド層6を構成し前記p型不純物拡散抑制層7と接するAl0.02Ga0.98Nは約0.05%の圧縮歪みを有する。p型不純物拡散抑制層7の圧縮歪みの方が、p側第1光ガイド層6よりも大きいことから、これらの界面には負の固定電荷が誘起される。図2は活性層5周辺の電界分布を示しているが、本実施の形態では、p型不純物拡散抑制層7の領域で約3.5×10V/cmの負電界を得ることができ、p型不純物であるMgが活性層に拡散することを抑制することができる。その結果、信頼性の高い青紫色半導体レーザ装置を得ることが可能である。
Thus, a GaN semiconductor laser device having the target structure is formed.
The result of calculating the electric field distribution of the semiconductor laser device will be described with reference to FIG.
Al 0.02 Ga 0.92 In 0.06 N constituting the p-type impurity diffusion suppression layer 7 has a compressive strain of about 0.6%, and constitutes the p-side first light guide layer 6 to form the p-type. Al 0.02 Ga 0.98 N in contact with the impurity diffusion suppression layer 7 has a compressive strain of about 0.05%. Since the compressive strain of the p-type impurity diffusion suppression layer 7 is larger than that of the p-side first light guide layer 6, negative fixed charges are induced at these interfaces. FIG. 2 shows the electric field distribution around the active layer 5, but in this embodiment, a negative electric field of about 3.5 × 10 5 V / cm can be obtained in the region of the p-type impurity diffusion suppression layer 7. , Mg as a p-type impurity can be prevented from diffusing into the active layer. As a result, a highly reliable blue-violet semiconductor laser device can be obtained.

本実施の形態では、p型不純物拡散抑制層7に接するp側第1光ガイド層6をAlGaN3元化合物で構成したが、各元素の組成比は任意であり、p型不純物拡散抑制層7を構成する結晶よりも歪量が小さければ、AlGaInN4元化合物で構成しても良い。4元化合物は、歪量と屈折率とを独立に制御できることから、レーザ装置の光出力特性やビーム形状の設計自由度を大きく保つことができる。
(実施の形態2)
本発明の実施の形態2について図3,図4,図5,図6,図7を参照しながら説明する。
In the present embodiment, the p-side first light guide layer 6 in contact with the p-type impurity diffusion suppression layer 7 is composed of an AlGaN ternary compound, but the composition ratio of each element is arbitrary, and the p-type impurity diffusion suppression layer 7 is If the amount of strain is smaller than that of the constituting crystal, an AlGaInN quaternary compound may be used. Since the quaternary compound can independently control the amount of distortion and the refractive index, the light output characteristics of the laser device and the design freedom of the beam shape can be kept large.
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. 3, FIG. 4, FIG. 5, FIG.

図3は実施の形態2に係わる半導体レーザ装置の構成を示す断面図、図4はGa1−yInNからなるp型不純物拡散抑制層における電界強度とIn組成比との関係の計算結果を示す図、図5は実施の形態2におけるMg濃度分布を示す図、図6は実施の形態2に係わる半導体レーザ装置のI−L特性を示す図、図7は実施の形態2に係わる半導体レーザ装置のエージング特性を示す図である。 FIG. 3 is a cross-sectional view showing the configuration of the semiconductor laser device according to the second embodiment, and FIG. 4 is a calculation result of the relationship between the electric field strength and the In composition ratio in the p-type impurity diffusion suppression layer made of Ga 1-y In y N. FIG. 5 is a diagram showing the Mg concentration distribution in the second embodiment, FIG. 6 is a diagram showing the IL characteristics of the semiconductor laser device according to the second embodiment, and FIG. 7 is a semiconductor according to the second embodiment. It is a figure which shows the aging characteristic of a laser apparatus.

まず、本発明の実施の形態2による半導体レーザ装置の構成について図3を用いて説明する。
p側第1光ガイド層26およびp型不純物拡散抑制層27以外は実施の形態1と同様である。ここでは、p側第1光ガイド層26をGa0.98In0.02NとGaNとの積層で構成してp型不純物拡散抑制層27とGaNを隣接させ、p型不純物拡散抑制層27をGa0.94In0.06Nで構成する。
First, the configuration of the semiconductor laser device according to the second embodiment of the present invention will be described with reference to FIG.
Except for the p-side first light guide layer 26 and the p-type impurity diffusion suppression layer 27, this embodiment is the same as the first embodiment. Here, the p-side first light guide layer 26 is composed of a laminate of Ga 0.98 In 0.02 N and GaN, the p-type impurity diffusion suppression layer 27 and GaN are adjacent to each other, and the p-type impurity diffusion suppression layer 27 is formed. Is composed of Ga 0.94 In 0.06 N.

次に、p型不純物拡散抑制層をGa1−yInNで構成した構造において、In組成比yとp型不純物拡散抑制層中の電界Fとの関係について図4を用いて説明する。
図4においては、p型不純物拡散抑制層の厚さdもパラメータとしているが、電界Fは、膜厚に依らずIn組成比yが0.02の時にほぼゼロになり、In組成比yがそれ以上大きくなると、それにつれて負の電界が大きくなっていく傾向が見てとれる。したがって、p型不純物の拡散を抑制するためにはIn組成比yを0.03以上とすることが望ましい。
Next, the relationship between the In composition ratio y and the electric field F in the p-type impurity diffusion suppression layer in a structure in which the p-type impurity diffusion suppression layer is composed of Ga 1-y In y N will be described with reference to FIG.
In FIG. 4, the thickness d of the p-type impurity diffusion suppression layer is also a parameter, but the electric field F becomes almost zero when the In composition ratio y is 0.02, regardless of the film thickness, and the In composition ratio y is It can be seen that the negative electric field tends to increase along with the increase. Therefore, in order to suppress diffusion of p-type impurities, it is desirable that the In composition ratio y is 0.03 or more.

本実施の形態では、p型不純物拡散抑制層27を構成するGa0.94In0.06Nの膜厚を10nmとしているため、約3×10V/cmの負電界が得られる。
電子ブロック層9、p型クラッド層10等にp型不純物として添加しているMgの層厚方向の分布をSIMS分析により調べた結果を図5に示す。同図から、p型層に約1×
1019cm−3添加したMgはp型拡散抑制層中で1016cm−3台まで急激に濃度が低下し、そこから先へは拡散しないことが確認できた。また、半導体レーザ素子の室温における注入電流−光出力特性の測定結果を図6に示すが、しきい値電流は35mA程度の非常に低い値であることが分かった。さらに、60℃、100mW一定光出力通電試験における動作電流Iopの通電時間依存性を調べた結果を図7に示すが、1200時間後のIopの上昇率は20%以下であり、高温で安定に動作することが確認できた。
In this embodiment, since the thickness of Ga 0.94 In 0.06 N constituting the p-type impurity diffusion suppression layer 27 is 10 nm, a negative electric field of about 3 × 10 5 V / cm can be obtained.
FIG. 5 shows the results of SIMS analysis of the distribution in the layer thickness direction of Mg added as a p-type impurity in the electron block layer 9, the p-type cladding layer 10, and the like. From the figure, the p-type layer has about 1 ×
It was confirmed that Mg added with 10 19 cm −3 rapidly decreased in concentration to 10 16 cm −3 in the p-type diffusion suppression layer and did not diffuse further from there. Further, FIG. 6 shows the measurement result of the injection current-light output characteristics at room temperature of the semiconductor laser device, and it was found that the threshold current was a very low value of about 35 mA. Further, FIG. 7 shows the result of investigating the dependency of the operating current Iop on the energization time in a constant light output energization test at 60 ° C. and 100 mW. The increase rate of Iop after 1200 hours is 20% or less, and is stable at a high temperature. It was confirmed to work.

以上のように、p型不純物拡散抑制層をGa1−yInNで構成し、p型不純物拡散抑制層下部にGa0.98In0.02NとGaNとの積層構造を有するp側第1光ガイド層を設けることにより、負電界を得ることができるため最小の元素数の組み合わせで構成でき、もっとも容易に、p型不純物の活性層への拡散を抑制することにより、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することができる。
(実施の形態3)
本発明の実施の形態3について図8,図9,図10,図11を参照しながら説明する。
As described above, the p-type impurity diffusion suppression layer is made of Ga 1-y In y N, and the p-side has a laminated structure of Ga 0.98 In 0.02 N and GaN below the p-type impurity diffusion suppression layer. By providing the first light guide layer, a negative electric field can be obtained, so that it can be configured with a combination of the minimum number of elements. Most easily, stable light can be obtained by suppressing diffusion of p-type impurities into the active layer. A group III nitride semiconductor laser device having output characteristics and, as a result, high reliability can be provided.
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIGS. 8, 9, 10, and 11. FIG.

図8は実施の形態3に係わる半導体レーザ装置の構成を示す断面図、図9は実施の形態3に係わる半導体レーザ装置のバンドギャップ波長のIn組成比依存性を示す図、図10は実施の形態3に係わる半導体レーザ装置の電界分布図、図11は負電界層を積層したときの電流−電圧特性の負電界層数依存性の計算結果を示す図である。   FIG. 8 is a cross-sectional view showing the configuration of the semiconductor laser device according to the third embodiment, FIG. 9 is a diagram showing the dependency of the band gap wavelength of the semiconductor laser device according to the third embodiment on the In composition ratio, and FIG. FIG. 11 is a diagram showing a calculation result of the dependence of the current-voltage characteristics on the number of negative electric field layers when a negative electric field layer is stacked.

まず、実施の形態3による半導体レーザ装置の構成について図8を用いて説明する。
p型不純物拡散抑制層37の構成以外は実施の形態2と同様である。本実施の形態では、p型不純物拡散抑制層37は厚さが約4nmのGa0.94In0.06Nからなる負電界層37a、約4nmのGa0.91In0.09Nからなる負電界層37aおよび厚さが約7nmのGaNからなる中間層37bの積層で構成される。図4で示したようにGa1−yInN層中の負電界は、In組成比yの増大および膜厚の低減によって強度を高めることができる。しかし、In組成比yを増大すると、バンドギャップが縮小するためIn組成比yはレーザ光の吸収とのトレードオフにより制限される。図9にGa1−yInNのバンドギャップのIn組成比y依存性を示すが、400nm帯のレーザ装置では、Ga1−yInNのバンドギャップがレーザ光の波長に近づくため、yが0.06を超えると吸収が問題になる可能性がある。しかし、薄膜化すると、量子効果による吸収端の増大および吸収体積の減少が生じることから、In組成比yを0.06よりも大きくしても、吸収の影響を低減することができる。また、本実施の形態に示すように、中間層37bを介して負電界層(37a,37a)を2重構造にすることにより、活性層から離れた位置にある負電界層37aのみIn組成比yを高くすることが可能であり、吸収の影響を抑えつつ、負電界を高めることが容易になる。
First, the configuration of the semiconductor laser device according to the third embodiment will be described with reference to FIG.
Except for the structure of the p-type impurity diffusion suppression layer 37, the second embodiment is the same as the second embodiment. In the present embodiment, the p-type impurity diffusion suppression layer 37 includes a negative electric field layer 37a 1 made of Ga 0.94 In 0.06 N having a thickness of about 4 nm and a Ga 0.91 In 0.09 N having a thickness of about 4 nm. negative field layer 37a 2 and thickness made is constituted by lamination of the intermediate layer 37b made of GaN of about 7 nm. As shown in FIG. 4, the strength of the negative electric field in the Ga 1-y In y N layer can be increased by increasing the In composition ratio y and decreasing the film thickness. However, when the In composition ratio y is increased, the band gap is reduced, so that the In composition ratio y is limited by a trade-off with laser light absorption. FIG. 9 shows the dependence of the band gap of Ga 1-y In y N on the In composition ratio y. In the 400 nm band laser device, the band gap of Ga 1-y In y N approaches the wavelength of the laser beam. If y exceeds 0.06, absorption may become a problem. However, when the film thickness is reduced, the absorption edge increases and the absorption volume decreases due to the quantum effect. Therefore, even if the In composition ratio y is larger than 0.06, the influence of absorption can be reduced. Further, as shown in the present embodiment, the negative electric field layers (37a 1 , 37a 2 ) are formed in a double structure through the intermediate layer 37b, so that only the negative electric field layer 37a 2 located at a position away from the active layer is provided. It is possible to increase the In composition ratio y, and it is easy to increase the negative electric field while suppressing the influence of absorption.

以上のように、p型不純物拡散抑制層を中間層を介して負電界層を積層する構造にすることにより、活性層から離れた位置にある負電界層37aのみIn組成比yを高くすることが可能であり、吸収の影響を抑えつつ、負電界を高めることができるため、p型不純物の活性層への拡散を抑制することができ、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することができる。 As described above, the p-type impurity diffusion suppression layer has a structure in which the negative electric field layer is laminated via the intermediate layer, thereby increasing the In composition ratio y only in the negative electric field layer 37a 2 located away from the active layer. Since the negative electric field can be increased while suppressing the influence of absorption, diffusion of p-type impurities into the active layer can be suppressed, and stable light output characteristics are obtained. A group III nitride semiconductor laser device having high reliability can be provided.

また、本実施の形態の電界分布を図10に示すが、実施の形態1に比べ、約2倍の負電界が得られ、p型不純物の拡散抑制効果を高めることができる。本実施の形態では、p型不純物拡散抑制層37を2層の負電界層で構成する例を示したが、層数を増やせばそれにつれてp型不純物の拡散抑制効果が高められる。   Further, the electric field distribution of the present embodiment is shown in FIG. 10, but a negative electric field approximately twice that of the first embodiment is obtained, and the effect of suppressing the diffusion of p-type impurities can be enhanced. In the present embodiment, an example in which the p-type impurity diffusion suppression layer 37 is configured by two negative electric field layers has been described. However, as the number of layers is increased, the effect of suppressing the diffusion of p-type impurities is increased accordingly.

しかし、層数を増やすと、電流−電圧特性に悪影響を及ぼす可能性がある。図11は負電界層の層数をパラメータとして電流−電圧特性を計算した結果である。層数が増大すると、特に立上り電圧が高くなる傾向があるが、5層では問題がないことが確認できた。そのため、p型不純物拡散抑制層37を構成する負電界層は5層以下であることが好ましい。   However, increasing the number of layers can adversely affect current-voltage characteristics. FIG. 11 shows the results of calculating the current-voltage characteristics using the number of negative electric field layers as a parameter. When the number of layers increases, the rising voltage tends to increase, but it has been confirmed that there is no problem with five layers. Therefore, the number of negative electric field layers constituting the p-type impurity diffusion suppression layer 37 is preferably 5 or less.

また、実施の形態3で説明した半導体レーザ装置では、p型不純物拡散抑制層37を構成する負電界層37aおよび37aに挟まれた中間層37bは故意に不純物を添加していない半導体層で構成したが、例えばSi等のn型の不純物を添加しても良い。p型不純物は、その濃度以上のn型不純物を含有する半導体層中では拡散しにくくなることが知られており、負電界の効果との相乗効果が期待できる。そのため、p型不純物の拡散抑制効果を高めることができ、信頼性の高い青紫色半導体レーザの実現が容易になる。 Further, in the semiconductor laser device described in the third embodiment, the semiconductor layer the intermediate layer 37b sandwiched between the negative field layer 37a 1 and 37a 2 constituting the p-type impurity diffusion suppression layer 37 is not doped with impurities intentionally However, for example, an n-type impurity such as Si may be added. It is known that p-type impurities are difficult to diffuse in a semiconductor layer containing n-type impurities at a concentration higher than that, and a synergistic effect with a negative electric field effect can be expected. Therefore, the effect of suppressing the diffusion of p-type impurities can be enhanced, and a highly reliable blue-violet semiconductor laser can be easily realized.

本発明のIII族窒化物半導体レーザ装置は、p型不純物の活性層への拡散を抑制することができ、安定した光出力特性を有し、その結果、高い信頼性を有するIII族窒化物半導体レーザ装置を提供することができ、III族窒化物半導体を用いた半導体レーザ装置等に有用である。   The group III nitride semiconductor laser device of the present invention can suppress the diffusion of p-type impurities into the active layer, has a stable light output characteristic, and as a result, a group III nitride semiconductor having high reliability A laser device can be provided, and is useful for a semiconductor laser device using a group III nitride semiconductor.

実施の形態1に係わる半導体レーザ装置の構成を示す断面図Sectional drawing which shows the structure of the semiconductor laser apparatus concerning Embodiment 1 実施の形態1に係わる半導体レーザ装置の電界分布を示す図The figure which shows the electric field distribution of the semiconductor laser apparatus concerning Embodiment 1. 実施の形態2に係わる半導体レーザ装置の構成を示す断面図Sectional drawing which shows the structure of the semiconductor laser apparatus concerning Embodiment 2 Ga1−yInNからなるp型不純物拡散抑制層における電界強度とIn組成比との関係の計算結果を示す図Graph showing the calculation results of the relationship between the electric field strength and the In composition ratio of the p-type impurity diffusion suppression layer composed of Ga 1-y In y N 実施の形態2におけるMg濃度分布を示す図The figure which shows Mg concentration distribution in Embodiment 2 実施の形態2に係わる半導体レーザ装置のI−L特性を示す図The figure which shows the IL characteristic of the semiconductor laser apparatus concerning Embodiment 2 実施の形態2に係わる半導体レーザ装置のエージング特性を示す図The figure which shows the aging characteristic of the semiconductor laser apparatus concerning Embodiment 2 実施の形態3に係わる半導体レーザ装置の構成を示す断面図Sectional drawing which shows the structure of the semiconductor laser apparatus concerning Embodiment 3 実施の形態3に係わる半導体レーザ装置のバンドギャップ波長のIn組成比依存性を示す図The figure which shows In composition ratio dependence of the band gap wavelength of the semiconductor laser apparatus concerning Embodiment 3 実施の形態3に係わる半導体レーザ装置の電界分布図Electric field distribution diagram of semiconductor laser device according to Embodiment 3 負電界層を積層したときの電流−電圧特性の負電界層数依存性の計算結果を示す図The figure which shows the calculation result of the negative electric field layer number dependence of the current-voltage characteristic when a negative electric field layer is laminated 従来のIII族窒化物半導体レーザ装置の構造を示す断面図Sectional view showing the structure of a conventional group III nitride semiconductor laser device

符号の説明Explanation of symbols

1 基板
2 n型コンタクト層
3 n型クラッド層
4 n側光ガイド層
5 活性層
6 p側第1光ガイド層
7 p型不純物拡散抑制層
8 p側第2光ガイド層
9 電子ブロック層
10 p型クラッド層
11 p型コンタクト層
12 絶縁膜
13 p側電極
14 n側電極
26 p側第1光ガイド層
27 p型不純物拡散抑制層
37 p型不純物拡散抑制層
37a 負電界層
37a 負電界層
37b 中間層
101 サファイア基板
102 n型コンタクト層
103 n型クラッド層
104 n側光ガイド層
105 活性層
106 p側光ガイド層
108 p側第1クラッド層
109 電子ブロック層
110 p側第2クラッド層
111 p型コンタクト層
112 絶縁膜
113 p側電極
114 n側電極
Reference Signs List 1 substrate 2 n-type contact layer 3 n-type cladding layer 4 n-side light guide layer 5 active layer 6 p-side first light guide layer 7 p-type impurity diffusion suppression layer 8 p-side second light guide layer 9 electron blocking layer 10 p P-type contact layer 12 insulating film 13 p-side electrode 14 n-side electrode 26 p-side first light guide layer 27 p-type impurity diffusion suppression layer 37 p-type impurity diffusion suppression layer 37a 1 negative electric field layer 37a 2 negative electric field Layer 37b intermediate layer 101 sapphire substrate 102 n-type contact layer 103 n-type cladding layer 104 n-side light guide layer 105 active layer 106 p-side light guide layer 108 p-side first cladding layer 109 electron blocking layer 110 p-side second cladding layer 111 p-type contact layer 112 insulating film 113 p-side electrode 114 n-side electrode

Claims (8)

活性層とp型クラッド層との間に、少なくとも平衡状態においてp型クラッド層から活性層方向に向かう電界を有するp型不純物拡散抑制層を含むことを特徴とするIII族窒化物半導体レーザ装置。   A group III nitride semiconductor laser device comprising a p-type impurity diffusion suppression layer having an electric field directed from the p-type cladding layer toward the active layer at least in an equilibrium state between the active layer and the p-type cladding layer. n側電極を設けたn型III族窒化物半導体領域と、
p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、
前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、
前記活性層と前記p型III族窒化物半導体領域の間にAlx1Ga1−x1−y1Iny1N(x1+y1≦1)で構成されるp型不純物拡散抑制層と
を有することを特徴とするIII族窒化物半導体レーザ装置。
an n-type group III nitride semiconductor region provided with an n-side electrode;
a p-type group III nitride semiconductor region having a p-side electrode and a cladding layer;
An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region;
A p-type impurity diffusion suppression layer composed of Al x1 Ga 1-x1-y1 In y1 N (x1 + y1 ≦ 1) is provided between the active layer and the p-type group III nitride semiconductor region. Group III nitride semiconductor laser device.
n側電極を設けたn型III族窒化物半導体領域と、
p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、
前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、
前記活性層と前記p型III族窒化物半導体領域の間にAlx1Ga1−x1−y1Iny1N(x1+y1≦1)で構成される第1のp型不純物拡散抑制層と、
前記活性層と前記第1のp型不純物拡散抑制層の間にAlx2Ga1−x2−y2Iny2N(x2+y2≦1)で構成される第2のp型不純物拡散抑制層と
を有することを特徴とするIII族窒化物半導体レーザ装置。
an n-type group III nitride semiconductor region provided with an n-side electrode;
a p-type group III nitride semiconductor region having a p-side electrode and a cladding layer;
An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region;
A first p-type impurity diffusion suppression layer composed of Al x1 Ga 1-x1-y1 In y1 N (x1 + y1 ≦ 1) between the active layer and the p-type group III nitride semiconductor region;
Having a Al x2 Ga 1-x2-y2 In y2 N (x2 + y2 ≦ 1) second p-type impurity diffusion suppression layer composed between the active layer and the first p-type impurity diffusion suppression layer A group III nitride semiconductor laser device characterized by the above.
n側電極を設けたn型III族窒化物半導体領域と、
p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、
前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、
前記活性層と前記p型III族窒化物半導体領域の間にGa1−y1Iny1N(0<y1≦1)で構成されるp型不純物拡散抑制層と
を有し、前記p型III族窒化物半導体領域の前記p型不純物拡散抑制層と隣接する領域がGaN層であることを特徴とするIII族窒化物半導体レーザ装置。
an n-type group III nitride semiconductor region provided with an n-side electrode;
a p-type group III nitride semiconductor region having a p-side electrode and a cladding layer;
An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region;
A p-type impurity diffusion suppression layer composed of Ga 1-y1 In y1 N (0 <y1 ≦ 1) between the active layer and the p-type group III nitride semiconductor region; A group III nitride semiconductor laser device, wherein a region adjacent to the p-type impurity diffusion suppression layer in the nitride semiconductor region is a GaN layer.
n側電極を設けたn型III族窒化物半導体領域と、
p側電極を設けクラッド層を備えたp型III族窒化物半導体領域と、
前記n型III族窒化物半導体領域と前記p型III族窒化物半導体領域の間にn型III族窒化物半導体で形成された活性層と、
前記活性層と前記p型III族窒化物半導体領域の間に複数層のAlxan1Ga1−xan1−yan1Inyan1N(層n1=1,2,・・・,m1、xan1+yan1≦1)で構成される第1のp型不純物拡散抑制層と、
前記活性層と前記第1のp型不純物拡散抑制層の間にAlx2Ga1−x2−y2Iny2N(x2+y2≦1)で構成される第2のp型不純物拡散抑制層と
を有し、前記第2のp型不純物拡散抑制層の歪み量が前記第1のp型不純物拡散抑制層の歪量を超えないことを特徴とするIII族窒化物半導体レーザ装置。
an n-type group III nitride semiconductor region provided with an n-side electrode;
a p-type group III nitride semiconductor region having a p-side electrode and a cladding layer;
An active layer formed of an n-type group III nitride semiconductor between the n-type group III nitride semiconductor region and the p-type group III nitride semiconductor region;
A plurality of layers of Al xan1 Ga 1-xan1-yan1 In yan1 N (layers n1 = 1, 2,..., M1, xan1 + yan1 ≦ 1) are formed between the active layer and the p-type group III nitride semiconductor region. A first p-type impurity diffusion suppression layer to be formed;
And a Al x2 Ga 1-x2-y2 In y2 N (x2 + y2 ≦ 1) second p-type impurity diffusion suppression layer composed between the active layer and the first p-type impurity diffusion suppression layer The group III nitride semiconductor laser device, wherein the strain amount of the second p-type impurity diffusion suppression layer does not exceed the strain amount of the first p-type impurity diffusion suppression layer.
前記第1のp型不純物拡散抑制層のIn組成比を前記第2のp型不純物拡散抑制層のIn組成比よりも大きくすることを特徴とする請求項5記載のIII族窒化物半導体レーザ装置。   6. The group III nitride semiconductor laser device according to claim 5, wherein an In composition ratio of the first p-type impurity diffusion suppression layer is larger than an In composition ratio of the second p-type impurity diffusion suppression layer. . 前記層数mが5以下であることを特徴とする請求項5または請求項6いずれかに記載のIII族窒化物半導体レーザ装置。   7. The group III nitride semiconductor laser device according to claim 5, wherein the number m of layers is 5 or less. 前記第2のp型不純物拡散抑制層の少なくとも一部にn型不純物を添加することを特徴とする請求項5または請求項6または請求項7のいずれかに記載のIII族窒化物半導体レーザ装置。   The group III nitride semiconductor laser device according to claim 5, wherein an n-type impurity is added to at least a part of the second p-type impurity diffusion suppression layer. .
JP2005020467A 2005-01-28 2005-01-28 Group III nitride semiconductor laser device Expired - Fee Related JP4671702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020467A JP4671702B2 (en) 2005-01-28 2005-01-28 Group III nitride semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020467A JP4671702B2 (en) 2005-01-28 2005-01-28 Group III nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2006210630A true JP2006210630A (en) 2006-08-10
JP4671702B2 JP4671702B2 (en) 2011-04-20

Family

ID=36967132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020467A Expired - Fee Related JP4671702B2 (en) 2005-01-28 2005-01-28 Group III nitride semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4671702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067890A1 (en) * 2021-10-19 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser and method for manufacturing surface emitting laser

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125272A (en) * 1994-10-28 1996-05-17 Nec Corp Semiconductor laser
JPH08228049A (en) * 1994-12-19 1996-09-03 Toshiba Corp Semiconductor laser and manufacture thereof
JPH09129926A (en) * 1995-08-28 1997-05-16 Mitsubishi Cable Ind Ltd Group iii nitride light emitting element
JPH10242512A (en) * 1997-02-24 1998-09-11 Toshiba Corp Semiconductor light emitting device
JP2000332364A (en) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd Nitride semiconductor device
JP2001036196A (en) * 2000-01-01 2001-02-09 Nec Corp Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP2002261395A (en) * 2000-12-28 2002-09-13 Sony Corp Semiconductor light-emitting device and its manufacturing method, and semiconductor device and its manufacturing method
WO2003077391A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and method for fabricating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125272A (en) * 1994-10-28 1996-05-17 Nec Corp Semiconductor laser
JPH08228049A (en) * 1994-12-19 1996-09-03 Toshiba Corp Semiconductor laser and manufacture thereof
JPH09129926A (en) * 1995-08-28 1997-05-16 Mitsubishi Cable Ind Ltd Group iii nitride light emitting element
JPH10242512A (en) * 1997-02-24 1998-09-11 Toshiba Corp Semiconductor light emitting device
JP2000332364A (en) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd Nitride semiconductor device
JP2001036196A (en) * 2000-01-01 2001-02-09 Nec Corp Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP2002261395A (en) * 2000-12-28 2002-09-13 Sony Corp Semiconductor light-emitting device and its manufacturing method, and semiconductor device and its manufacturing method
WO2003077391A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067890A1 (en) * 2021-10-19 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser and method for manufacturing surface emitting laser

Also Published As

Publication number Publication date
JP4671702B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4879563B2 (en) Group III nitride semiconductor light emitting device
JP4246242B2 (en) Semiconductor light emitting device
JP5118392B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6835956B1 (en) Nitride semiconductor device and manufacturing method thereof
JP4924185B2 (en) Nitride semiconductor light emitting device
US20090238227A1 (en) Semiconductor light emitting device
JP2010177651A (en) Semiconductor laser device
TW200304233A (en) Semiconductor light emitting device and its manufacturing method
JP2008311640A (en) Semiconductor laser diode
JP2006173621A (en) Semiconductor laser
JP2008109066A (en) Light emitting element
US20070008998A1 (en) Semiconductor light emitting device
US8803274B2 (en) Nitride-based semiconductor light-emitting element
JP2008198952A (en) Group iii nitride semiconductor light emitting device
JP2009094360A (en) Semiconductor laser diode
US8513684B2 (en) Nitride semiconductor light emitting device
JP2008187044A (en) Semiconductor laser
US20120112204A1 (en) Nitride semiconductor light emitting device and epitaxial substrate
US11804567B2 (en) III-nitride semiconductor light-emitting device and method of producing the same
EP2728684A1 (en) Gallium nitride semiconductor laser element and method for manufacturing gallium nitride semiconductor laser element
EP3879583A1 (en) Group iii nitride semiconductor light-emitting element and production method therefor
US20210391502A1 (en) Iii-nitride semiconductor light-emitting device and method of producing the same
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
JP2008226865A (en) Semiconductor laser diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees