JP4284946B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP4284946B2
JP4284946B2 JP2002246368A JP2002246368A JP4284946B2 JP 4284946 B2 JP4284946 B2 JP 4284946B2 JP 2002246368 A JP2002246368 A JP 2002246368A JP 2002246368 A JP2002246368 A JP 2002246368A JP 4284946 B2 JP4284946 B2 JP 4284946B2
Authority
JP
Japan
Prior art keywords
layer
nitride
well
light guide
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002246368A
Other languages
Japanese (ja)
Other versions
JP2004087763A (en
JP2004087763A5 (en
Inventor
恭司 山口
中島  博
庸紀 朝妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002246368A priority Critical patent/JP4284946B2/en
Publication of JP2004087763A publication Critical patent/JP2004087763A/en
Publication of JP2004087763A5 publication Critical patent/JP2004087763A5/ja
Application granted granted Critical
Publication of JP4284946B2 publication Critical patent/JP4284946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物系半導体発光素子に関し、更に詳細には、しきい値電流が小さく、スロープ効率が大きな窒化物系半導体発光素子に関するものである。
【0002】
【従来の技術】
窒化ガリウム系発光素子は、GaN、In、Alを含む混晶化合物半導体で構成された半導体発光素子であって、化合物半導体の格子定数はAlN、GaN、InNの順に大きくなる。
従来、405nmの窒化ガリウム系半導体レーザ素子90を作製するときには、例えば図7に示すように、サファイア基板又はGaN基板91上に、n−GaNバッファ層92、n−AlGaNクラッド層93、GaN光ガイド層94、活性層95、GaN光ガイド層96、p−AlGaNクラッド層97、p−GaNコンタクト層98を積層している。
ここで、活性層95は、図示しないが、InGaN井戸層と、井戸層よりバンドギャップエネルギーが大きなInGaN障壁層とからなる量子井戸構造として構成され、井戸層及び障壁層のIn組成は、それぞれ、8%及び2%である。
【0003】
上述の積層構造の構成で活性層を結晶成長させた際、活性層を構成する井戸層及び障壁層は、その格子定数がGaNと比較して大きいので、歪が井戸層に導入されるものの、405nmの波長帯では、井戸層のIn組成が低いので、化合物半導体層同士の界面、或いは各化合物半導体層内から格子欠陥が発生するような現象は起こり難かった。
【0004】
【発明が解決しようとする課題】
ところで、このような窒化物系化合物半導体層からなる積層構造で、青色帯(波長460nm)あるいは緑色帯(波長510nm)の半導体レーザ素子を作製するためには、InGaN井戸層のIn組成を、それぞれ、20%及び30%にすることが必要である。
しかし、発光波長を長くするために、InGaN井戸層のIn組成を20%或いは30%に大きくして行くと、InGaN井戸層の格子定数が大きくなり、活性層を構成する井戸層と障壁層との界面、或いは井戸層の膜中に、歪みが生じる。
その結果、格子欠陥が導入され、発光効率が悪化するという問題があった。格子欠陥が導入されると、電流を注入して発光させる際、格子欠陥が非発光中心として働き、発光効率が悪化するからである。
また、歪みが生じるために、井戸層内でIn組成が大きな相と、In組成が小さい相に相分離するために、所定の発光波長での発光効率が悪化する。
【0005】
例えば、460nmで発光させるために、膜厚25ÅのInX3Ga1-X3N(X3=0.18)井戸層と、膜厚50ÅのInX1Ga1-X1N(X1=0.02)障壁層とで構成した従来の量子井戸構造では、活性層のカソードミネッセンス強度面内分布を観察すると、図8に示すように、460nmの光を発光していない非発光領域A(黒色の領域)が多数存在している。図8は、カソードミネッセンス強度面内分布の写真の写しで、元の写真は参考写真として特許庁に提出されている。
そして、非発光領域がレーザストライプに重なると、半導体レーザ素子のしきい値上昇、及びスロープ効率の悪化を招くことになる。
【0006】
そこで、本発明の目的は、結晶性が良好で、発光効率の高い量子井戸構造の活性層を有する窒化物系半導体発光素子を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る窒化物系半導体発光素子(以下、第1の発明と言う)は、Inを含む窒化物系化合物半導体層からなる量子井戸構造の活性層を有する窒化物系半導体発光素子において、
量子井戸構造を構成する障壁層のバンドギャップエネルギーより大きなバンドギャップエネルギーを有する歪補償層が、量子井戸構造を構成する井戸層のうち少なくとも1層の井戸層と該少なくとも一層の井戸層を挟む両障壁層との間にそれぞれ介在していることを特徴としている。
【0008】
第1の発明では、全ての井戸層と井戸層を挟む両障壁層との間に歪補償層を介在させることが好ましいものの、少なくとも1層の井戸層と該少なくとも一層の井戸層を挟む両障壁層との間に歪補償層をそれぞれ介在させても良い。
全ての歪補償層の組成が同一である必要はなく、井戸層と井戸層を挟む両障壁層との間にそれぞれ介在する2層の歪補償層の組成が相互にことなっていも良い。
【0009】
本発明に係る別の窒化物系半導体発光素子(以下、第2の発明と言う)は、Inを含む窒化物系化合物半導体層からなる量子井戸構造の活性層を有する窒化物系半導体発光素子において、
量子井戸構造を構成する障壁層のバンドギャップエネルギーより大きなバンドギャップエネルギーを有する歪補償層が、障壁層内又は井戸層内に介在していることを特徴としている。
【0010】
第2の発明では、全ての障壁層内又は井戸層内にそれぞれ歪補償層を介在させることが好ましいものの、少なくとも1層の障壁層内又は少なくとも1層の井戸層内に歪補償層を介在させても良い。
全ての歪補償層の組成が同一である必要はなく、例えば各障壁層内又は各井戸層内にそれぞれ介在している障壁層のうち少なくとも2層の障壁層の組成が相互に異なっていても良い。
【0011】
第1及び第2の発明は、活性層がInを含む窒化物系化合物半導体層からなる量子井戸構造である限り適用できる。例えば井戸層及び障壁層がInGaN層で構成されているとき、歪補償層がInに代えてAlを有するAlGaN層である。
【0012】
歪補償層は、必ずしも、井戸層と障壁層との間、井戸層内、又は障壁層内に介在させることは必要でなく、光ガイド層内に介在させても良い。
即ち、本発明に係る別の窒化物系半導体発光素子(以下、第3の発明と言う)は、Inを含む窒化物系化合物半導体層からなる量子井戸構造の活性層を有する窒化物系半導体発光素子において、
光ガイド層及び量子井戸構造を構成する障壁層の双方のバンドギャップエネルギーより大きなバンドギャップエネルギーを有する歪補償層が、活性層の上下に設けられている光ガイド層の少なくとも一方の光ガイド層内に介在していることを特徴としている。
【0013】
第3の発明の好適な実施態様では、複数層の歪補償層が光ガイド層内に周期的に介在する。また、光ガイド層がInGaN層で構成されているとき、歪補償層はInに代えてAlを有するAlGaN層である。
【0014】
第1から第3の発明の好適な実施態様では、歪補償層の膜厚が、井戸層の膜厚及び障壁層の膜厚の双方より薄い。これにより、歪補償層が窒化物系半導体発光素子の光学的特性に影響しないようにすることができる。
第1から第3の発明で、窒化物系半導体レーザ素子とは、窒化物系化合物半導体層の積層構造を備えた半導体レーザ素子である。窒化物系化合物半導体とは、V族として窒素(N)を有し、組成がAlabGacInd xyAsz(a+b+c+d=1、0≦a、b、c、d≦1、x+y+z=1、0<x≦1、0≦y、z≦1)で表示される化合物半導体である。
【0015】
【発明の実施の形態】
以下に、添付図面を参照し、実施形態例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。尚、以下の実施形態例で示す成膜方法、化合物半導体層の組成及び膜厚等は、本発明の理解を容易にするための一つの例示であって、本発明はこの例示に限定されるものではない。
実施形態例1
本実施形態例は、第1の発明に係る窒化物系半導体発光素子をGaN系半導体レーザ素子に適用した実施形態の一例であって、図1は本実施形態例のGaN系半導体レーザ素子の活性層付近の構成を示す断面図、及び図2は活性層付近のバンド構造図である。
本実施形態例のGaN系半導体レーザ素子は発光波長が460nmの半導体レーザ素子であって、活性層付近の構造10は、図1に示すように、膜厚80nmの下部GaN光ガイド層12と、障壁層14、歪補償層16A、井戸層18、及び歪補償層16Bの3周期と、障壁層14と、膜厚80nmの上部GaN光ガイド層20とから構成されている。
【0016】
障壁層14は膜厚50ÅのInX1Ga1-X1N(X1=0.02)層として、歪補償層16は膜厚10ÅのAlX2Ga1-X2N(X2=0.04)層として、井戸層18は膜厚25ÅのInX3Ga1-X3N(X3=0.18)層として構成されている。
本実施形態例では、全ての井戸層18とそれと隣合う障壁層14との間に歪補償層16が介在している。歪補償層16A、Bのバンドギャップエネルギーは、図2に示すように、障壁層14のバンドギャップエネルギーより大きく、また、歪補償層16A、Bのフリースタンディングでの格子定数は、障壁層14のそれより小さい。
【0017】
実施形態例1の活性層構造の活性層のカソードミネッセンス強度面内分布を観察すると、図3に示すように、全領域が460nmで発光しており、非発光領域は存在していない。図8に示す従来の活性層のカソードミネッセンス強度面内分布と比較すると、本発明の効果を十分に認識することができる。図3はカソードミネッセンス強度面内分布の写真の写しであって、元の写真は参考写真として特許庁に提出している。
本実施形態例では、活性層を結晶成長させる際、歪補償層16を井戸層18と障壁層14との間に介在させることにより、歪の蓄積が緩和されるので、結晶欠陥が発生し難くなり、非発光領域が減少する。
これにより、本実施形態例の活性層付近の構造10を備えた窒化物系半導体レーザ素子のしきい値が低下し、スロープ効率が向上する。
【0018】
本実施形態例では、歪補償層16A、BはAlGaN層であるが、これに限らず、障壁層14より大きなバンドギャップエネルギーを有する限り、InAlGaN層で構成しても良い。また、本実施形態例では、歪補償層16A、Bは同じ膜厚、同じ組成であるが、互いに異なる組成、膜厚でも良い。
また、本実施形態例では、歪補償層16が全ての井戸層18とそれを挟む障壁層14との間に介在しているが、これに限ることはなく、一部の井戸層18とそれを挟む障壁層14との間に介在していても良い。
更には、活性層は、3周期の量子井戸構造に限るものではない。
【0019】
本実施形態例では、障壁層14は、InGaN層であるが、4元混晶のInAlGaN層で構成しても良い。
また、光ガイド層12、20はGaN層であるが、GaNに限る必要はなく、InGaN、AlGaN、及びInAlGaNのいずれを使用しても良く、それらを積層した構造でも良い。また、光ガイド層12及び20は、同一である必要は無く、例えばAl及びIn組成が異なっても、膜厚が異なっていても良く、更には一方が単層膜で、他方が積層膜でも良い。
【0020】
実施形態例2
本実施形態例は、第2の発明に係る窒化物系半導体発光素子をGaN系半導体レーザ素子に適用した実施形態の一例であって、図4は活性層付近のバンド構造図である。
本実施形態例のGaN系半導体レーザ素子は発光波長が460nmの半導体レーザ素子であって、活性層付近の構造30は、図4に示すように、膜厚80nmの下部GaN光ガイド層32と、障壁層34、障壁層34内に設けられた歪補償層36、及び井戸層38の3周期と、障壁層34と、膜厚80nmの上部GaN光ガイド層40とから構成されている。
【0021】
障壁層34、歪補償層36、及び井戸層38の組成は、実施形態例1と同じである。
歪補償層36のバンドギャップエネルギーは、図3に示すように、障壁層34のバンドギャップエネルギーより大きく、また歪補償層36のフリースタンディングでの格子定数は、障壁層34のそれより小さい。
【0022】
本実施形態例では、活性層を結晶成長させる際、歪補償層36を障壁層34内に介在させることにより、歪の蓄積が緩和されるので、結晶欠陥が発生し低くなり、実施形態例1と同様に、非発光領域が減少する。
これにより、本実施形態例の活性層付近の構造30を備えた窒化物系半導体レーザ素子のしきい値が低下し、スロープ効率が向上する。
【0023】
実施形態例3
本実施形態例は、第2の発明に係る窒化物系半導体発光素子をGaN系半導体レーザ素子に適用した実施形態の別の一例であって、図5は活性層付近のバンド構造図である。
本実施形態例のGaN系半導体レーザ素子は発光波長が460nmの半導体レーザ素子であって、活性層付近の構造50は、図5に示すように、膜厚80nmの下部GaN光ガイド層52と、障壁層54、井戸層56、井戸層56内に設けられた歪補償層58、障壁層54と、膜厚80nmの上部GaN光ガイド層60とから構成されている。
【0024】
障壁層54、井戸層56、及び歪補償層58の組成は、実施形態例1と同じである。
歪補償層58のバンドギャップエネルギーは、図5に示すように、障壁層54のバンドギャップエネルギーより大きく、また歪補償層58のフリースタンディングでの格子定数は、障壁層54のそれより小さい。
【0025】
本実施形態例では、活性層を結晶成長させる際、歪補償層58を井戸層56内に介在させることにより、歪の蓄積が緩和されるので、結晶欠陥が発生し難くなり、実施形態例1と同様に、非発光領域が減少する。
これにより、本実施形態例の活性層付近の構造50を備えた窒化物系半導体レーザ素子のしきい値が低下し、スロープ効率が向上する。
【0026】
実施形態例4
本実施形態例は、第3の発明に係る窒化物系半導体発光素子をGaN系半導体レーザ素子に適用した実施形態の一例であって、図6は活性層付近のバンド構造図である。
本実施形態例のGaN系半導体レーザ素子は発光波長が460nmの半導体レーザ素子であって、活性層付近の構造70は、図6に示すように、膜厚80nmの下部GaN光ガイド層72と、多重量子井戸構造の活性層74と、膜厚80nmの上部GaN光ガイド層76とから構成されている。
【0027】
本実施形態例では、下部及び上部GaN光ガイド層72、76内に、それぞれ、複数層の歪補償層78が介在している。
GaN光ガイド層72、76の平均組成はInX Ga1-X N(X=0.02)であって、図6に示すように、膜厚800ÅのGaN光ガイド層72、76内に、それぞれ、複数層の膜厚10ÅのAlX1Ga1-X1N(X1=0.04)歪補償層78が200Å周期で介在している。
【0028】
歪補償層78のバンドギャップエネルギーは、図6に示すように、GaN光ガイド層72及び76のバンドギャップエネルギーより大きく、また歪補償層78のフリースタンディングでの格子定数は、GaN光ガイド層72及び76のそれより小さい。
【0029】
本実施形態例では、歪補償層78が光ガイド層72、76内に介在していることにより、活性層の結晶成長に際して、歪の蓄積が緩和されるので、結晶欠陥が発生し難くなり、非発光領域が減少する。
これにより、本実施形態例の光ガイド層構造を備えた窒化物系半導体レーザ素子のしきい値が低下し、スロープ効率が向上する。
【0030】
尚、本実施形態例で、光ガイド層72、76内に加えて、井戸層と障壁層との間にも歪補償層を介在させても良い。
つまり、多重量子井戸構造の活性層74は、図6に示すように、膜厚25ÅのInX3Ga1-X3N(X3=0.18)井戸層80と、井戸層80を挟む膜厚50ÅのInX2Ga1-X2N(X2=0.08)障壁層82と、井戸層80と井戸層80の両側の障壁層82との間に介在する膜厚10ÅのAlX4Ga1-X4N(X4=0.04)歪補償層84A、Bとで構成されている。
歪補償層84のバンドギャップエネルギーは、図6に示すように、障壁層82のバンドギャップエネルギーより大きく、また歪補償層84のフリースタンディングでの格子定数は、障壁層82のそれより小さい。
これにより、本実施形態例では、本発明の効果が一層大きくなる。
【0031】
【発明の効果】
第1及び第2の発明によれば、障壁層のバンドギャップエネルギーより大きなバンドギャップエネルギーを有する歪補償層を井戸層と井戸層を挟む両障壁層との間に介在させることにより、又は歪補償層を井戸層内又は障壁層内に介在させることにより、活性層の結晶成長に際して、歪の蓄積を緩和させることにより、結晶欠陥の発生を抑制し、非発光領域を減少させている。
また、第3の発明によれば、光ガイド層のバンドギャップエネルギーより大きなバンドギャップエネルギーを有する歪補償層を光ガイド層内に介在させることにより、歪の蓄積を緩和させることにより、結晶欠陥の発生を抑制し、非発光領域を減少させている。
第1から第3の発明に係る窒化物系半導体発光素子を適用することにより、しきい値電流が小さく、スロープ効率が上昇し、所定の発光波長での発光効率が高い窒化物系半導体レーザ素子を実現し、また定の発光波長での発光効率の高い窒化物系発光ダイオードを実現することができる。
【図面の簡単な説明】
【図1】実施形態例1のGaN系半導体レーザ素子の活性層付近の構成を示す断面図である。
【図2】実施形態例1のGaN系半導体レーザ素子の活性層付近のバンド構造図である。
【図3】カソードミネッセンス強度面内分布の写真の写しである。
【図4】実施形態例2のGaN系半導体レーザ素子の活性層付近のバンド構造図である。
【図5】実施形態例3のGaN系半導体レーザ素子の活性層付近のバンド構造図である。
【図6】実施形態例4のGaN系半導体レーザ素子の活性層付近のバンド構造図である。
【図7】405nmの半導体レーザ素子の断面図である。
【図8】カソードミネッセンス強度面内分布の写真の写しである。
【符号の説明】
10……実施形態例1のGaN系半導体レーザ素子の活性層付近の構造、12……下部GaN光ガイド層、14……障壁層、16……歪補償層、18……井戸層、20……上部GaN光ガイド層、30……実施形態例2のGaN系半導体レーザ素子の活性層付近の構造、32……下部GaN光ガイド層、34……障壁層、36……歪補償層、38……井戸層、40……上部GaN光ガイド層、50……実施形態例3のGaN系半導体レーザ素子の活性層付近の構造、52……下部GaN光ガイド層、54……障壁層、56……井戸層、58……歪補償層、60……上部GaN光ガイド層、70……実施形態例4のGaN系半導体レーザ素子の活性層付近の構造、72……下部GaN光ガイド層、74……多重量子井戸構造の活性層、76……上部GaN光ガイド層、78……歪補償層、80……井戸層、82……障壁層、84……歪補償層、90……405nmの半導体レーザ素子、91……サファイア基板又はGaN基板、92……n−GaNバッファ層、93……n−AlGaNクラッド層、94……GaN光ガイド層、95……活性層、96……GaN光ガイド層、97……p−AlGaNクラッド層、98……p−GaNコンタクト層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitride semiconductor light emitting device, and more particularly to a nitride semiconductor light emitting device having a small threshold current and a large slope efficiency.
[0002]
[Prior art]
The gallium nitride-based light emitting device is a semiconductor light emitting device composed of a mixed crystal compound semiconductor containing GaN, In, and Al, and the lattice constant of the compound semiconductor increases in the order of AlN, GaN, and InN.
Conventionally, when fabricating a 405 nm gallium nitride semiconductor laser device 90, for example, as shown in FIG. 7, an n-GaN buffer layer 92, an n-AlGaN cladding layer 93, and a GaN light guide are formed on a sapphire substrate or GaN substrate 91. A layer 94, an active layer 95, a GaN light guide layer 96, a p-AlGaN cladding layer 97, and a p-GaN contact layer 98 are stacked.
Here, although not illustrated, the active layer 95 is configured as a quantum well structure including an InGaN well layer and an InGaN barrier layer having a larger band gap energy than the well layer, and the In composition of the well layer and the barrier layer is respectively 8% and 2%.
[0003]
When the active layer is crystal-grown with the structure of the above laminated structure, the well layer and the barrier layer constituting the active layer have a lattice constant larger than that of GaN, but strain is introduced into the well layer. In the wavelength band of 405 nm, since the In composition of the well layer is low, a phenomenon in which lattice defects are generated from the interface between the compound semiconductor layers or from within each compound semiconductor layer hardly occurs.
[0004]
[Problems to be solved by the invention]
By the way, in order to fabricate a semiconductor laser device having a blue band (wavelength of 460 nm) or a green band (wavelength of 510 nm) with such a laminated structure composed of nitride-based compound semiconductor layers, the In composition of the InGaN well layer is , 20% and 30%.
However, when the In composition of the InGaN well layer is increased to 20% or 30% in order to increase the emission wavelength, the lattice constant of the InGaN well layer increases, and the well layer and the barrier layer constituting the active layer Distortion occurs in the interface of the above or in the film of the well layer.
As a result, there is a problem that lattice defects are introduced and the luminous efficiency is deteriorated. This is because when a lattice defect is introduced, when a current is injected to emit light, the lattice defect functions as a non-emission center and the light emission efficiency deteriorates.
In addition, since distortion occurs, the phase separation into a phase with a large In composition and a phase with a small In composition occur in the well layer, so that the light emission efficiency at a predetermined light emission wavelength deteriorates.
[0005]
For example, in order to emit light at 460 nm, an In X3 Ga 1 -X3 N (X3 = 0.18) well layer with a thickness of 25 mm and an In X1 Ga 1 -X1 N (X1 = 0.02) barrier with a thickness of 50 mm In the conventional quantum well structure composed of layers, when the in-plane distribution of the cathode minescence intensity of the active layer is observed, as shown in FIG. 8, a non-light emitting region A (black region) that does not emit light of 460 nm is obtained. ) Exists in large numbers. FIG. 8 is a copy of the cathode minescence intensity in-plane distribution, and the original photograph has been submitted to the JPO as a reference photograph.
When the non-light emitting region overlaps the laser stripe, the threshold value of the semiconductor laser element is increased and the slope efficiency is deteriorated.
[0006]
Accordingly, an object of the present invention is to provide a nitride-based semiconductor light-emitting device having an active layer having a quantum well structure with good crystallinity and high light emission efficiency.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a nitride-based semiconductor light-emitting device according to the present invention (hereinafter referred to as a first invention) has a quantum well structure active layer made of a nitride-based compound semiconductor layer containing In. In a physical semiconductor light emitting device,
The strain compensation layer having a band gap energy larger than the band gap energy of the barrier layer constituting the quantum well structure includes at least one well layer and the at least one well layer among the well layers constituting the quantum well structure. It is characterized by being interposed between the barrier layers.
[0008]
In the first invention, although it is preferable that a strain compensation layer is interposed between all well layers and both barrier layers sandwiching the well layers, at least one well layer and both barriers sandwiching the at least one well layer are provided. A strain compensation layer may be interposed between the layers.
The composition of all strain compensation layers does not have to be the same, and the composition of the two strain compensation layers interposed between the well layer and both barrier layers sandwiching the well layer may be different from each other.
[0009]
Another nitride-based semiconductor light-emitting device according to the present invention (hereinafter referred to as a second invention) is a nitride-based semiconductor light-emitting device having an active layer having a quantum well structure composed of a nitride-based compound semiconductor layer containing In. ,
A strain compensation layer having a band gap energy larger than that of the barrier layer constituting the quantum well structure is interposed in the barrier layer or the well layer.
[0010]
In the second invention, although it is preferable to interpose a strain compensation layer in every barrier layer or well layer, a strain compensation layer is interposed in at least one barrier layer or in at least one well layer. May be.
The composition of all strain compensation layers does not have to be the same. For example, even if the composition of at least two barrier layers among the barrier layers interposed in each barrier layer or each well layer is different from each other, good.
[0011]
The first and second inventions can be applied as long as the active layer has a quantum well structure made of a nitride-based compound semiconductor layer containing In. For example, when the well layer and the barrier layer are composed of InGaN layers, the strain compensation layer is an AlGaN layer having Al instead of In.
[0012]
The strain compensation layer is not necessarily interposed between the well layer and the barrier layer, in the well layer, or in the barrier layer, but may be interposed in the light guide layer.
That is, another nitride-based semiconductor light-emitting device according to the present invention (hereinafter referred to as a third invention) is a nitride-based semiconductor light-emitting device having an active layer having a quantum well structure composed of a nitride-based compound semiconductor layer containing In. In the element
A strain compensation layer having a band gap energy larger than the band gap energy of both the light guide layer and the barrier layer constituting the quantum well structure is provided in at least one of the light guide layers provided above and below the active layer. It is characterized by intervening.
[0013]
In a preferred embodiment of the third invention, a plurality of strain compensation layers are periodically interposed in the light guide layer. When the light guide layer is composed of an InGaN layer, the strain compensation layer is an AlGaN layer having Al instead of In.
[0014]
In a preferred embodiment of the first to third inventions, the strain compensation layer is thinner than both the well layer and the barrier layer. Thereby, it is possible to prevent the strain compensation layer from affecting the optical characteristics of the nitride-based semiconductor light-emitting element.
In the first to third aspects of the invention, the nitride semiconductor laser element is a semiconductor laser element having a laminated structure of nitride compound semiconductor layers. A nitride-based compound semiconductor has nitrogen (N) as a group V and has a composition of Al a B b G c In d N x P y As z (a + b + c + d = 1, 0 ≦ a, b, c, d ≦ 1, x + y + z = 1, 0 <x ≦ 1, 0 ≦ y, z ≦ 1).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below specifically and in detail with reference to the accompanying drawings. It should be noted that the film formation method, the composition and thickness of the compound semiconductor layer, and the like shown in the following embodiment examples are merely examples for facilitating the understanding of the present invention, and the present invention is limited to these examples. It is not a thing.
Embodiment 1
This embodiment is an example of an embodiment in which the nitride-based semiconductor light-emitting device according to the first invention is applied to a GaN-based semiconductor laser device. FIG. 1 shows the activity of the GaN-based semiconductor laser device of this embodiment. FIG. 2 is a cross-sectional view showing the configuration in the vicinity of the layer, and FIG. 2 is a band structure diagram in the vicinity of the active layer.
The GaN-based semiconductor laser device of the present embodiment is a semiconductor laser device having an emission wavelength of 460 nm, and the structure 10 near the active layer has a lower GaN light guide layer 12 having a thickness of 80 nm, as shown in FIG. The barrier layer 14, the strain compensation layer 16 </ b> A, the well layer 18, and the strain compensation layer 16 </ b> B are composed of three periods, the barrier layer 14, and the upper GaN light guide layer 20 having a thickness of 80 nm.
[0016]
The barrier layer 14 is an In X1 Ga 1 -X1 N (X1 = 0.02) layer having a thickness of 50 mm, and the strain compensation layer 16 is an Al X2 Ga 1 -X2 N (X2 = 0.04) layer having a thickness of 10 mm. The well layer 18 is configured as an In X3 Ga 1 -X3 N (X3 = 0.18) layer having a thickness of 25 mm.
In this embodiment, the strain compensation layer 16 is interposed between all the well layers 18 and the adjacent barrier layers 14. As shown in FIG. 2, the band gap energy of the strain compensation layers 16A, B is larger than the band gap energy of the barrier layer 14, and the lattice constant in the free standing of the strain compensation layers 16A, B is Smaller than that.
[0017]
Observing the in-plane distribution of the cathode minescence intensity of the active layer having the active layer structure of Embodiment 1, as shown in FIG. 3, the entire region emits light at 460 nm, and no non-light emitting region exists. Compared with the in-plane distribution of the cathode minence intensity of the conventional active layer shown in FIG. 8, the effect of the present invention can be fully recognized. FIG. 3 shows a copy of the cathode minescence intensity in-plane distribution. The original photo was submitted to the JPO as a reference photo.
In the present embodiment example, when the active layer is crystal-grown, the strain compensation layer 16 is interposed between the well layer 18 and the barrier layer 14 so that the accumulation of strain is alleviated, so that crystal defects are hardly generated. Thus, the non-light emitting area is reduced.
As a result, the threshold value of the nitride-based semiconductor laser device having the structure 10 in the vicinity of the active layer of this embodiment is lowered, and the slope efficiency is improved.
[0018]
In this embodiment, the strain compensation layers 16A and 16B are AlGaN layers. However, the present invention is not limited to this, and the strain compensation layers 16A and B may be composed of InAlGaN layers as long as the band gap energy is larger than that of the barrier layer 14. In the present embodiment, the strain compensation layers 16A and 16B have the same film thickness and the same composition, but may have different compositions and film thicknesses.
In this embodiment, the strain compensation layer 16 is interposed between all the well layers 18 and the barrier layer 14 sandwiching the well layers 18. However, the present invention is not limited to this. May be interposed between the barrier layer 14 and the barrier layer 14.
Furthermore, the active layer is not limited to a three-period quantum well structure.
[0019]
In this embodiment, the barrier layer 14 is an InGaN layer, but may be composed of a quaternary mixed crystal InAlGaN layer.
Moreover, although the light guide layers 12 and 20 are GaN layers, they are not limited to GaN, and any of InGaN, AlGaN, and InAlGaN may be used, and a structure in which they are stacked may be used. The light guide layers 12 and 20 do not have to be the same. For example, the Al and In compositions may be different or the film thicknesses may be different, and one may be a single layer film and the other may be a laminated film. good.
[0020]
Embodiment 2
This embodiment is an example of an embodiment in which the nitride-based semiconductor light-emitting device according to the second invention is applied to a GaN-based semiconductor laser device, and FIG. 4 is a band structure diagram in the vicinity of the active layer.
The GaN-based semiconductor laser device of the present embodiment is a semiconductor laser device having an emission wavelength of 460 nm, and the structure 30 in the vicinity of the active layer includes a lower GaN light guide layer 32 having a thickness of 80 nm, as shown in FIG. The barrier layer 34, the strain compensation layer 36 provided in the barrier layer 34, and the three periods of the well layer 38, the barrier layer 34, and the upper GaN light guide layer 40 having a thickness of 80 nm are included.
[0021]
The compositions of the barrier layer 34, the strain compensation layer 36, and the well layer 38 are the same as those in the first embodiment.
As shown in FIG. 3, the band gap energy of the strain compensation layer 36 is larger than the band gap energy of the barrier layer 34, and the lattice constant in the free standing of the strain compensation layer 36 is smaller than that of the barrier layer 34.
[0022]
In the present embodiment example, when the active layer is crystal-grown, the strain compensation layer 36 is interposed in the barrier layer 34, so that the accumulation of strain is alleviated, so that crystal defects are generated and reduced. Similarly, the non-light emitting area is reduced.
As a result, the threshold value of the nitride-based semiconductor laser device having the structure 30 in the vicinity of the active layer of this embodiment is lowered, and the slope efficiency is improved.
[0023]
Embodiment 3
The present embodiment is another example of an embodiment in which the nitride-based semiconductor light-emitting device according to the second invention is applied to a GaN-based semiconductor laser device, and FIG. 5 is a band structure diagram in the vicinity of the active layer.
The GaN-based semiconductor laser device of the present embodiment is a semiconductor laser device having an emission wavelength of 460 nm, and the structure 50 in the vicinity of the active layer includes a lower GaN light guide layer 52 having a thickness of 80 nm, as shown in FIG. The barrier layer 54, the well layer 56, the strain compensation layer 58 provided in the well layer 56, the barrier layer 54, and the upper GaN light guide layer 60 having a thickness of 80 nm are configured.
[0024]
The compositions of the barrier layer 54, the well layer 56, and the strain compensation layer 58 are the same as those in the first embodiment.
As shown in FIG. 5, the band gap energy of the strain compensation layer 58 is larger than the band gap energy of the barrier layer 54, and the lattice constant in the free standing of the strain compensation layer 58 is smaller than that of the barrier layer 54.
[0025]
In this embodiment example, when the active layer is crystal-grown, the strain compensation layer 58 is interposed in the well layer 56, so that the accumulation of strain is alleviated, so that crystal defects are less likely to occur. Similarly, the non-light emitting area is reduced.
As a result, the threshold value of the nitride-based semiconductor laser device having the structure 50 in the vicinity of the active layer of this embodiment is lowered, and the slope efficiency is improved.
[0026]
Embodiment 4
This embodiment is an example of an embodiment in which the nitride-based semiconductor light-emitting device according to the third invention is applied to a GaN-based semiconductor laser device, and FIG. 6 is a band structure diagram in the vicinity of the active layer.
The GaN-based semiconductor laser device of the present embodiment is a semiconductor laser device having an emission wavelength of 460 nm, and the structure 70 in the vicinity of the active layer includes a lower GaN light guide layer 72 having a thickness of 80 nm, as shown in FIG. The active layer 74 has a multiple quantum well structure and an upper GaN light guide layer 76 having a thickness of 80 nm.
[0027]
In this embodiment, a plurality of strain compensation layers 78 are interposed in the lower and upper GaN light guide layers 72 and 76, respectively.
The average composition of the GaN light guide layers 72 and 76 is In x Ga 1 -XN (X = 0.02), and as shown in FIG. In each case, an Al X1 Ga 1 -X1 N (X1 = 0.04) strain compensation layer 78 having a thickness of 10 mm is interposed with a period of 200 mm.
[0028]
As shown in FIG. 6, the band gap energy of the strain compensation layer 78 is larger than the band gap energy of the GaN light guide layers 72 and 76, and the lattice constant in the free standing of the strain compensation layer 78 is GaN light guide layer 72. And less than that of 76.
[0029]
In the present embodiment example, since the strain compensation layer 78 is interposed in the light guide layers 72 and 76, strain accumulation is mitigated during crystal growth of the active layer, so that crystal defects are less likely to occur. Non-light emitting areas are reduced.
As a result, the threshold value of the nitride-based semiconductor laser device having the light guide layer structure of this embodiment is lowered, and the slope efficiency is improved.
[0030]
In this embodiment, a strain compensation layer may be interposed between the well layer and the barrier layer in addition to the light guide layers 72 and 76.
That is, as shown in FIG. 6, the active layer 74 having a multiple quantum well structure has an In X3 Ga 1 -X3 N (X3 = 0.18) well layer 80 with a thickness of 25 mm and a thickness of 50 mm with the well layer 80 interposed therebetween. In X2 Ga 1 -X2 N (X2 = 0.08) barrier layer 82 and a well layer 80 and a barrier layer 82 on both sides of the well layer 80 with a thickness of 10 mm Al X4 Ga 1 -X4 N (X4 = 0.04) It is composed of strain compensation layers 84A and 84B.
As shown in FIG. 6, the band gap energy of the strain compensation layer 84 is larger than the band gap energy of the barrier layer 82, and the lattice constant in the free standing of the strain compensation layer 84 is smaller than that of the barrier layer 82.
Thereby, in this embodiment, the effect of the present invention is further increased.
[0031]
【The invention's effect】
According to the first and second inventions, the strain compensation layer having a band gap energy larger than the band gap energy of the barrier layer is interposed between the well layer and both the barrier layers sandwiching the well layer, or the strain compensation By interposing the layer in the well layer or the barrier layer, the strain accumulation is reduced during crystal growth of the active layer, thereby suppressing the generation of crystal defects and reducing the non-light emitting region.
According to the third aspect of the present invention, the strain compensation layer having a band gap energy larger than the band gap energy of the light guide layer is interposed in the light guide layer, thereby reducing the accumulation of strain, thereby Generation | occurrence | production is suppressed and the non-light-emission area | region is reduced.
By applying the nitride semiconductor light emitting device according to the first to third inventions, a nitride semiconductor laser device having a small threshold current, an increased slope efficiency, and a high light emission efficiency at a predetermined light emission wavelength In addition, it is possible to realize a nitride-based light emitting diode with high emission efficiency at a constant emission wavelength.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration in the vicinity of an active layer of a GaN-based semiconductor laser device according to Embodiment 1;
2 is a band structure diagram in the vicinity of an active layer of a GaN-based semiconductor laser device according to Embodiment 1; FIG.
FIG. 3 is a copy of a photograph of an in-plane distribution of cathode minence intensity.
4 is a band structure diagram in the vicinity of an active layer of a GaN-based semiconductor laser device according to Embodiment 2. FIG.
5 is a band structure diagram in the vicinity of an active layer of a GaN-based semiconductor laser device according to Embodiment 3. FIG.
6 is a band structure diagram in the vicinity of an active layer of a GaN-based semiconductor laser device according to Embodiment 4. FIG.
FIG. 7 is a cross-sectional view of a 405 nm semiconductor laser device.
FIG. 8 is a copy of a photograph of the cathode minescence intensity in-plane distribution.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Structure near the active layer of the GaN-based semiconductor laser device of Example 1 12 ... Lower GaN light guide layer, 14 ... Barrier layer, 16 ... Strain compensation layer, 18 ... Well layer, 20 ... ... upper GaN light guide layer, 30 ... structure near the active layer of the GaN-based semiconductor laser device of Embodiment 2, 32 ... lower GaN light guide layer, 34 ... barrier layer, 36 ... strain compensation layer, 38 ... Well layer, 40... Upper GaN light guide layer, 50... Structure near the active layer of the GaN-based semiconductor laser device of Embodiment 3, 52... Lower GaN light guide layer, 54. ...... Well layer, 58 …… Strain compensation layer, 60 …… Upper GaN light guide layer, 70 …… Structure near the active layer of the GaN-based semiconductor laser device of Embodiment 4, 72 …… Lower GaN light guide layer, 74 …… Active layer with multiple quantum well structure, 76 …… GaN optical guide layer, 78... Strain compensation layer, 80... Well layer, 82... Barrier layer, 84 .. strain compensation layer, 90... 405 nm semiconductor laser element, 91. 92... N-GaN buffer layer, 93... N-AlGaN cladding layer, 94... GaN light guide layer, 95... Active layer, 96. ... p-GaN contact layer.

Claims (7)

井戸層及び障壁層がInGaN層で構成された量子井戸構造の活性層を有し、
AlGaN層からなる歪補償層が、前記量子井戸構造を構成する井戸層のうち少なくとも1層の井戸層と該少なくとも1層の井戸層を挟む両障壁層との間にそれぞれ介在しており、
前記AlGaN層の膜厚が、前記井戸層の膜厚及び前記障壁層の膜厚の双方より薄い、青色帯または緑色帯の窒化物系半導体発光素子。
The well layer and the barrier layer have an active layer having a quantum well structure composed of an InGaN layer,
A strain compensation layer composed of an AlGaN layer is interposed between at least one well layer of the well layers constituting the quantum well structure and both barrier layers sandwiching the at least one well layer ;
A blue or green band nitride-based semiconductor light-emitting device in which the AlGaN layer has a thickness smaller than both the thickness of the well layer and the thickness of the barrier layer .
前記活性層を含む窒化物系化合物半導体層からなる積層構造がサファイア基板上に設けられている請求項1に記載の窒化物系半導体発光素子。The nitride-based semiconductor light-emitting element according to claim 1, wherein a laminated structure including a nitride-based compound semiconductor layer including the active layer is provided on a sapphire substrate. 前記活性層の上下にInGaN層からなる光ガイド層が設けられており、AlGaN層からなる歪補償層が、前記光ガイド層の少なくとも一方の光ガイド層内に介在している請求項2に記載の窒化物系半導体発光素子。The light guide layer made of an InGaN layer is provided above and below the active layer, and a strain compensation layer made of an AlGaN layer is interposed in at least one light guide layer of the light guide layer. Nitride-based semiconductor light emitting device. 複数層の前記AlGaN層が前記光ガイド層内に周期的に介在している請求項3に記載の窒化物系半導体発光素子。The nitride-based semiconductor light-emitting element according to claim 3, wherein a plurality of the AlGaN layers are periodically interposed in the light guide layer. 前記AlGaN層が前記光ガイド層内に200Å周期で周期的に介在している請求項4に記載の窒化物系半導体発光素子。The nitride-based semiconductor light-emitting device according to claim 4, wherein the AlGaN layer is periodically interposed in the light guide layer with a period of 200 μm. 前記光ガイド層内の前記AlGaN層の膜厚が10Åである請求項5に記載の窒化物系半導体発光素子。The nitride-based semiconductor light-emitting element according to claim 5, wherein the thickness of the AlGaN layer in the light guide layer is 10 mm. 前記活性層の前記AlGaN層の膜厚が10Åである請求項6に記載の窒化物系半導体発光素子。The nitride-based semiconductor light-emitting element according to claim 6, wherein the thickness of the AlGaN layer of the active layer is 10 mm.
JP2002246368A 2002-08-27 2002-08-27 Nitride semiconductor light emitting device Expired - Lifetime JP4284946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246368A JP4284946B2 (en) 2002-08-27 2002-08-27 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246368A JP4284946B2 (en) 2002-08-27 2002-08-27 Nitride semiconductor light emitting device

Publications (3)

Publication Number Publication Date
JP2004087763A JP2004087763A (en) 2004-03-18
JP2004087763A5 JP2004087763A5 (en) 2005-10-20
JP4284946B2 true JP4284946B2 (en) 2009-06-24

Family

ID=32054287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246368A Expired - Lifetime JP4284946B2 (en) 2002-08-27 2002-08-27 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4284946B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657963B1 (en) 2005-06-28 2006-12-14 삼성전자주식회사 High power vertical external cavity surface emitting laser
KR100753518B1 (en) 2006-05-23 2007-08-31 엘지전자 주식회사 Nitride based light emitting diode
JP4655103B2 (en) 2008-04-14 2011-03-23 ソニー株式会社 GaN-based semiconductor light-emitting device, light-emitting device assembly, light-emitting device, driving method for GaN-based semiconductor light-emitting device, and image display device
JP2009259953A (en) * 2008-04-15 2009-11-05 Sharp Corp Nitride semiconductor laser element
JP2010003913A (en) * 2008-06-20 2010-01-07 Sharp Corp Nitride semiconductor light-emitting diode element and method of manufacturing the same
JP5196160B2 (en) 2008-10-17 2013-05-15 日亜化学工業株式会社 Semiconductor light emitting device
JP5044692B2 (en) * 2009-08-17 2012-10-10 株式会社東芝 Nitride semiconductor light emitting device
KR20120138080A (en) * 2011-06-14 2012-12-24 엘지이노텍 주식회사 Light emitting device
JP5868650B2 (en) * 2011-10-11 2016-02-24 株式会社東芝 Semiconductor light emitting device
KR101865405B1 (en) * 2011-10-13 2018-06-07 엘지이노텍 주식회사 Light emitting device
KR101983777B1 (en) * 2012-12-20 2019-05-29 엘지이노텍 주식회사 Light emitting device
JP2015053531A (en) * 2014-12-17 2015-03-19 株式会社東芝 Semiconductor light-emitting device
JP6225945B2 (en) * 2015-05-26 2017-11-08 日亜化学工業株式会社 Semiconductor laser element
US20160359086A1 (en) 2015-06-05 2016-12-08 Ostendo Technologies, Inc. Light Emitting Structures with Multiple Uniformly Populated Active Layers
JP6218791B2 (en) * 2015-10-28 2017-10-25 シャープ株式会社 Nitride semiconductor laser device
CN113451460B (en) * 2020-11-20 2022-07-22 重庆康佳光电技术研究院有限公司 Light emitting device and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966982B2 (en) * 1991-08-30 1999-10-25 株式会社東芝 Semiconductor laser
JP3658112B2 (en) * 1995-11-06 2005-06-08 日亜化学工業株式会社 Nitride semiconductor laser diode
JPH09139543A (en) * 1995-11-15 1997-05-27 Hitachi Ltd Semiconductor laser element
JPH1065271A (en) * 1996-08-13 1998-03-06 Toshiba Corp Gallium nitride based semiconductor light-emitting element
JP2002043695A (en) * 2000-07-26 2002-02-08 Sharp Corp Light emitting element
JP2002171028A (en) * 2000-11-30 2002-06-14 Nichia Chem Ind Ltd Laser element
JP2002190635A (en) * 2000-12-20 2002-07-05 Sharp Corp Semiconductor laser element and its fabricating method

Also Published As

Publication number Publication date
JP2004087763A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
KR100597532B1 (en) Semiconductor Device
JP4285949B2 (en) Nitride semiconductor light emitting device
JP5305277B2 (en) Nitride-based light emitting device
JP4284946B2 (en) Nitride semiconductor light emitting device
JP5044692B2 (en) Nitride semiconductor light emitting device
US9236533B2 (en) Light emitting diode and method for manufacturing same
JP4441563B2 (en) Nitride semiconductor laser device
JPH10242512A (en) Semiconductor light emitting device
JP2011035427A (en) Semiconductor optoelectronic device
KR100826422B1 (en) Nitride semiconductor light emitting device
JP2001237457A (en) Light-emitting element
JP6255939B2 (en) Nitride semiconductor laser device
KR101199677B1 (en) Semiconductor light-emitting device and method for manufacturing same
JPH11298090A (en) Nitride semiconductor element
JP2010087463A (en) Nitride semiconductor device
JP2003204122A (en) Nitride semiconductor element
JP2006310488A (en) Group iii nitride-based semiconductor light emitting device and its manufacturing method
JP2006245165A (en) Semiconductor light-emitting element
JP3519990B2 (en) Light emitting device and manufacturing method thereof
JP4884826B2 (en) Semiconductor light emitting device
JP4889142B2 (en) Nitride semiconductor laser device
JP5380516B2 (en) Nitride semiconductor light emitting device
JP2002094190A (en) Nitride-based semiconductor light emitting device
JP2002261393A (en) Nitride semiconductor device
JP2003229600A (en) Light-emitting semiconductor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4284946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term