JPH07202328A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH07202328A
JPH07202328A JP28039794A JP28039794A JPH07202328A JP H07202328 A JPH07202328 A JP H07202328A JP 28039794 A JP28039794 A JP 28039794A JP 28039794 A JP28039794 A JP 28039794A JP H07202328 A JPH07202328 A JP H07202328A
Authority
JP
Japan
Prior art keywords
quantum well
layer
ingaasp
barrier layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28039794A
Other languages
Japanese (ja)
Other versions
JP2682474B2 (en
Inventor
Yoshihiro Sasaki
善浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6280397A priority Critical patent/JP2682474B2/en
Publication of JPH07202328A publication Critical patent/JPH07202328A/en
Application granted granted Critical
Publication of JP2682474B2 publication Critical patent/JP2682474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve characteristics such as a threshold value and slope efficiency of a semiconductor laser by thinly forming barrier layers and having a quantum effect together with effectively injecting carriers into a quantum well. CONSTITUTION:InGaAsP having a wider band gap than InGaAsP of the quantum well layers 4 is used for barrier layers 3. Then, these barrier layers 3 have InGaAsP having two or more different band gaps or are the InGaAsP layers having continuously changing compositions. Then, these barrier layers 3 are InGaAsP layers either having two or more different band gaps or having continuously changing compositions and the barrier layers 3 have a thickness such that wave functions of carriers between the respective quantum wells are not overlapped. In this way, while thinly forming the barrier wall layers 3 having a quantum effect, carriers are injected effectively into the quantum well quantity. Thereby, the characteristics of a threshold value and slope efficiency of a semiconductor laser are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信システムの光源
及び光計測器の光源である長波長半導体レーザに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long wavelength semiconductor laser which is a light source of an optical communication system and a light source of an optical measuring instrument.

【0002】[0002]

【従来の技術】近年、半導体レーザの活性層に多重量子
井戸を用いることでレーザ特性の著しい改善がなされた
との報告が数多くある。
2. Description of the Related Art In recent years, there have been many reports that laser characteristics have been remarkably improved by using multiple quantum wells in the active layer of a semiconductor laser.

【0003】図3は、従来の1.3μm多重量子井戸型
半導体レーザの活性層におけるバンド構造を模式的に示
したものである。同図中1はn型InP基板上に形成さ
れたn−InPバッファ層、2は1.13μm組成のI
nGaAsP光導波路層、3は1.13μm組成InG
aAsP障壁層、4は1.4μm組成InGaAsP量
子井戸層で総数は7層、5はp−InPクラッド層、1
1は電子の第一量子準位、12はホールの第一量子準位
をそれぞれ示す。この場合量子井戸層の厚さは電子とホ
ールの第一量子準位間のエネルギー差が波長として1.
3μmになるように42オングストローム程度であり、
障壁層の厚さはキャリアの波動関数が隣接する量子井戸
間で重ならないように100オングストローム程度であ
る。この例でも分かるように、従来の多重量子井戸レー
ザにおいては各障壁層の組成は同一であり、それぞれの
障壁層は量子井戸層より大きなバンドギャップをもつ均
一な組成の1つの層により構成されているのが一般的で
ある。このような障壁層が単一組成である従来の多重量
子井戸レーザにおいては、量子井戸間でのキャリアの波
動関数の重なりを低減するために障壁層を厚くし、かつ
障壁層上に分布するキャリアの数を減らして量子井戸層
へ注入されるキャリアの数を増やすために障壁層を薄く
するという相反する二つの要素の妥協点として障壁層の
厚さが決定されていた。
FIG. 3 schematically shows the band structure in the active layer of a conventional 1.3 μm multiple quantum well semiconductor laser. In the figure, 1 is an n-InP buffer layer formed on an n-type InP substrate, and 2 is an I having a composition of 1.13 μm.
nGaAsP optical waveguide layer, 3 is 1.13 μm composition InG
aAsP barrier layer, 4 is a 1.4 μm composition InGaAsP quantum well layer, the total number is 7, and 5 is a p-InP clad layer.
Reference numeral 1 denotes the first quantum level of electrons, and 12 denotes the first quantum level of holes. In this case, the thickness of the quantum well layer is such that the energy difference between the first quantum levels of electrons and holes is 1.
It is about 42 Å so as to be 3 μm,
The thickness of the barrier layer is about 100 Å so that carrier wave functions do not overlap between adjacent quantum wells. As can be seen from this example, in the conventional multiple quantum well laser, the composition of each barrier layer is the same, and each barrier layer is composed of one layer of uniform composition having a larger band gap than the quantum well layer. It is common to have In a conventional multi-quantum well laser in which such a barrier layer has a single composition, the barrier layer is thickened in order to reduce the overlap of carrier wave functions between the quantum wells, and the carriers distributed on the barrier layer are reduced. The thickness of the barrier layer has been determined as a compromise between the two contradictory factors of making the barrier layer thin in order to reduce the number of carriers and increase the number of carriers injected into the quantum well layer.

【0004】一方、量子井戸層と障壁層のバンドギャッ
プ差がとれるGaAs系の短波長帯のレーザでは“特開
昭62−35591”にあるように障壁層をバンドギャ
ップの異なる2種類以上の半導体層を積層することによ
り構成し、これによってキャリアをトンネリングさせる
部分と、キャリアを量子準位に閉じ込める部分とに分け
ることでキャリアの注入効率と量子効果の両立をはかる
ことなどが提案されている。
On the other hand, in a GaAs-based short wavelength band laser in which the band gap difference between the quantum well layer and the barrier layer can be secured, the barrier layer is composed of two or more kinds of semiconductors having different band gaps as described in "JP-A-62-35591". It has been proposed that the injection efficiency of the carrier and the quantum effect are made compatible by forming the layer by stacking the layers, and dividing the carrier into a part for tunneling the carrier and a part for confining the carrier in the quantum level.

【0005】[0005]

【発明が解決しようとする課題】この従来の障壁層が単
一組成である多重量子井戸レーザでは量子効果を十分に
発揮させるために隣接する量子井戸間でのキャリアの波
動関数が交わらないように障壁層厚を厚くすることが必
要である。その結果として障壁層上にキャリアが分布し
てしまい量子井戸へのキャリアの注入効率が悪いという
欠点を有している。また、光通信に使用する長波長帯の
レーザでは“特開昭62−35591”にあるようなキ
ャリアの第二量子準位を使ってキャリアをトンネリング
させる方法は量子井戸層と障壁層とのバンドギャップ差
が大きくとれないため第二量子準位が存在できず適用す
ることが出来ない。
In the conventional multiple quantum well laser in which the barrier layer has a single composition, it is necessary to prevent carrier wave functions from crossing between adjacent quantum wells in order to sufficiently exert the quantum effect. It is necessary to increase the barrier layer thickness. As a result, carriers are distributed on the barrier layer, and there is a drawback that carrier injection efficiency into the quantum well is poor. In the case of a long-wavelength laser used for optical communication, a method of tunneling carriers using the second quantum level of carriers as described in "Japanese Patent Laid-Open No. 62-35591" is a band of a quantum well layer and a barrier layer. Since the gap difference cannot be large, the second quantum level cannot exist and cannot be applied.

【0006】本発明は上記の問題点を解決するためにな
されたもので、障壁層を厚く形成し量子効果を保持し且
つ量子井戸に効果的にキャリアを注入し半導体レーザの
閾値、スロープ効率等の特性を向上させることを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and a barrier layer is formed thick to maintain a quantum effect and carriers are effectively injected into a quantum well, so that the threshold value of a semiconductor laser, slope efficiency, etc. The purpose is to improve the characteristics of.

【0007】[0007]

【課題を解決するための手段】本発明の長波長多重量子
井戸半導体レーザは量子井戸層にInGaAsもしくは
InGaAsPを用い、障壁層に量子井戸層のInGa
AsPよりも広いバンドギャップを有するInGaAs
Pを用いており、前記障壁層が少なくとも2種類以上の
異なるバンドギャップをもつInGaAsPを持つか、
または、組成が連続的に変化するInGaAsP層であ
り、かつ、障壁層は各量子井戸層間でのキャリアの波動
関数が重ならない厚みを有することを特徴とする。
The long wavelength multiple quantum well semiconductor laser of the present invention uses InGaAs or InGaAsP for the quantum well layer and InGa of the quantum well layer for the barrier layer.
InGaAs with wider bandgap than AsP
P is used, and the barrier layer has InGaAsP having at least two kinds of different band gaps,
Alternatively, the composition is an InGaAsP layer whose composition changes continuously, and the barrier layer has a thickness such that carrier wave functions do not overlap between the quantum well layers.

【0008】[0008]

【作用】電極から多重量子井戸からなる活性部に注入さ
れたキャリアはある割合で量子井戸層に注入されるが残
りのキャリアは障壁層や光導波路層に分布する。量子効
果を十分に発揮するために障壁層を厚くすれば障壁層に
分布するキャリアの割合が増加し量子井戸層に注入され
る割合が減少する。従来の均一組成の障壁層から、複数
の組成からなる複数の薄い層で構成する障壁層か、組成
が連続的に変化するような障壁層にすれば障壁層上のキ
ャリアはよりエネルギーの低い状態に容易に緩和するこ
とができるため障壁層上には分布せず量子井戸層へのキ
ャリアの注入効率は向上する。また、障壁層全体の厚み
は量子井戸層にトラップされたキャリアの波動関数が隣
接する量子井戸のキャリアの波動関数と重ならない厚み
であるため量子効果を十分に発揮できる。
The carriers injected from the electrode into the active part composed of multiple quantum wells are injected into the quantum well layer at a certain ratio, but the remaining carriers are distributed in the barrier layer and the optical waveguide layer. If the thickness of the barrier layer is increased in order to sufficiently exert the quantum effect, the proportion of carriers distributed in the barrier layer increases and the proportion injected into the quantum well layer decreases. Carriers on the barrier layer have a lower energy by changing from a conventional barrier layer of uniform composition to a barrier layer composed of multiple thin layers of multiple compositions, or a barrier layer in which the composition changes continuously. Since it can be easily relaxed, it is not distributed on the barrier layer and the carrier injection efficiency into the quantum well layer is improved. Further, since the thickness of the entire barrier layer is such that the wave function of carriers trapped in the quantum well layer does not overlap with the wave function of carriers of the adjacent quantum wells, the quantum effect can be sufficiently exhibited.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1は、本発明の第1の実施例の1.55
μm帯多重量子井戸型半導体レーザの活性層におけるバ
ンド構造を模式的に示したものである。同図中1はn−
InPバッファ層、2は1.13μm組成のInGaA
sP光導波路層、3は1.2μm組成InGaAsP障
壁層、6は1.13μm組成InGaAsP障壁層、4
は1.65μm組成歪InGaAsP量子井戸層、5は
p−InPクラッド層である。それぞれの層の厚さはn
−InPバッファ層が0.4μm、InGaAsP光導
波路層がp側、n側それぞれ60nm、1.2μm組成
InGaAsP障壁層は1.13μmInGaAsP障
壁層の両わきでそれぞれ3nm、1.13μmInGa
AsP障壁層は4nm、量子井戸層が4nm、p−In
Pクラッド層が0.7μmである。量子井戸の数は5層
である。11は電子の第一量子準位、12はホールの第
一量子準位をそれぞれ示す。尚、この様に極めて薄い半
導体層を形成する方法として有機金属気相成長法もしく
は分子線成長法を用いる。この後、例えばホトリソグラ
フ法とLPE成長法をもちいてDC−PBH構造等の埋
め込み構造に埋め込み半導体レーザにする。この実施例
では障壁層全体の厚さは10nmとなり隣接する量子井
戸間のキャリアの波動関数の重なりを防止でき量子効果
を十分に発揮する事ができる。また、障壁層のそれぞれ
の組成の層厚は4nm以下であるため障壁層上のキャリ
アは容易によりエネルギーの低い状態に緩和するため量
子井戸層への注入効率も向上している。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows the first embodiment of 1.55 of the present invention.
1 schematically shows a band structure in an active layer of a μm band multiple quantum well type semiconductor laser. In the figure, 1 is n-
InP buffer layer, 2. InGaA having a composition of 1.13 μm
sP optical waveguide layer, 3 is a 1.2 μm composition InGaAsP barrier layer, 6 is a 1.13 μm composition InGaAsP barrier layer, 4
Is a 1.65 μm compositionally strained InGaAsP quantum well layer, and 5 is a p-InP cladding layer. The thickness of each layer is n
-InP buffer layer is 0.4 μm, InGaAsP optical waveguide layer is 60 nm on p-side and n-side, 1.2 μm composition InGaAsP barrier layer is 3 nm and 1.13 μm InGa on both sides of 1.13 μm InGaAsP barrier layer, respectively.
The AsP barrier layer is 4 nm, the quantum well layer is 4 nm, and p-In
The P clad layer has a thickness of 0.7 μm. The number of quantum wells is 5. Reference numeral 11 denotes the first quantum level of electrons, and 12 denotes the first quantum level of holes. As a method of forming such an extremely thin semiconductor layer, a metal organic chemical vapor deposition method or a molecular beam growth method is used. After this, for example, a photolithography method and an LPE growth method are used to form a buried semiconductor laser in a buried structure such as a DC-PBH structure. In this embodiment, the total thickness of the barrier layer is 10 nm, and it is possible to prevent the carrier wave functions from overlapping between adjacent quantum wells and to fully exert the quantum effect. Further, since the layer thickness of each composition of the barrier layer is 4 nm or less, the carriers on the barrier layer are easily relaxed to a state of low energy, so that the injection efficiency into the quantum well layer is also improved.

【0010】この実施例では共振器長300μmで前
方、後方端面にそれぞれ1.0%,90%のコーティン
グを施し光出力特性を測定したところ室温で閾値が20
mA、スロープ効率0.5W/Aの値が得られた。この
値は従来の多重量子井戸レーザにくらべて閾値で約5m
A低く、スロープ効率で約1割程大きかった。
In this embodiment, 1.0% and 90% coatings were applied to the front and rear end faces, respectively, with a cavity length of 300 μm, and the optical output characteristics were measured.
Values of mA and slope efficiency of 0.5 W / A were obtained. This value is about 5m in threshold value compared with the conventional multiple quantum well laser.
A was low, and the slope efficiency was about 10% greater.

【0011】図2は本発明の第2の実施例の1.3μm
帯多重量子井戸型半導体レーザの活性層におけるバンド
構造を模式的に示したものである。同図中1はn−In
Pバッファ層、2は1.13μm組成のInGaAsP
光導波路層、3はInGaAsP障壁層、4は1.44
μm組成歪InGaAsP量子井戸層、5はp−InP
クラッド層である。この第2の実施例ではInGaAs
P障壁層が量子井戸層との界面では1.2μm組成であ
り、障壁層の中心では1.13μm組成そして次の量子
井戸層との界面では1.2μm組成になるようにInP
との格子整合を保ったまま連続的に組成を変えられてい
ることに特徴がある。このような障壁層を作成するには
例えば有機金属気相成長法を用いInPに格子整合する
条件で原料流量を変化させればよい。この障壁層の全体
の厚みは10nmであり量子井戸間のキャリアの波動関
数の重なりを防止するのに十分である。また、障壁層上
ではポテンシャル傾斜しているためキャリアは障壁層上
に安定に存在できないため量子井戸層へのキャリアの注
入効率も極めて高い。この第2の実施例は、極めて低い
閾値を実現するために量子井戸総数が10層以上と多い
ときにヘテロ界面の数を減らしヘテロ界面での散乱ロス
を低減できる点で有用である。半導体レーザ化について
は実施例1と全く同じである。
FIG. 2 shows 1.3 μm of the second embodiment of the present invention.
1 schematically shows a band structure in an active layer of a band multi-quantum well semiconductor laser. In the figure, 1 is n-In
P buffer layer, 2 is InGaAsP having a composition of 1.13 μm
Optical waveguide layer, 3 is InGaAsP barrier layer, 4 is 1.44
μm composition strain InGaAsP quantum well layer, 5 is p-InP
It is a clad layer. In this second embodiment, InGaAs
The P barrier layer has a composition of 1.2 μm at the interface with the quantum well layer, the center of the barrier layer has a composition of 1.13 μm, and the interface with the next quantum well layer has a composition of 1.2 μm.
The feature is that the composition can be continuously changed while maintaining the lattice matching with. In order to form such a barrier layer, for example, a metalorganic vapor phase epitaxy method may be used and the flow rate of the raw material may be changed under the condition of lattice matching with InP. The total thickness of this barrier layer is 10 nm, which is sufficient to prevent overlapping of carrier wave functions between quantum wells. Further, since the potential is inclined on the barrier layer, the carriers cannot stably exist on the barrier layer, so that the carrier injection efficiency into the quantum well layer is extremely high. This second embodiment is useful in that the number of hetero interfaces can be reduced and scattering loss at the hetero interfaces can be reduced when the total number of quantum wells is as large as 10 layers or more in order to realize an extremely low threshold value. The production of a semiconductor laser is exactly the same as in the first embodiment.

【0012】第2の実施例では共振器長300μmで端
面にそれぞれ30%,90%の低反射膜と高反射膜をつ
けた場合の閾値は約5mAで従来の多重量子井戸半導体
レーザにくらべ閾値が5mA程低かった。
In the second embodiment, the threshold is about 5 mA when the cavity length is 300 μm and the low-reflection film and the high-reflection film of 30% and 90% are respectively attached to the end faces, which is about 5 mA compared to the conventional multiple quantum well semiconductor laser. Was as low as 5 mA.

【0013】次に第3の実施例について述べる。図4に
第3の実施例の横注入型多重量子井戸DFBレーザの断
面図を示す。半絶縁性InP基板21上に回折格子を形
成しその上にInGaAsP光導波路層2で挟んだ多重
量子井戸からなる活性層22と高抵抗InP層23を積
層する。次にn電極用のチャンネルを形成しn−InP
26で埋め込み、更にp側電極用にチャンネルを形成し
たあとp−InP24及びP+ −InGaAsコンタク
ト層25を順次形成する。最後にSiO2 絶縁膜29で
分離されたn28及びp27型の電極金属を形成する。
多重量子井戸活性部を図5に模式的に示す。量子井戸層
4は1.44μm組成の歪InGaAsPである。障壁
層6は量子井戸層との界面では1.13μm組成であり
障壁層の中心では1.05μm組成そして次の量子井戸
層との界面では1.13μm組成になるようにInPと
の格子整合を保ったまま連続的に組成を変えられたIn
GaAsPで厚さは100オングストロームである。光
導波路2は回折格子が形成された半絶縁性InP基板2
1及び高抵抗InP層23との界面では1.0μm組
成,量子井戸層との界面では1.13μm組成になるよ
うにInPとの格子整合を保ったまま連続的に組成を変
えられたInGaAsPである。この実施例の場合は、
電子がn−InP26から、ホールがp−InP22か
ら量子井戸に横方向から注入されることになる。量子井
戸層数は20層である。障壁層の厚みを変えてフォトル
ミネッセンスベクトルを測定したところ80オングスト
ローム以下で波動関数の重なりでミニバンドが形成され
たためと思われるPL半値幅の増大が観測されている。
従って、障壁層の厚みは100オングストロームあれば
波動関数の重なりを十分防止できていると考えられる。
横注入レーザの場合は量子井戸層の位置に関わらず均一
に量子井戸にキャリアが注入されるため量子井戸層数を
多くできる。量子井戸層数が多いということは障壁層の
層数も多いということであり、その結果従来の障壁層組
成が一定の障壁層では障壁層上に分布するキャリアの割
合が増えることになる。この第3の実施例では図5に示
す様に障壁層上ではポテンシャルが傾斜しておりキャリ
アは障壁層上に安定に存在できないため量子井戸層への
キャリアの注入効率が更に改善される。この第3の実施
例は緩和振動周波数を増大させる為に量子井戸層数を極
めて多くできる点で有用である。
Next, a third embodiment will be described. FIG. 4 shows a sectional view of a lateral injection type multiple quantum well DFB laser of the third embodiment. A diffraction grating is formed on a semi-insulating InP substrate 21, and an active layer 22 composed of multiple quantum wells sandwiched between InGaAsP optical waveguide layers 2 and a high-resistance InP layer 23 are stacked on the diffraction grating. Next, a channel for n-electrode is formed to form n-InP.
26, and a channel is formed for the p-side electrode, and then p-InP 24 and P + -InGaAs contact layer 25 are sequentially formed. Finally, n28 and p27 type electrode metals separated by the SiO 2 insulating film 29 are formed.
The multiple quantum well active part is schematically shown in FIG. The quantum well layer 4 is strained InGaAsP having a composition of 1.44 μm. The barrier layer 6 is 1.13 μm in composition at the interface with the quantum well layer, 1.05 μm in composition at the center of the barrier layer, and 1.13 μm in composition at the interface with the next quantum well layer. In whose composition was continuously changed while maintaining
GaAsP has a thickness of 100 Å. The optical waveguide 2 is a semi-insulating InP substrate 2 on which a diffraction grating is formed.
1 and the InGaAsP having a high resistance InP layer 23 having a composition of 1.0 μm and an interface with the quantum well layer of 1.13 μm, the composition of which is continuously changed while maintaining lattice matching with InP. is there. In this example,
Electrons are laterally injected into the quantum well from n-InP26 and holes from p-InP22. The number of quantum well layers is 20. When the photoluminescence vector was measured while changing the thickness of the barrier layer, an increase in the PL half-width, which is considered to be due to the formation of a miniband due to the overlapping of the wave functions, was observed at 80 Å or less.
Therefore, it is considered that if the thickness of the barrier layer is 100 Å, the overlapping of the wave functions can be sufficiently prevented.
In the case of a lateral injection laser, the number of quantum well layers can be increased because carriers are uniformly injected into the quantum wells regardless of the positions of the quantum well layers. The large number of quantum well layers means that the number of barrier layers is also large. As a result, in a conventional barrier layer having a constant composition of the barrier layer, the proportion of carriers distributed on the barrier layer increases. In the third embodiment, as shown in FIG. 5, the potential is inclined on the barrier layer and the carriers cannot stably exist on the barrier layer, so that the efficiency of carrier injection into the quantum well layer is further improved. The third embodiment is useful in that the number of quantum well layers can be extremely increased in order to increase the relaxation oscillation frequency.

【0014】第3の実施例では閾値の約2倍の駆動電流
での緩和振動周波数は12GHzと従来の横注型レーザ
にくらべ約1.5倍高速になっていた。
In the third embodiment, the relaxation oscillation frequency at a drive current about twice the threshold value is 12 GHz, which is about 1.5 times faster than that of the conventional lateral injection laser.

【0015】なお、上記実施例では埋め込み型の半導体
レーザの例をあげたが、多重量子井戸層を活性層とする
あらゆる構造のレーザに適用できる。
In the above embodiments, the buried type semiconductor laser is taken as an example, but the present invention can be applied to lasers of any structure having a multiple quantum well layer as an active layer.

【0016】[0016]

【発明の効果】以上説明したように、本発明による多重
量子井戸半導体レーザでは量子効果を十分に引き出すた
め各量子井戸間のキャリアの波動関数の重なりを抑制す
るのに十分な厚さの障壁層を持ちながらも、キャリアの
障壁層上への分布の割合を低減できるため量子井戸層へ
のキャリアの注入効率が向上しており、閾値、スロープ
効率等のレーザ特性が向上するという効果を奏する。
As described above, in the multiple quantum well semiconductor laser according to the present invention, in order to sufficiently bring out the quantum effect, the barrier layer having a sufficient thickness to suppress the overlapping of carrier wave functions between the quantum wells. However, since the ratio of carriers distributed on the barrier layer can be reduced, carrier injection efficiency into the quantum well layer is improved, and laser characteristics such as threshold value and slope efficiency are improved.

【0017】第一の実施例では共振器長300μmで前
方、後方端面にそれぞれ1.0%,90%のコーティン
グを施し光出力特性を測定したところ室温で閾値が20
mA、スロープ効率0.5W/Aの値が得られた。この
値は従来の多重量子井戸レーザにくらべて閾値で約5m
A低く、スロープ効率で約一割程大きかった。
In the first embodiment, when the resonator length is 300 μm, the front and rear end faces are coated with 1.0% and 90%, respectively, and the optical output characteristics are measured.
Values of mA and slope efficiency of 0.5 W / A were obtained. This value is about 5m in threshold value compared with the conventional multiple quantum well laser.
A was low, and the slope efficiency was about 10% greater.

【0018】また、第二の実施例では共振器長300μ
mで端面にそれぞれ30%,90%の低反射膜と高反射
膜をつけた場合の閾値は約5mAで従来の多重量子井戸
半導体レーザにくらべ閾値が5mA程低かった。
In the second embodiment, the resonator length is 300 μm.
The thresholds when the low reflection film and the high reflection film of 30% and 90% were respectively attached to the end faces of m, were about 5 mA, which was about 5 mA lower than that of the conventional multiple quantum well semiconductor laser.

【0019】更に、第三の実施例では閾値の約2倍の駆
動電流での緩和振動周波数は12GHzと従来の横注型
レーザにくらべ約1.5倍高速になっていた。
Further, in the third embodiment, the relaxation oscillation frequency at a drive current about twice the threshold value is 12 GHz, which is about 1.5 times faster than that of the conventional lateral injection laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のバンド構造を示す図で
ある。
FIG. 1 is a diagram showing a band structure of a first embodiment of the present invention.

【図2】本発明の第2の実施例のバンド構造を示す図で
ある。
FIG. 2 is a diagram showing a band structure of a second embodiment of the present invention.

【図3】従来の多重量子井戸半導体レーザのバンド構造
を示す図である。
FIG. 3 is a diagram showing a band structure of a conventional multiple quantum well semiconductor laser.

【図4】本発明の第3の実施例の断面図である。FIG. 4 is a sectional view of a third embodiment of the present invention.

【図5】本発明の第3の実施例の活性部を模式的に描い
た図である。
FIG. 5 is a diagram schematically illustrating an active part according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 n−InPバッファ層 2 InGaAsP光導波路層 3 InGaAsP障壁層 4 (歪)InGaAsP量子井戸層 5 p−InPクラッド層 6 InGaAsP障壁層 11 電子の第一量子順位 12 ホールの第一量子順位 21 半絶縁性(SI)−InP基板 22 多重量子井戸活性層 23 高抵抗(HR)−InP 24 p−InP 25 p+ −InGaAsコンタクト層 26 n−InP 27,28 電極金属 29 SiO2 絶縁膜1 n-InP buffer layer 2 InGaAsP optical waveguide layer 3 InGaAsP barrier layer 4 (strain) InGaAsP quantum well layer 5 p-InP clad layer 6 InGaAsP barrier layer 11 First quantum order of electrons 12 First quantum order of holes 21 Semi-insulation (SI) -InP substrate 22 Multiple quantum well active layer 23 High resistance (HR) -InP 24 p-InP 25 p + -InGaAs contact layer 26 n-InP 27, 28 Electrode metal 29 SiO 2 insulating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 量子井戸層にInGaAsもしくはIn
GaAsPを用い、障壁層に量子井戸層のInGaAs
Pよりも広いバンドギャップを有するInGaAsPを
用いた長波長多重量子井戸型半導体レーザにおいて、前
記障壁層が少なくとも2種類以上の異なるバンドギャッ
プをもつInGaAsP積層構造をもつか、または、組
成が連続的に変化するInGaAsP層であり、かつ、
前記障壁層は各量子井戸層間でのキャリアの波動関数が
重ならない厚みを有することを特徴とする長波長多重量
子井戸型半導体レーザ。
1. InGaAs or In for the quantum well layer
InGaAs with a quantum well layer as a barrier layer using GaAsP
In a long wavelength multiple quantum well type semiconductor laser using InGaAsP having a band gap wider than P, the barrier layer has an InGaAsP laminated structure having at least two kinds of different band gaps, or the composition is continuous. A changing InGaAsP layer, and
A long-wavelength multiple quantum well type semiconductor laser, wherein the barrier layer has a thickness such that wave functions of carriers do not overlap between the quantum well layers.
JP6280397A 1993-11-26 1994-11-15 Semiconductor laser device Expired - Fee Related JP2682474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6280397A JP2682474B2 (en) 1993-11-26 1994-11-15 Semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-296499 1993-11-26
JP29649993 1993-11-26
JP6280397A JP2682474B2 (en) 1993-11-26 1994-11-15 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH07202328A true JPH07202328A (en) 1995-08-04
JP2682474B2 JP2682474B2 (en) 1997-11-26

Family

ID=26553760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6280397A Expired - Fee Related JP2682474B2 (en) 1993-11-26 1994-11-15 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2682474B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220323A (en) * 2014-05-16 2015-12-07 日本電信電話株式会社 Semiconductor optical device
JP2021122059A (en) * 2015-06-05 2021-08-26 オステンド・テクノロジーズ・インコーポレーテッド Light emitting structure with selective carrier injection into multiple active layer
JP2022071179A (en) * 2015-10-08 2022-05-13 オステンド・テクノロジーズ・インコーポレーテッド Iii-nitride semiconductor light emitting led having amber-to-red light emission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350988A (en) * 1991-05-29 1992-12-04 Nec Kansai Ltd Light-emitting element of quantum well structure
JPH07122812A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350988A (en) * 1991-05-29 1992-12-04 Nec Kansai Ltd Light-emitting element of quantum well structure
JPH07122812A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220323A (en) * 2014-05-16 2015-12-07 日本電信電話株式会社 Semiconductor optical device
JP2021122059A (en) * 2015-06-05 2021-08-26 オステンド・テクノロジーズ・インコーポレーテッド Light emitting structure with selective carrier injection into multiple active layer
JP2022071179A (en) * 2015-10-08 2022-05-13 オステンド・テクノロジーズ・インコーポレーテッド Iii-nitride semiconductor light emitting led having amber-to-red light emission

Also Published As

Publication number Publication date
JP2682474B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US4750183A (en) Semiconductor laser device
JPH07235732A (en) Semiconductor laser
JPS6110293A (en) Photo semiconductor device
US5042049A (en) Semiconductor optical device
JPH0661570A (en) Strain multiple quantum well semiconductor laser
JPS6288389A (en) Semiconductor light emitting element
JP2937751B2 (en) Method for manufacturing optical semiconductor device
US4982408A (en) Variable oscillation wavelength semiconduction laser device
EP0661783A1 (en) Method for fabricating semiconductor light integrated circuit
JP2558768B2 (en) Semiconductor laser device
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
US5737353A (en) Multiquantum-well semiconductor laser
JP2682474B2 (en) Semiconductor laser device
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JPH04350988A (en) Light-emitting element of quantum well structure
US5351254A (en) Semiconductor laser
Mondry et al. Low threshold current density 1.5 μm (In, Ga, Al) As quantum well lasers grown by MBE
JPH0358490A (en) Quantum well laser
JPH1197790A (en) Semiconductor laser
JP2748570B2 (en) Semiconductor laser device
JP3033333B2 (en) Semiconductor laser device
JP2556288B2 (en) Semiconductor laser
JP3204969B2 (en) Semiconductor laser and optical communication system
JP2950853B2 (en) Semiconductor optical device
JPH0278290A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees