JPS6244833B2 - - Google Patents

Info

Publication number
JPS6244833B2
JPS6244833B2 JP4503281A JP4503281A JPS6244833B2 JP S6244833 B2 JPS6244833 B2 JP S6244833B2 JP 4503281 A JP4503281 A JP 4503281A JP 4503281 A JP4503281 A JP 4503281A JP S6244833 B2 JPS6244833 B2 JP S6244833B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
optical amplification
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4503281A
Other languages
Japanese (ja)
Other versions
JPS57160181A (en
Inventor
Akio Sasaki
Kunishige Oe
Masaaki Kuzuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4503281A priority Critical patent/JPS57160181A/en
Publication of JPS57160181A publication Critical patent/JPS57160181A/en
Publication of JPS6244833B2 publication Critical patent/JPS6244833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • H01S5/06206Controlling the frequency of the radiation, e.g. tunable twin-guide lasers [TTG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers

Description

【発明の詳細な説明】 本発明は光増幅用半導体装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor device for optical amplification.

斯種光増幅用半導体装置として従来、第1図に
示す如く、半導体層1,2,3,4及び5がそれ
等の順に順次積層され、この場合半導体層1及び
4と半導体層2,3及び5とが互に逆の導電型を
有し、即ち例えば半導体層1及び4がP型、半導
体層2,3及び5がN型を有し、又半導体層1,
2,3,4及び5が夫々例えばInP、InGaAsP
系、InP、InGaAsP系及びInPの半導体でなり、
依つて半導体層1,2,3,4及び5の禁止帯幅
を夫々Eg1、Eg2、Eg3、Eg4及びEg5とすると
き、第2図のエネルギ準位図で示す如く、 Eg1>Eg2 ……(1) Eg3>Eg2 ……(2) Eg5>Eg4 ……(3) なる関係となされ、更に少くとも半導体層2の相
対向する端面がフアブリペローの反射面6及び7
となされ、而して半導体層3,4及び5を以つて
それ等を夫々コレクタ層、ベース層及びエミツタ
層とせるNPN型のフオトトランジスタ構成の増
幅機能を有する光検出部8が、又半導体層1,2
及び3を以つてそれ等を夫々閉込層、活性層及び
閉込層とせるPN接合型のレーザダイオード構成
の発光部9が構成され、又半導体層1の半導体層
2側とは反対側の面上及び半導体層5の半導体層
4側とは反対側の面上に夫々電極10及び11が
附されてなる構成を有するものが提案されてい
る。
Conventionally, as such a semiconductor device for optical amplification, semiconductor layers 1, 2, 3, 4 and 5 are sequentially stacked in that order as shown in FIG. and 5 have opposite conductivity types, that is, for example, semiconductor layers 1 and 4 have P type, semiconductor layers 2, 3, and 5 have N type;
2, 3, 4 and 5 are, for example, InP and InGaAsP, respectively.
InP, InGaAsP, and InP semiconductors.
Therefore, when the forbidden band widths of the semiconductor layers 1, 2, 3, 4, and 5 are respectively E g1 , E g2 , E g3 , E g4 , and E g5 , as shown in the energy level diagram of FIG. 2, E g1 >E g2 ...(1) E g3 >E g2 ...(2) E g5 >E g4 ...(3) The relationship is such that at least the opposing end surfaces of the semiconductor layer 2 are Fabry-Perot reflective surfaces. 6 and 7
A photodetecting section 8 having an amplification function of an NPN type phototransistor configuration using the semiconductor layers 3, 4 and 5 as a collector layer, a base layer and an emitter layer, respectively, also has a semiconductor layer. 1,2
and 3 constitute a light emitting section 9 of a PN junction type laser diode structure in which these are a confinement layer, an active layer, and a confinement layer, respectively. A configuration has been proposed in which electrodes 10 and 11 are attached on the surface and on the surface of the semiconductor layer 5 opposite to the semiconductor layer 4 side, respectively.

所で斯る光増幅用半導体装置の構成によれば、
電極10及び11間に電極10側を正とするバイ
アス用電源12を負荷13を通じて接続せる状態
に於て、光検出部8(フオトトランジスタ構成)
に半導体層4(フオトトランジスタ構成でみたベ
ース層)に達する入力光L1を入射せしめれば、
その入力光L1が半導体層4(ベース層)内で吸
収されることによりその半導体層4(ベース層)
内に電子・正孔対が生成し、而してその電子が少
数キヤリアとして半導体層3及び5(フオトトラ
ンジスタ構成でみたコレクタ層及びエミツタ層)
側に拡散するも、正孔が半導体層4(ベース層)
に残り、依つて入力光L1が与えられることに基
き半導体層4(ベース層)に正孔の注入がなされ
たこととなり、半導体層4(ベース層)の電位が
上昇し、この分半導体層4及び5間のPN接合が
より順方向にバイアスされ、依つて半導体層5
(エミツタ層)側より半導体層4(ベース層)及
び半導体層3(コレクタ層)側に、上述せる半導
体層4(ベース層)に正孔が注入されたこととな
るとせるその正孔の量より増大された量の電子が
注入され、而してその電子が半導体層3(フオト
トランジスタの構成のコレクタ層を兼ねているレ
ーザダイオード構成の閉込層)を通つて半導体層
2(レーザダイオード構成の活性層)に到達し、
この為半導体層2(活性層)の電位が降下し、依
つてこの分半導体層1(レーザダイオード構成の
閉込層)及び半導体層2(活性層)間のPN接合
がより順方向にバイアスされて半導体層1(閉込
層)より半導体層2(活性層)に正孔が注入さ
れ、半導体層2(活性層)内で電子・正孔の再結
合が生じて発光が得られ、そしてそれが半導体層
1及び3(何れも閉込層)の存在の為に半導体層
2(活性層)内に閉込められてフアブリペローの
反射面6及び7に向つて伝播し、次で反射面6及
び7で反射することを繰返し、結局入力光L1に
基き発光部9(レーザダイオード)にてレーザ発
振が得られ、そのレーザ光が出力光L2として発
光部9(レーザダイオード)の半導体層2(活性
層)の側面より外部に導出されることとなるもの
である。而してこの場合半導体層2(レーザダイ
オード構成の活性層)に半導体層1(閉込層)側
より注入される正孔は、半導体層2(活性層)に
比し大なる禁止帯幅Eg3を有する半導体層3(レ
ーザダイオード構成の閉込層、フオトトランジス
タ構成のコレクタ層)の存在により、半導体層4
(フオトトランジスタ構成のベース層)側に実質
的に注入されないものである。
According to the configuration of such a semiconductor device for optical amplification,
In a state where a bias power source 12 with the electrode 10 side being positive is connected between the electrodes 10 and 11 through a load 13, the photodetector section 8 (phototransistor configuration)
If input light L1 that reaches the semiconductor layer 4 (base layer seen from the phototransistor configuration) is made incident on the semiconductor layer 4,
When the input light L1 is absorbed in the semiconductor layer 4 (base layer), the semiconductor layer 4 (base layer)
Electron-hole pairs are generated within the semiconductor layers 3 and 5 (collector layer and emitter layer in the phototransistor configuration) as minority carriers.
Although the holes diffuse toward the semiconductor layer 4 (base layer)
Since the input light L1 is applied, holes are injected into the semiconductor layer 4 (base layer), and the potential of the semiconductor layer 4 (base layer) increases, and the semiconductor layer 4 increases by this amount. The PN junction between the semiconductor layer 5 and 5 is more forward biased, thus
From the amount of holes assumed to be injected into the semiconductor layer 4 (base layer) described above from the (emitter layer) side to the semiconductor layer 4 (base layer) and semiconductor layer 3 (collector layer) sides, An increased amount of electrons are injected, and the electrons pass through the semiconductor layer 3 (the confinement layer in the laser diode configuration, which also serves as the collector layer in the phototransistor configuration) to the semiconductor layer 2 (the confinement layer in the laser diode configuration). active layer),
Therefore, the potential of semiconductor layer 2 (active layer) drops, and the PN junction between semiconductor layer 1 (confined layer of laser diode configuration) and semiconductor layer 2 (active layer) is biased more forward. Holes are injected from the semiconductor layer 1 (confined layer) into the semiconductor layer 2 (active layer), and recombination of electrons and holes occurs within the semiconductor layer 2 (active layer), resulting in light emission. is confined within the semiconductor layer 2 (active layer) due to the presence of the semiconductor layers 1 and 3 (both confinement layers) and propagates toward the Fabry-Perot reflective surfaces 6 and 7. 7 is repeatedly reflected, and eventually laser oscillation is obtained in the light emitting section 9 (laser diode) based on the input light L1, and the laser light is output as output light L2 from the semiconductor layer 2 (active laser diode) of the light emitting section 9 (laser diode). layer) to the outside from the side surface of the layer. In this case, holes injected into the semiconductor layer 2 (active layer of a laser diode configuration) from the semiconductor layer 1 (confined layer) side have a larger forbidden band width E than that of the semiconductor layer 2 (active layer). Due to the presence of the semiconductor layer 3 (confinement layer in the laser diode configuration, collector layer in the phototransistor configuration), the semiconductor layer 4
It is not substantially implanted into the (base layer of phototransistor configuration) side.

従つて第1図にて上述せる従来の光増幅用半導
体装置によれば、入力光L1が与えられる場合、
バイアス用電源12の電圧に対する負荷13に流
れる電流の関係が、入力光L1の輝度(ルツク
ス)をパラメータとせるフオトトランジスタのコ
レクタ電圧−電流特性と同様の電圧−電流特性を
以つて得られ、而して入力光L1に基く出力光L
2が入力光L1の輝度に応じたものとして得られ
るものである。
Therefore, according to the conventional optical amplification semiconductor device described above in FIG. 1, when input light L1 is given,
The relationship between the voltage of the bias power supply 12 and the current flowing through the load 13 can be obtained using voltage-current characteristics similar to the collector voltage-current characteristics of the phototransistor, with the brightness (lux) of the input light L1 as a parameter, and Output light L based on input light L1
2 is obtained according to the brightness of the input light L1.

依つて第1図にて上述せる従来の光増幅用半導
体装置によれば、これにてアナロガスな光増幅機
能を得ることが出来るものである。
According to the conventional optical amplification semiconductor device described above in FIG. 1, it is possible to obtain an analog gas optical amplification function.

又第1図にて上述せる従来の光増幅用半導体装
置の場合、その光検出部8(フオトトランジスタ
構成)を構成せる半導体層5(エミツタ層)の禁
止帯幅Eg5が半導体層4(ベース層)のそれEg4
に比し大であるので、入力光L1の半導体層5
(エミツタ層)での吸収を避け乍ら半導体層4
(ベース層)での入力光L1の吸収を大ならしめ
得、依つて上述せるアナロガスな光増幅機能をよ
り大なる光増幅度を以つて得ることが出来るもの
である。
Furthermore, in the case of the conventional semiconductor device for optical amplification described above in FIG . layer) that E g4
, the semiconductor layer 5 of the input light L1
(emitter layer) while avoiding absorption in the semiconductor layer 4.
The absorption of the input light L1 in the base layer can be increased, and the above-mentioned analog optical amplification function can be obtained with a higher degree of optical amplification.

更に第1図にて上述せる従来の光増幅用半導体
装置の場合、その発光部9(レーザダイオード構
成)を構成せる半導体層1(閉込層)の禁止帯幅
g1が半導体層2(活性層)のそれEg2に比し大
であるので、半導体層2(活性層)での発光効率
が高く得られ、依つて上述せるアナロガスな光増
幅機能をより大なる増幅度を以つて得ることが出
来るものである。
Furthermore, in the case of the conventional semiconductor device for optical amplification described above in FIG . Since E g2 is larger than that of the semiconductor layer 2 (active layer), a high luminous efficiency can be obtained in the semiconductor layer 2 (active layer), and the above-mentioned analog gas optical amplification function can be obtained with a larger amplification degree. This is something that can be done.

又第1図にて上述せる従来の光増幅用半導体装
置の場合、その光検出部8(フオトトランジスタ
構成)を構成せる半導体層4(ベース層)の禁止
帯幅Eg4と発光部9(レーザダイオード構成)の
半導体層2(活性層)のそれEg2とを異ならしめ
ることにより、出力光L2を入力光L1とは異な
る波長を有するものとして得ることが出来、依つ
て波長変換機能を伴なつたアナロガスな光増幅機
能を得ることが出来るものである。
Furthermore, in the case of the conventional semiconductor device for optical amplification described above in FIG . By making the semiconductor layer 2 (active layer) of the diode structure different from that of the semiconductor layer 2 (active layer), the output light L2 can be obtained as having a wavelength different from that of the input light L1, and thus has a wavelength conversion function. This makes it possible to obtain an analog optical amplification function.

然し乍ら第1図にて上述せる従来の光増幅用半
導体装置の場合、光検出部8(フオトトランジス
タ構成)に半導体層4(フオトトランジスタ構成
でみたベース層)に達する入力光L1を入射せし
める、その入力光L1の輝度が小となれば、これ
に応じて光検出部8の半導体層3((フオトトラ
ンジスタ構成でみたコレクタ層)に流れる入力光
L1に基く電流即ち光検出部8の入力光L1に基
く出力電流(フオトトランジスタ構成でみたコレ
クタ電流)が小となり、又これに応じて発光部9
(レーザダイオード構成)に流れる電流が小とな
り、而して発光部9に流れる電流が或る値(これ
を閾値電流と称す)以下に小となれば、発光部9
にてのレーザ発振が得られなくなるものである
が、この場合発光部9に流れる電流が光検出部8
の入力光L1に基く出力電流のみであるので、発
光部9に流れる電流が閾値電流以下となれば発光
部9にてのレーザ発振が得られなくなるとせる、
そのレーザ発振の閾値電流が比較的大なるもので
ある。
However, in the case of the conventional semiconductor device for optical amplification described above in FIG. When the brightness of the input light L1 decreases, the current based on the input light L1 flowing in the semiconductor layer 3 ((collector layer seen from the phototransistor configuration) of the photodetector 8, that is, the input light L1 of the photodetector 8 decreases accordingly. The output current (collector current seen in the phototransistor configuration) based on this becomes small, and the light emitting part 9
If the current flowing through the laser diode (laser diode configuration) becomes small and the current flowing through the light emitting section 9 becomes smaller than a certain value (this is called a threshold current), the light emitting section 9
However, in this case, the current flowing through the light emitting section 9 is transferred to the photodetecting section 8.
Since the output current is only based on the input light L1 of
The threshold current for laser oscillation is relatively large.

依つて第1図にて上述せる従来の光増幅用半導
体装置の場合、光検出部8に入射せしめる入力光
L1によつて発光部9にてレーザ発振が得られる
とせる、その入力光L1の輝度の最小値が比較的
大であり、この為アナロガスな光増幅機能が入力
光L1の輝度が或る値以下の範囲で得られなく
て、その範囲が大であり、この点実用性に問題が
あるという欠点を有していた。
Therefore, in the case of the conventional semiconductor device for optical amplification described above in FIG. The minimum value of the brightness is relatively large, and therefore the analog optical amplification function cannot be obtained within a range where the brightness of the input light L1 is below a certain value, and this range is large, which poses a problem in practicality. It had the disadvantage of being

依つて本発明は第1図にて上述せる従来の光増
幅用半導体装置を基礎とするも、上述せる欠点の
ない新規な光増幅用半導体装置を提案せんとする
もので、以下詳述する所より明らかとなるであろ
う。
Therefore, the present invention aims to propose a novel semiconductor device for optical amplification which is based on the conventional semiconductor device for optical amplification shown in FIG. It will become clearer.

第3図は本願第1番目の発明による光増幅用半
導体装置の第1の実施例を示し、第1図との対応
部分には同一符号を附して示すも、第1図にて上
述せる構成に於てその光検出部8を構成せる半導
体層5(フオトトランジスタ構成のエミツタ層)
内に、その半導体層4側とは反対側より形成され
てなる態様を以つて、半導体層5に連接せる、そ
の半導体層5とは逆の導電型即ちP型を有する半
導体層31が設けられ、而して半導体層5及び3
1を以つて、PN接合型発光ダイオード構成の光
検出部8に対するバイアス光を発生するバイアス
光発光部32が構成され、又半導体層31に電極
33が附されてなることを除いては第1図の場合
と同様の構成を有する。尚この場合第2図のエネ
ルギ準位図に対応せる第4図のエネルギ準位図で
示す如く、半導体層31の禁止帯幅をEg31とす
るとき、 Eg31=Eg5 ……(4) なる関係を有するものである。
FIG. 3 shows a first embodiment of a semiconductor device for optical amplification according to the first invention of the present application, and corresponding parts to those in FIG. Semiconductor layer 5 (emitter layer of phototransistor configuration) that constitutes the photodetector section 8 in the configuration
A semiconductor layer 31 having a conductivity type opposite to that of the semiconductor layer 5, that is, a P type, is provided within the semiconductor layer 5 and connected to the semiconductor layer 5 by being formed from the side opposite to the semiconductor layer 4 side. , and the semiconductor layers 5 and 3
1 constitutes a bias light emitting section 32 that generates bias light for the photodetecting section 8 having a PN junction type light emitting diode configuration, and an electrode 33 is attached to the semiconductor layer 31. It has the same configuration as the case shown in the figure. In this case, as shown in the energy level diagram of FIG. 4, which corresponds to the energy level diagram of FIG. 2, when the forbidden band width of the semiconductor layer 31 is E g31 , E g31 = E g5 ...(4) They have the following relationship.

以上が本願第1番目の発明による光増幅用半導
体装置の第1の実施例の構成であるが、斯る構成
によれば、それが上述せる事項を除いては第1図
の場合と同様の構成を有し、一方バイアス光発光
部32(PN接合型発光ダイオード構成)が光検
出部8(フオトトランジスタ構成)よりみて発光
部9(レーザダイオード構成)側とは反対側に構
成されているも、その半導体層5が光検出部8を
構成せる半導体層5を兼ねており、又半導体装置
31がその禁止帯幅Eg31をして半導体層5の禁
止帯幅Eg5と同じであるので、入力光L1を第3
図に示す如くにバイアス光発光部32側の外部よ
りこれを通つて光検出部8に入射せしめ得、依つ
て第1図にて上述せる従来の光増幅用半導体装置
の場合と同様に、電極10及び11間に電極10
側を正とするバイアス用電源12を負荷13を通
じて接続せる状態に於て、光検出部8(フオトト
ランジスタ構成)に半導体層4(フオトトランジ
スタ構成でみたベス層)に達する入力光L1を入
射せしめる場合、第1図にて上述せる光増幅用半
導体装置の場合と同様にバイアス用電源12の電
圧に対する負荷13に流れる電流の関係が入力光
L1の輝度をパラメータとせるフオトトランジス
タのコレクタ電圧−電流特性と同様の電圧−電流
特性を以つて得られ、而して入力光L1に基く出
力光L2が入力光L1の輝度に応じたものとして
得られ、依つて第1図にて上述せる従来の光増幅
用半導体装置の場合と同様にアナログガスな光増
幅機能を得ることが出来、そしてその光増幅機能
が、光検出部8を構成せる半導体層5の禁止帯幅
g5が半導体層4のそれEg4に比し大であるの
で、大なる光増幅度を以つて、又発光部9を構成
せる半導体層1の禁止帯幅Eg1が半導体層2のそ
れEg2に比し大であるので、高い発光効率を以つ
て得ることが出来、更に光検出部8を構成せる半
導体層4の禁止帯幅Eg4と発光部9を構成せる半
導体層2のそれEg2とを異ならしめることにより
光増幅機能が波長変換機能を伴つたものとして得
られる等の特徴を有するものである。
The above is the configuration of the first embodiment of the semiconductor device for optical amplification according to the first invention of the present application. According to this configuration, it is the same as the case of FIG. On the other hand, the bias light emitting section 32 (PN junction type light emitting diode structure) is arranged on the side opposite to the light emitting section 9 (laser diode structure) when viewed from the photodetecting section 8 (phototransistor structure). , since the semiconductor layer 5 also serves as the semiconductor layer 5 constituting the photodetector section 8, and the forbidden band width E g31 of the semiconductor device 31 is the same as the forbidden band width E g5 of the semiconductor layer 5, The input light L1 is
As shown in the figure, the bias light can be made to enter the photodetecting section 8 from the outside on the side of the bias light emitting section 32 through this. Electrode 10 between 10 and 11
In a state where the bias power supply 12 whose side is positive is connected through the load 13, the input light L1 that reaches the semiconductor layer 4 (the best layer when viewed from the phototransistor structure) is made incident on the photodetector section 8 (phototransistor structure). In this case, as in the case of the optical amplification semiconductor device described above in FIG. The output light L2 based on the input light L1 can be obtained with voltage-current characteristics similar to the characteristics, and the output light L2 based on the input light L1 can be obtained in accordance with the brightness of the input light L1. As in the case of a semiconductor device for optical amplification, an analog gas optical amplification function can be obtained, and the optical amplification function is achieved when the forbidden band width E g5 of the semiconductor layer 5 constituting the photodetecting section 8 is the same as that of the semiconductor layer 4. Since it is larger than E g4 , it has a large optical amplification degree, and the forbidden band width E g1 of the semiconductor layer 1 constituting the light emitting section 9 is larger than that of the semiconductor layer 2 E g2 . Therefore, high luminous efficiency can be obtained, and by making the forbidden band width E g4 of the semiconductor layer 4 constituting the photodetecting section 8 different from that of the semiconductor layer 2 constituting the light emitting section 9, It has features such as an optical amplification function accompanied by a wavelength conversion function.

又第3図にて上述せる本願第1番目の発明によ
る光増幅用半導体装置の場合、第1図にて上述せ
る従来の光増幅用半導体装置の場合と同様に、光
検出部8に半導体層4に達する入力光L1を入射
せしめる、その入力光L1の輝度が小となれば、
これに応じて光検出部8の入力光L1に基く出力
電流従つて発光部9に流れる電流が小となり、而
して発光部9に流れる電流が閾値電流以下に小と
なれば、発光部9にてのレーザ発振が得られなく
なるものである。
In addition, in the case of the optical amplification semiconductor device according to the first invention of the present application, which is shown in FIG. If the brightness of the input light L1 that reaches 4 is made to enter, then
Accordingly, the output current based on the input light L1 of the photodetector 8 and the current flowing through the light emitting section 9 become small.If the current flowing through the light emitting section 9 becomes smaller than the threshold current, the light emitting section 9 This makes it impossible to obtain laser oscillation at .

然し乍ら第3図にて上述せる本願第1番目の発
明による光増幅用半導体装置の場合、電極11及
び33間に電極33側を正とするバイアス用電源
34を接続すれば、バイアス光発光部32にて発
光が得られ、而してその光がバイアス光LBとし
て光検出部8に入射し、その半導体層4に達し、
依つて光検出部8の出力電流が、バイアス光LB
に基くバイアス電流に入力光L1に基く電流の重
畳されてなる態様を以つて、入力光L1に基く電
流の外バイアス光LBに基くバイアス電流を有す
るものとして得られ、この為光検出部8の出力電
流が第1図にて上述せる従来の光増幅用半導体装
置の場合に比しバイアス光LBに基くバイアス電
流分大なる値を有するものとして得られ、依つて
発光部9にてレーザ発振が得られなくなるとせ
る、そのレーザ発振の閾値電流が第1図の光増幅
用半導体装置の場合に比し小なるものとして得ら
れるものである。
However, in the case of the semiconductor device for optical amplification according to the first invention of the present application described above in FIG. Light emission is obtained, and the light enters the photodetector 8 as bias light LB, reaches the semiconductor layer 4,
Therefore, the output current of the photodetector 8 is the bias light LB.
By superimposing the current based on the input light L1 on the bias current based on the input light L1, a bias current based on the bias light LB is obtained in addition to the current based on the input light L1. The output current is obtained as being larger by the bias current based on the bias light LB than in the case of the conventional semiconductor device for optical amplification described above in FIG. The threshold current for laser oscillation, which would otherwise be impossible to obtain, is smaller than that in the case of the optical amplification semiconductor device shown in FIG.

この為第3図にて上述せる本願第1番目の発明
による光増幅用半導体装置の場合、光検出部8に
入射せしめる入力光L1によつて発光部9にてレ
ーザ発振が得られるとせる、その入力光L1の輝
度の最小値が、第1図にて上述せる従来の光増幅
用半導体装置の場合に比し小であり、従つてアナ
ロガスな光増幅機能が入力光L1の輝度が或る値
以下の範囲で得られないとしても、その範囲が第
1図にて上述せる従来の光増幅用半導体装置の場
合に比し小であり、依つて実用性に優れていると
いう大なる特徴を有するものである。
For this reason, in the case of the semiconductor device for optical amplification according to the first invention of the present application described above in FIG. The minimum value of the brightness of the input light L1 is smaller than that of the conventional optical amplification semiconductor device described above in FIG. Even if it cannot be obtained within the range below this value, the major feature is that the range is smaller than that of the conventional optical amplification semiconductor device shown in FIG. It is something that you have.

次に第5図を伴なつて本願第1番目の発明によ
る光増幅用半導体装置の第2の実施例を述べる
に、第3図との対応部分には同一符号を附しして
詳細説明はこれを省略するも、第3図にて上述せ
る構成に於て、光検出部8を構成する半導体層と
発光部を構成する半導体層とを兼ねている半導体
層3が、光検出部8を構成せる半導体層4側に於
ける、例えばその半導体層4と同じInGaAsP系
の半導体でなる半導体層部3aと、発光部9を構
成せる半導体層2側に於ける、例えば半導体層1
と同じInPの半導体でなり、第4図のエネルギ準
位図に対応せる第6図のエネルギ準位図で示す如
く半導体層2に比し大なる禁止帯幅Eg3b(Eg3b
>Eg2)を有する半導体層部3bとよりなること
を除いては、第3図の場合と同様の構成を有す
る。
Next, a second embodiment of the semiconductor device for optical amplification according to the first invention of the present application will be described with reference to FIG. 5. Parts corresponding to those in FIG. Although this is omitted, in the configuration described above in FIG. A semiconductor layer portion 3a made of the same InGaAsP semiconductor as the semiconductor layer 4, for example, on the side of the semiconductor layer 4 that constitutes it, and a semiconductor layer 1, for example, on the side of the semiconductor layer 2 that constitutes the light emitting section 9.
As shown in the energy level diagram of FIG. 6, which corresponds to the energy level diagram of FIG. 4, it has a larger forbidden band width E g3b (E g3b
It has the same structure as the case of FIG. 3, except that it consists of a semiconductor layer portion 3b having a diameter of >E g2 ).

以上が本願第1番目の発明による光増幅用半導
体装置の第2の実施例の構成であるが、斯る構成
によれば、それが上述せる事項を除いては第3図
の場合と同様の構成を有し、一方半導体層3が半
導体層4側の半導体層部3aと半導体層2側の半
導体層部3bとよりなるとしても、その半導体層
2側の半導体層部3bが半導体層2に比し大なる
禁止帯幅を有するので、詳細説明はこれを省略す
るも、第3図にて上述せる本願第1番目の発明の
第1の実施例の場合と同様の優れた特徴を有する
ものである。但し本例の場合半導体層3を構成せ
る半導体層4側の半導体層部3aの存在の為に、
光検出部8を構成せる半導体層4及び発光部9を
構成せる半導体層2間に於ける耐圧が第3図にて
上述せる実施例の場合に比し大であり、従つて電
極10及び11間でみた耐圧が第3図にて上述せ
る実施例の場合に比し大であるという特徴を有す
るものである。
The above is the configuration of the second embodiment of the semiconductor device for optical amplification according to the first invention of the present application. According to this configuration, it is the same as the case of FIG. On the other hand, even if the semiconductor layer 3 consists of a semiconductor layer section 3a on the semiconductor layer 4 side and a semiconductor layer section 3b on the semiconductor layer 2 side, the semiconductor layer section 3b on the semiconductor layer 2 side is connected to the semiconductor layer 2. Since it has a relatively large prohibited band width, a detailed explanation thereof will be omitted, but it has the same excellent characteristics as the first embodiment of the first invention of the present application described above in FIG. It is. However, in this example, due to the presence of the semiconductor layer portion 3a on the semiconductor layer 4 side that constitutes the semiconductor layer 3,
The breakdown voltage between the semiconductor layer 4 constituting the photodetecting section 8 and the semiconductor layer 2 constituting the light emitting section 9 is higher than that in the embodiment described above in FIG. This is characterized in that the withstand voltage seen between the two is larger than that of the embodiment described above in FIG.

次に第7図を伴なつて本願第2番目の発明によ
る光増幅用半導体装置の第1の実施例を述べる
に、第1図との対応部分には同一符号を附し詳細
説明はこれを省略するも、第1図にて上述せる構
成に於て、その光検出部8を構成せる半導体層5
(フオトトランジスタ構成のエミツタ層)及び電
極11間に介挿せる態様を以つて、半導体層5に
連接せる、その半導体層5と同じ導電型即ちN型
を有する半導体層71が設けられ、又その半導体
層71内に、その半導体層5側とは反対側より形
成されてなる態様を以つて、半導体層71に連接
せる、その半導体層71とは逆の導電型即ちP型
を有する半導体層72が設けられ、この場合半導
体層71及び72が例えばInGaAsP系の半導体
でなり、依つて半導体層71及び72の禁止帯幅
を夫々Eg71及びEg72とするとき、第2図のエネ
ルギ準位図に対応せる第8図のエネルギ準位図で
示す如く、 Eg4<Eg71<Eg5 ……(5) Eg4<Eg72<Eg5 ……(6) なる関係を有し、而して半導体層71及び72を
以つて、PN接合型発光ダイオード構成の光検出
部8に対するバイアス光を発生するバイアス光発
光部73が構成され、又半導体層72に電極74
が附されてなることを除いては第1図の場合と同
様の構成を有する。
Next, a first embodiment of a semiconductor device for optical amplification according to the second invention of the present application will be described with reference to FIG. 7. Parts corresponding to those in FIG. Although omitted, in the configuration described above in FIG.
A semiconductor layer 71 having the same conductivity type as the semiconductor layer 5, that is, the N type, is connected to the semiconductor layer 5 in such a manner that it can be inserted between the emitter layer (of a phototransistor configuration) and the electrode 11. A semiconductor layer 72 having a conductivity type opposite to that of the semiconductor layer 71, that is, P type, is formed in the layer 71 from the side opposite to the semiconductor layer 5 side and is connected to the semiconductor layer 71. In this case, if the semiconductor layers 71 and 72 are made of, for example, an InGaAsP-based semiconductor, and the forbidden band widths of the semiconductor layers 71 and 72 are E g71 and E g72 , respectively, the energy level diagram in FIG. As shown in the corresponding energy level diagram of Fig. 8, there is the following relationship: E g4 <E g71 <E g5 ...(5) E g4 <E g72 <E g5 ...(6) The layers 71 and 72 constitute a bias light emitting section 73 that generates bias light for the photodetecting section 8 having a PN junction type light emitting diode structure, and an electrode 74 is formed on the semiconductor layer 72.
It has the same configuration as the case of FIG. 1 except that it is appended with .

以上が本願第2番目の発明による光増幅用半導
体装置の第1の実施例の構成であるが斯る構成に
よれば、それが上述せる事項を除いては第1図の
場合と同様の構成を有し、一方バイアス光発光部
73(PN接合型発光ダイオード構成)が光検出
部8(フオトトランジスタ構成)よりみて発光部
9(レーザダイオード構成)側とは反対側に構成
されているも、それを構成せる半導体層71及び
72がそれ等の禁止帯幅Eg71及びEg72をして光
検出部8を構成せる半導体層4及び5の禁止帯幅
g4及びEg5に比し夫々大及び小であるので、入
力光L1を第8図に示す如くにバイアス光発光部
73側の外部よりこれを通つて光検出部8に入射
せしめ得、依つて第1図にて上述せる従来の光増
幅用半導体装置の場合と同様に、電極10及び1
1間に電極10側を正とするバイアス用電源12
を負荷13を通じて接続せる状態に於て、光検出
部8(フオトトランジスタ構成)に半導体層4
(フオトトランジスタ構成でみたベース層)に達
する入力光L1を入射せしめる場合、第1図にて
上述せる光増幅用半導体装置の場合と同様にバイ
アス用電源12の電圧に対する負荷13に流れる
電流の関係が入力光L1の輝度をパラメータとせ
るフオトトランジスタのコレクタ電圧−電流特性
と同様の電圧−電流特性を以つて得られ、而して
入力光L1に基く出力光L2が入力光L1の輝度
に応じたものとして得られ、依つて第1図にて上
述せる従来の光増幅用半導体装置の場合と同様に
アナロガスな光増幅機能を得ることが出来、そし
てその光増幅機能が、光検出部8を構成せる半導
体層5の禁止帯幅Eg5が半導体層4のそれEg4
比し大であるので、大なる光増幅度を以つて、又
発光部9を構成せる半導体層1の禁止帯幅Eg1
半導体層2のそれEg2に比し大であるので、高い
発光効率を以つて得ることが出来、更に光検出部
8を構成せる半導体層4の禁止帯幅Eg4と発光部
9を構成せる半導体層2のそれEg2とを異ならし
めることにより光増幅機能が波長変換機能を伴つ
たものとして得られる等の特徴を有するものであ
る。
The above is the configuration of the first embodiment of the semiconductor device for optical amplification according to the second invention of the present application. According to this configuration, it has the same configuration as the case of FIG. 1 except for the matters mentioned above. On the other hand, the bias light emitting section 73 (PN junction type light emitting diode configuration) is configured on the side opposite to the light emitting section 9 (laser diode configuration) when viewed from the photodetecting section 8 (phototransistor configuration). The semiconductor layers 71 and 72 forming the photodetector have bandgap widths E g71 and E g72 that are larger than the bandgap widths E g4 and E g5 of the semiconductor layers 4 and 5 forming the photodetecting section 8, respectively. As shown in FIG. 8, the input light L1 can be made to enter the photodetector section 8 from outside on the side of the bias light emitting section 73 through this, and thus, as shown in FIG. As in the case of the semiconductor device for optical amplification, the electrodes 10 and 1
1, a bias power source 12 with the electrode 10 side positive
is connected through the load 13, the semiconductor layer 4 is connected to the photodetector 8 (phototransistor configuration).
When the input light L1 that reaches the base layer (as viewed from the phototransistor configuration) is incident, the relationship between the voltage of the bias power supply 12 and the current flowing through the load 13 is similar to that of the semiconductor device for optical amplification described above in FIG. is obtained with a voltage-current characteristic similar to the collector voltage-current characteristic of a phototransistor with the brightness of the input light L1 as a parameter, and the output light L2 based on the input light L1 depends on the brightness of the input light L1. As a result, it is possible to obtain an analog optical amplification function as in the case of the conventional optical amplification semiconductor device described above in FIG. Since the forbidden band width E g5 of the semiconductor layer 5 constituting the semiconductor layer 5 is larger than that E g4 of the semiconductor layer 4, the forbidden band width of the semiconductor layer 1 constituting the light emitting section 9 can be increased with a large optical amplification factor. Since E g1 is larger than E g2 of the semiconductor layer 2, high luminous efficiency can be obtained, and furthermore, the forbidden band width E g4 of the semiconductor layer 4 constituting the photodetecting section 8 and the light emitting section 9 can be By making E g2 of the semiconductor layer 2 different from that of the semiconductor layer 2 constituting the optical waveguide, an optical amplification function can be obtained along with a wavelength conversion function.

又第7図にて上述せる本願第2番目の発明によ
る光増幅用半導体装置の場合、第1図にて上述せ
る従来の光増幅用半導体装置の場合と同様に、光
検出部8に半導体層4に達する入力光L1を入射
せしめる、その入力光L1の輝度が小となれば、
これに応じて光検出部8の入力光L1に基く出力
電流従つて発光部9に流れる電流が小となり、而
して発光部9に流れる電流が閾値電流以下に小と
なれば、発光部9にてのレーザ発振が得られなく
なるものである。
Further, in the case of the optical amplification semiconductor device according to the second invention of the present application described above in FIG. If the brightness of the input light L1 that reaches 4 is made to enter, then
Accordingly, the output current based on the input light L1 of the photodetector 8 and the current flowing through the light emitting section 9 become small.If the current flowing through the light emitting section 9 becomes smaller than the threshold current, the light emitting section 9 This makes it impossible to obtain laser oscillation at .

然し乍ら第7図にて上述せる本願第2第目の発
明による光増幅用半導体装置の場合、電極11及
び74間に電極74側を正とするバイアス用電源
75を接続すれば、バイアス光発光部73にて発
光が得られ、而してその光がバイアス光LBとし
て光検出部8に入射し、その半導体層4に達し、
依つて光検出部8の出力電流が、バイアス光LB
に基くバイアス電流に入力光L1に基く電流の重
畳されてなる態様を以つて、入力光L1に基く電
流の外バイアス光LBに基くバイアス電流を有す
るものとして得られ、この為光検出部8の出力電
流が第1図にて上述せる従来の光増幅用半導体装
置の場合に比しバイアス光LBに基くバイアス電
流分大なる値を有するものとして得られ、依つて
発光部9にてレーザ発振が得られなくなるとせ
る、そのレーザ発振の閾値電流が第1図の光増幅
用半導体装置の場合に比し小なるものとして得ら
れるものである。
However, in the case of the semiconductor device for optical amplification according to the second invention of the present application described above in FIG. Light emission is obtained at 73, and the light enters the photodetector section 8 as bias light LB, reaches the semiconductor layer 4,
Therefore, the output current of the photodetector 8 is the bias light LB.
By superimposing the current based on the input light L1 on the bias current based on the input light L1, a bias current based on the bias light LB is obtained in addition to the current based on the input light L1. The output current is obtained as being larger by the bias current based on the bias light LB than in the case of the conventional semiconductor device for optical amplification described above in FIG. The threshold current for laser oscillation, which would otherwise be impossible to obtain, is smaller than that in the case of the optical amplification semiconductor device shown in FIG.

この為第7図にて上述せる本願第2番目の発明
による光増幅用半導体装置の場合、光検出部8に
入射せしめる入力光L1によつて発光部9にてレ
ーザ発振が得られるとせる、その入力光L1の輝
度の最小値が、第1図にて上述せる従来の光増幅
用半導体装置の場合に比し小であり、従つてアナ
ロガスな光増幅機能が入力光L1の輝度が或る値
以下の範囲で得られないとしても、その範囲が第
1図にて上述せる従来の光増幅用半導体装置の場
合に比し小であり、依つて実用性に優れていると
いう大なる特徴を有するものである。
For this reason, in the case of the semiconductor device for optical amplification according to the second invention of the present application described above in FIG. The minimum value of the brightness of the input light L1 is smaller than that of the conventional optical amplification semiconductor device described above in FIG. Even if it cannot be obtained within the range below this value, the major feature is that the range is smaller than that of the conventional optical amplification semiconductor device shown in FIG. It is something that you have.

又第7図にて上述せる本願第2番目の発明によ
る光増幅用半導体装置の場合、バイアス光発光部
73を構成せる半導体層71及び72の禁止帯幅
g71及びEg72が光検出部8を構成せるバイアス
光発光部73側の半導体装置5の禁止帯幅Eg5
比し小であるので、バイアス光発光部73にて得
られるバイアス光LBが不必要に光検出部8を構
成せる半導体層5に吸収されることなしに半導体
層4に達し、依つて光検出部8にてバイアス光
LBに基くバイアス電流を効率良く得ることが出
来、従つて上述せる優れた特徴が全体として効率
良く得られるという大なる特徴を有するものであ
る。
Further , in the case of the semiconductor device for optical amplification according to the second invention of the present application described above in FIG . Since it is smaller than the forbidden band width E g5 of the semiconductor device 5 on the side of the bias light emitting section 73 that constitutes the bias light emitting section 73, the bias light LB obtained from the bias light emitting section 73 unnecessarily constitutes the photodetecting section 8. The bias light reaches the semiconductor layer 4 without being absorbed by the semiconductor layer 5, and the bias light is transmitted to the photodetector 8.
This device has the great feature that it is possible to efficiently obtain the bias current based on LB, and therefore, the above-mentioned excellent features can be obtained efficiently as a whole.

次に第9図を伴なつて本願第2番目の発明によ
る光増幅用半導体装置の第2の実施例を述べる
に、第7図との対応部分には同一符号を附して詳
細説明はこれを省略するも、第7図にて上述せる
構成に於て、光検出部8を構成する半導体層と発
光部9を構成する半導体層とを兼ねている半導体
層3が、光検出部8を構成せる半導体層4側に於
ける、例えばその半導体層4と同じInGaAsP系
の半導体でなる半導体層部3aと、発光部9を構
成せる半導体層2側に於ける、例えば半導体層1
と同じInPの半導体でなり、第4図のエネルギ準
位図に対応せる第10図のエネルギ準位図で示す
如く半導体層2に比し大なる禁止帯幅Eg3b(Eg3
>Eg2)を有する半導体層部3bとよりなるこ
とを除いては、第7図の場合と同様の構成を有す
る。
Next, a second embodiment of a semiconductor device for optical amplification according to the second invention of the present application will be described with reference to FIG. 9. Parts corresponding to those in FIG. Although omitted, in the configuration described above in FIG. A semiconductor layer portion 3a made of the same InGaAsP semiconductor as the semiconductor layer 4, for example, on the side of the semiconductor layer 4 that constitutes it, and a semiconductor layer 1, for example, on the side of the semiconductor layer 2 that constitutes the light emitting section 9.
As shown in the energy level diagram of FIG. 10, which corresponds to the energy level diagram of FIG. 4, it has a larger forbidden band width E g3b (E g3
It has the same structure as the case of FIG. 7, except that it consists of a semiconductor layer portion 3b having a relationship ( b >E g2 ) .

以上が本願第2番目の発明による光増幅用半導
体装置の第2の実施例の構成であるが、斯る構成
によれば、それが上述せる事項を除いては第7図
の場合と同様の構成を有し、一方半導体層3が半
導体層4側の半導体層部3aと半導体層2側の半
導体層部3bとよりなるとしても、その半導体層
2側の半導体層部3bが半導体層2に比し大なる
禁止帯幅を有するので、詳細説明はこれを省略す
るも、第7図にて上述せる本願第2番目の発明の
第1の実施例の場合と同様の優れた特徴を有する
ものである。但し本例の場合半導体層3を構成せ
る半導体層4側の半導体層部3aの存在の為に、
光検出部8を構成せる半導体層4及び発光部9を
構成せる半導体層2間に於ける耐圧が第3図にて
上述せる実施例の場合に比し大であり、従つて電
極10及び11間でみた耐圧が第7図にて上述せ
る実施例の場合に比し大であるという特徴を有す
るものである。
The above is the configuration of the second embodiment of the semiconductor device for optical amplification according to the second invention of the present application. According to this configuration, it is the same as the case of FIG. On the other hand, even if the semiconductor layer 3 consists of a semiconductor layer section 3a on the semiconductor layer 4 side and a semiconductor layer section 3b on the semiconductor layer 2 side, the semiconductor layer section 3b on the semiconductor layer 2 side is connected to the semiconductor layer 2. Since it has a relatively large prohibited band width, a detailed explanation thereof will be omitted, but it has the same excellent features as the first embodiment of the second invention of the present application described above in FIG. It is. However, in this example, due to the presence of the semiconductor layer portion 3a on the semiconductor layer 4 side that constitutes the semiconductor layer 3,
The breakdown voltage between the semiconductor layer 4 constituting the photodetecting section 8 and the semiconductor layer 2 constituting the light emitting section 9 is higher than that in the embodiment described above in FIG. This is characterized in that the breakdown voltage seen between the two is larger than that of the embodiment described above with reference to FIG.

尚上述に於ては本願第1及び第2番目の発明の
夫々につき僅かな実施例を述べたに過ぎず、例え
ば第3図、第5図、第7図及び第9図にて上述せ
る構成に於てその半導体層5を半導体層4側の半
導体層部と半導体層4側とは反対側の半導体層部
とよりなるものとし、而して前者の半導体層部を
後者の半導体層部に比し小なる不純物濃度を有す
るものとし、これにより半導体層5及び4間の
PN接合容量(フオトトランジスタ構成のエミツ
タ・ベース間接合容量)を第3図、第5図、第7
図及び第9図の場合に比し小ならしめ、依つて光
増幅応答機能を上述せる本願第1及び第2番目の
発明による実施例の場合に比し、より優れたもの
として得られる様にすることも出来、又上述に於
てP型をN型、N型をP型と読み替えた構成とす
ることも出来(但し半導体層2はP型及びN型の
何れであつても良い)、その他本発明の精神を脱
することなしに種々の変型変更をなし得るであろ
う。
In the above, only a few embodiments have been described for each of the first and second inventions of the present application, and for example, the configurations described above in FIGS. 3, 5, 7, and 9. In this case, the semiconductor layer 5 is made up of a semiconductor layer portion on the semiconductor layer 4 side and a semiconductor layer portion on the opposite side from the semiconductor layer 4 side, and the former semiconductor layer portion is made to be the latter semiconductor layer portion. The impurity concentration is relatively small, so that the impurity concentration between the semiconductor layers 5 and 4 is
PN junction capacitance (emitter-base junction capacitance in phototransistor configuration) is shown in Figures 3, 5, and 7.
The optical amplification response function is made smaller than that in the cases shown in FIGS. Also, in the above, P type can be read as N type, and N type can be read as P type (however, the semiconductor layer 2 can be either P type or N type), Various other modifications may be made without departing from the spirit of the invention.

又上述に於ては第3図、第5図、第7図及び第
9図に示す本願発明の実施例の構成の製法につき
特には述べなかつたが、それ等本願発明の実施例
の構成は、半導体層5を半導体基板として、その
一面上に半導体層4,3,2及び1をそれ等の順
に順次積層して形成し、又第3図及び第5図の場
合半導体基板内にその半導体層4〜1側とは反対
側の面側より半導体層31を形成し、第7図及び
第9図の場合半導体基板の半導体層4〜1側とは
反対側の面上に半導体層71を形成して后その半
導体層71内に半導体層72を形成するという製
法をとつて得ることが出来るものである。
Furthermore, in the above, although no particular description was given regarding the manufacturing method of the structure of the embodiment of the present invention shown in FIG. 3, FIG. 5, FIG. 7, and FIG. 9, the structure of the embodiment of the present invention is , the semiconductor layer 5 is used as a semiconductor substrate, and the semiconductor layers 4, 3, 2, and 1 are sequentially laminated in that order on one surface thereof, and in the case of FIGS. 3 and 5, the semiconductor layer 5 is formed in the semiconductor substrate. The semiconductor layer 31 is formed from the side opposite to the layer 4-1 side, and in the case of FIGS. 7 and 9, the semiconductor layer 71 is formed on the side of the semiconductor substrate opposite to the semiconductor layer 4-1 side. This can be obtained by using a manufacturing method in which a semiconductor layer 72 is formed within the semiconductor layer 71 after the semiconductor layer 71 is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光増幅用半導体装置を示す略線
的断面図、第2図はそのエネルギ準位を示す図、
第3図は本願第1番目の発明による光増幅用半導
体装置の第1の実施例を示す略線的断面図、第4
図はそのエネルギ準位を示す図、第5図は本願第
1番目の発明による光増幅用半導体装置の第2の
実施例を示す略線的断面図、第6図はそのエネル
ギ準位を示す図、第7図は本願第2番目の発明に
よる光増幅用半導体装置の第1の実施例を示す略
線的断面図、第8図はそのエネルギ準位を示す
図、第9図は本願第2番目の発明による光増幅用
半導体装置の第2の実施例を示す略線的断面図、
第10図はそのエネルギ準位を示す図である。 図中1,2,3,4,5,31,71及び72
は半導体層、8は光検出部、9は発光部、10,
11,33及び74は電極、32及び73はバイ
アス光発光部、3a,3bは半導体層部を夫々示
す。
FIG. 1 is a schematic cross-sectional view showing a conventional optical amplification semiconductor device, and FIG. 2 is a diagram showing its energy level.
FIG. 3 is a schematic cross-sectional view showing the first embodiment of the semiconductor device for optical amplification according to the first invention of the present application;
5 is a schematic cross-sectional view showing a second embodiment of the semiconductor device for optical amplification according to the first invention of the present application, and FIG. 6 is a diagram showing its energy level. 7 is a schematic cross-sectional view showing the first embodiment of the semiconductor device for optical amplification according to the second invention of the present application, FIG. 8 is a diagram showing its energy level, and FIG. A schematic cross-sectional view showing a second embodiment of a semiconductor device for optical amplification according to the second invention,
FIG. 10 is a diagram showing the energy levels. 1, 2, 3, 4, 5, 31, 71 and 72 in the figure
is a semiconductor layer, 8 is a photodetection section, 9 is a light emitting section, 10,
11, 33 and 74 are electrodes, 32 and 73 are bias light emitting parts, and 3a and 3b are semiconductor layer parts, respectively.

Claims (1)

【特許請求の範囲】 1 第1、第2、第3、第4及び第5の半導体層
がそれ等の順に順次積層され、上記第1及び第4
の半導体層と上記第2、第3及び第5の半導体層
とが互に逆の導電型を有し、上記第3の半導体層
が少くとも上記第2の半導体層側に於て当該第2
の半導体層に比し大なる禁止帯幅を有し、上記第
3、第4及び第5の半導体層を以つて増幅機能を
有する光検出部が、上記第1、第2及び第3の半
導体層を以つて発光部が構成されてなる光増幅用
半導体装置に於て、上記第5の半導体層に連接せ
る、当該第5の半導体層とは逆の導電型を有する
第6の半導体層を有し、上記第5及び第6の半導
体層を以つて上記光検出部に対するバイアス光を
発生するバイアス光発光部が構成されてなること
を特徴とする光増幅用半導体装置。 2 第1、第2、第3、第4及び第5の半導体層
がそれ等の順に順次積層され、上記第1及び第4
の半導体層と上記第2、第3及び第5の半導体層
とが互に逆の導電型を有し、上記第3の半導体層
が少くとも上記第2の半導体層側に於て当該第2
の半導体層に比し大なる禁止帯幅を有し、上記第
3、第4及び第5の半導体層を以つて増幅機能を
有する光検出部が、上記第1、第2及び第3の半
導体層を以つて発光部が構成されてなる光増幅用
半導体装置に於て、上記第5の半導体層に連接せ
る、当該第5の半導体層と同じ導電型を有する第
6の半導体層と、該第6の半導体層に連接せる、
当該第6の半導体層とは逆の導電型を有する第7
の半導体層とを有し、上記第6及び第7の半導体
層を以つて上記光検出部に対するバイアス光を発
生するバイアス光発光部が構成されてなることを
特徴とする光増幅用半導体装置。 3 特許請求の範囲第2項所載の光増幅用半導体
装置に於て、上記第6及び第7の半導体層が上記
第5の半導体層に比し小なる禁止帯幅を有するこ
とを特徴とする光増幅用半導体装置。
[Scope of Claims] 1. First, second, third, fourth and fifth semiconductor layers are sequentially stacked in that order, and the first and fourth semiconductor layers are stacked in that order.
and the second, third, and fifth semiconductor layers have opposite conductivity types, and the third semiconductor layer is at least on the second semiconductor layer side.
The photodetecting section has a bandgap larger than that of the semiconductor layer and has an amplification function using the third, fourth, and fifth semiconductor layers. In a semiconductor device for optical amplification in which a light-emitting portion is constructed of layers, a sixth semiconductor layer having a conductivity type opposite to that of the fifth semiconductor layer is connected to the fifth semiconductor layer. A semiconductor device for optical amplification, characterized in that the fifth and sixth semiconductor layers constitute a bias light emitting section that generates bias light for the photodetecting section. 2. First, second, third, fourth and fifth semiconductor layers are sequentially stacked in that order, and the first and fourth semiconductor layers are stacked in that order.
and the second, third, and fifth semiconductor layers have opposite conductivity types, and the third semiconductor layer is at least on the second semiconductor layer side.
The photodetecting section has a bandgap larger than that of the semiconductor layer and has an amplification function using the third, fourth, and fifth semiconductor layers. In a semiconductor device for optical amplification in which a light-emitting portion is configured of layers, a sixth semiconductor layer connected to the fifth semiconductor layer and having the same conductivity type as the fifth semiconductor layer; connectable to the sixth semiconductor layer;
a seventh semiconductor layer having a conductivity type opposite to that of the sixth semiconductor layer;
A semiconductor device for optical amplification, characterized in that the sixth and seventh semiconductor layers constitute a bias light emitting section that generates bias light for the photodetecting section. 3. The semiconductor device for optical amplification according to claim 2, characterized in that the sixth and seventh semiconductor layers have a smaller forbidden band width than the fifth semiconductor layer. A semiconductor device for optical amplification.
JP4503281A 1981-03-27 1981-03-27 Light amplifying semiconductor device Granted JPS57160181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4503281A JPS57160181A (en) 1981-03-27 1981-03-27 Light amplifying semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4503281A JPS57160181A (en) 1981-03-27 1981-03-27 Light amplifying semiconductor device

Publications (2)

Publication Number Publication Date
JPS57160181A JPS57160181A (en) 1982-10-02
JPS6244833B2 true JPS6244833B2 (en) 1987-09-22

Family

ID=12707993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4503281A Granted JPS57160181A (en) 1981-03-27 1981-03-27 Light amplifying semiconductor device

Country Status (1)

Country Link
JP (1) JPS57160181A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037181A (en) * 1983-08-10 1985-02-26 Agency Of Ind Science & Technol Luminous element
JPS62281381A (en) * 1986-05-29 1987-12-07 Mitsubishi Cable Ind Ltd Photo-semiconductor element

Also Published As

Publication number Publication date
JPS57160181A (en) 1982-10-02

Similar Documents

Publication Publication Date Title
US5281829A (en) Optical semiconductor device having semiconductor laser and photodetector
US4862230A (en) Double heterostructure light emitting diode
JPS6244833B2 (en)
US4912533A (en) End face light emitting element
US7103080B2 (en) Laser diode with a low absorption diode junction
JP7404267B2 (en) Semiconductor laser and electronic equipment
JPH04144182A (en) Optical semiconductor device array
JPS6244867B2 (en)
JPH0479273A (en) Optical transmission electric signal amplifier device
KR100232135B1 (en) Manufacturing method of photo transistor
JPS6380590A (en) Semiconductor laser with optical output monitor
JPS61276285A (en) Semiconductor light-emitting device
JP3224192B2 (en) Semiconductor waveguide receiver
JPS6218785A (en) Semiconductor element
JPH06334260A (en) Semiconductor laser element and its manufacture
JPS6130089A (en) Optical logic circuit
JPH07142697A (en) Optical semiconductor device
JP2574670B2 (en) Surface emitting laser
JP3341296B2 (en) Optical semiconductor device
JPS60242688A (en) Optical amplifying light-emitting light-receiving integrated element
JPS6113681A (en) Light-emitting element
JPH01130577A (en) Light emitting diode
JPH06101582B2 (en) Semiconductor device
JPS55107280A (en) Photoamplification semiconductor device
JPS60239082A (en) Optical amplifying light-emitting light-receiving integrated element