JP2574670B2 - Surface emitting laser - Google Patents

Surface emitting laser

Info

Publication number
JP2574670B2
JP2574670B2 JP58205324A JP20532483A JP2574670B2 JP 2574670 B2 JP2574670 B2 JP 2574670B2 JP 58205324 A JP58205324 A JP 58205324A JP 20532483 A JP20532483 A JP 20532483A JP 2574670 B2 JP2574670 B2 JP 2574670B2
Authority
JP
Japan
Prior art keywords
layer
layers
xas
current blocking
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58205324A
Other languages
Japanese (ja)
Other versions
JPS6095991A (en
Inventor
治夫 田中
雅人 虫上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP58205324A priority Critical patent/JP2574670B2/en
Publication of JPS6095991A publication Critical patent/JPS6095991A/en
Application granted granted Critical
Publication of JP2574670B2 publication Critical patent/JP2574670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18383Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with periodic active regions at nodes or maxima of light intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、PN接合を用いる面発光レーザおよびその製
造方法に関する。
The present invention relates to a surface emitting laser using a PN junction and a method for manufacturing the same.

従来、半導体レーザには光の共振器を作るため電荷が
反転分布状態になる励起層、即ち活性層の両端をへきか
いして、一対の平行平滑な反射面からなるファブリ・ペ
ロ反射鏡が使用されていた。ところが、このファブリ・
ペロ反射鏡の間を往復する光は1箇所の局部的な活性層
でのみ増幅されるため、活性層以外の部分ではその光が
吸収されてしまうためレーザの発振条件を満足させるこ
とが一般的なレーザに比べて困難であった。このため、
室温でレーザ発振できる半導体レーザはなかった。
Conventionally, a semiconductor laser uses a Fabry-Perot reflecting mirror comprising a pair of parallel and smooth reflecting surfaces by cutting both ends of an active layer, that is, an active layer in which electric charges are in an inverted distribution state in order to form an optical resonator. I was However, this fabric
Since the light reciprocating between the Perot reflectors is amplified only in one local active layer, the light is absorbed in portions other than the active layer, so that it is general to satisfy the laser oscillation conditions. It was more difficult than a simple laser. For this reason,
There was no semiconductor laser capable of laser oscillation at room temperature.

本発明は、室温でレーザ発振できる面発光レーザの構
造とその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a structure of a surface emitting laser capable of laser oscillation at room temperature and a method of manufacturing the same.

以下、本発明を図面に示す実施例に基づいて詳細に説
明する。第1図は、この実施例の構造断面図である。第
1図において、符号1はn(またはp)−GaAs基板、2
は、n(またはp)−AlpGa1-pAs層21と、n(または
p)−AlqGa1-qAs層22とを交互に多層積層してなる反射
膜層、3は、この反射膜層2上に所定層数だけ形成され
たn(またはp)−AlxGa1-xAs層31と、AlyGa1-yAs層
(活性層)32と、p(またはn)−AlxGa1-xAs層33(た
だし、y<x、p≠q、p>y、q>y)との3層を1
組とする合成層である。各合成層3,3,・・・間で接する
p(またはn)とn(またはp)の前記各AlxGa1-xAs層
31,33には少なくともその互いに接する部分でキャリャ
ー濃度がそれぞれp+,n+となるトンネル接合34が形成さ
れる。4はn−GaAs層であり、このn−GaAs層は電流阻
止層である。この電流阻止層4は局部的にエッチング除
去され、このエッチング除去部41に対向する最上層の合
成層であるp(またはn)−AlxGa1-xAs層33の中央部
と、電流阻止層4の非エッチング除去部42とにわたっ
て、p(またはn)−AlxGa1-xAs層とp(またはn)−
GaAs層とからなる拡散層5が拡散により連続的に形成さ
れている。また、上記の電流阻止層4は、前記n(また
はp)−GaAs基板1に形成してもよい。6はTi層、7は
Au層、8はAuGe層、9は発光面である。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is a structural sectional view of this embodiment. In FIG. 1, reference numeral 1 denotes an n (or p) -GaAs substrate;
Is a reflective film layer formed by alternately stacking n (or p) -AlpGa1 - pAs layers 21 and n (or p) -AlqGa1 - qAs layers 22; The n (or p) -AlxGa1 - xAs layer 31, the AlyGa1 - yAs layer (active layer) 32, and the p (or n) -AlxGa1 - xAs layer 33 (where y <X, p ≠ q, p> y, q> y)
This is a composite layer that forms a set. The p (or n) and n (or p) AlxGa 1 -xAs layers that are in contact between the composite layers 3, 3,...
At 31 and 33, tunnel junctions 34 having carrier concentrations of p + and n + at least in contact with each other are formed. Reference numeral 4 denotes an n-GaAs layer, which is a current blocking layer. The current blocking layer 4 is locally etched away, and the center of the p (or n) -AlxGa 1 -xAs layer 33 which is the uppermost synthetic layer facing the etched removed portion 41 and the current blocking layer 4 are removed. The p (or n) -AlxGa1 - xAs layer and the p (or n)-
A diffusion layer 5 composed of a GaAs layer is formed continuously by diffusion. Further, the current blocking layer 4 may be formed on the n (or p) -GaAs substrate 1. 6 is Ti layer, 7 is
An Au layer, 8 is an AuGe layer, and 9 is a light emitting surface.

前記反射膜層2を構成する各層21,22のそれぞれの膜
厚はλ/4n(ただし、λは中心発光波長、nは屈折率)
に設定される。Alの組成が互いに異なり、かつ膜厚がλ
/4nに設定された層がこのように多数積層されると中心
発光波長λを中心とした一定域の波長が選択的に反射さ
れる。したがってこのような反射膜層2を有する半導体
発光素子では前記基板1でその発光光線は吸収されなく
なり、外部量子効率が向上し、非常に高い発光強度で発
光させることができる。さらに、この実施例において、
最上層の合成層3上の発光面9以外の部分には電流阻止
層4が形成され、また、発光面9および電流阻止層4に
渡る全面には抵抗値の小さい拡散層5が連続的に形成さ
れている。したがって、電流阻止層4を除いた発光面9
の部分の抵抗値が小さくなるため、この部分9にのみ電
流が集中的に流れることになり、発光効率が高められて
いる。しかも、拡散層5は全面に形成されるので、マス
クの必要がない。さらに、拡散層5は発光面9を除く広
い範囲にわたってTi層が接触しているので、接続不良や
接触抵抗の増加を起こす恐れもない。また、前記合成層
3は従来のそれよりも少ない層数であっても反射膜層2
による反射発光により輝度が高い半導体発光素子とな
る。尚、第2図は、縦軸に反射率を、横軸に波長をそれ
ぞれとり、AlxGa1-xAs層における組成をx=0.35(屈折
率n1=3.6)、膜厚570オングストロームと、x=0.7
(屈折率n2=3.3)、膜厚620オングストロームの合計49
層を積層したときの波長に対する反射率を示す図であ
る。第2図からあきらかなように波長λが820nmのとき
に反射率が94%程度になる。このように、この実施例に
よれば非常に高効率の面発光レーザが得られる。
The thickness of each of the layers 21 and 22 constituting the reflective film layer 2 is λ / 4n (where λ is the central emission wavelength and n is the refractive index).
Is set to Al compositions are different from each other and the film thickness is λ
When a large number of layers set to / 4n are stacked in this manner, a certain wavelength around the center emission wavelength λ is selectively reflected. Therefore, in the semiconductor light emitting device having such a reflective film layer 2, the emitted light is not absorbed by the substrate 1, the external quantum efficiency is improved, and light can be emitted with extremely high emission intensity. Further, in this example,
A current blocking layer 4 is formed on a portion other than the light emitting surface 9 on the uppermost synthetic layer 3, and a diffusion layer 5 having a small resistance value is continuously formed on the entire surface extending over the light emitting surface 9 and the current blocking layer 4. Is formed. Therefore, the light emitting surface 9 excluding the current blocking layer 4
Since the resistance value of the portion becomes small, current flows intensively only in this portion 9, and the luminous efficiency is increased. Moreover, since the diffusion layer 5 is formed on the entire surface, there is no need for a mask. Further, since the Ti layer is in contact with the diffusion layer 5 over a wide area except for the light emitting surface 9, there is no danger of poor connection or increase in contact resistance. Further, even if the number of the synthetic layers 3 is smaller than that of the conventional one, the reflective film layer 2 is formed.
The semiconductor light emitting device has high luminance due to reflected light emitted by the light emitting device. FIG. 2 shows the composition of the AlxGa1 - xAs layer as x = 0.35 (refractive index n1 = 3.6), film thickness of 570 Å, and x = 0.7
(Refractive index n2 = 3.3), total thickness of 620 angstrom 49
It is a figure which shows the reflectance with respect to the wavelength when layers are laminated. As is apparent from FIG. 2, the reflectance is about 94% when the wavelength λ is 820 nm. Thus, according to this embodiment, a very efficient surface emitting laser can be obtained.

以上のように本発明によればn(またはp)−GaAs基
板上に、n(またはp)−AlpGa1-pAs層と、n(または
p)−AlqGa1-qAs層とを交互に多層積層してなる反射膜
層が形成され、この反射膜層上にn(またはp)−AlxG
a1-xAs層と、AlyGa1-yAs層と、p(またはn)−AlxGa
1-xAs層(ただし、y<x、p≠q、p>y、q>y)
との3層を1組とする合成層が所定層数だけ形成され、
各合成層間で接するp(またはn)とn(またはp)の
前記各AlxGa1-xAs層は少なくともその接する部分でのキ
ャリャー濃度が該接合部分でホモ接合が形成される濃度
となるように形成され、最上層の合成層上または前記n
(またはp)−GaAs基板内の少なくとも一方に拡散やエ
ッチング等により局部を除いて電流阻止層が形成され、
この電流阻止層の表面ならびに電流阻止層が除かれた前
記局部上には拡散層が連続的に形成されているので、同
一のキャビティ長に複数の活性層があり、該キャビティ
内におけるゲインは1層当たりのゲインをGとしたとき
にGのn乗となり、スレッシュホールド電流が低下し、
これにより室温でもレーザ発振できる構造とその製造方
法を提供することができる。
As described above, according to the present invention, an n (or p) -AlpGa 1- pAs layer and an n (or p) -AlqGa 1- qAs layer are alternately stacked on an n (or p) -GaAs substrate. Is formed on the reflective film layer, and n (or p) -AlxG
a 1- xAs layer, AlyGa 1- yAs layer, p (or n) -AlxGa
1- xAs layer (however, y <x, p ≠ q, p> y, q> y)
And a predetermined number of composite layers having three layers as one set are formed,
The p (or n) and n (or p) AlxGa 1 -xAs layers that are in contact with each other between the synthetic layers are formed so that the carrier concentration at least at the contacting portion is such that a homojunction is formed at the joining portion. On the uppermost composite layer or the n
A current blocking layer is formed on at least one of the (or p) -GaAs substrates except for local areas by diffusion, etching, or the like,
Since the diffusion layer is continuously formed on the surface of the current blocking layer and on the local area where the current blocking layer is removed, a plurality of active layers have the same cavity length, and the gain in the cavity is 1 unit. When the gain per layer is G, the power becomes G to the nth power, the threshold current decreases,
Thus, a structure capable of laser oscillation even at room temperature and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の構造断面図、第2図は前記実
施例による反射膜の波長に対する反射率を示す図であ
る。 1はn(またはp)−GaAs基板、2は、反射膜層、3は
合成層、4はn(またはp)−GaAs層、5は拡散層、6
はTi層、7はAu層、8はAuGe層
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a diagram showing the reflectance with respect to the wavelength of the reflection film according to the embodiment. 1 is an n (or p) -GaAs substrate, 2 is a reflective film layer, 3 is a synthetic layer, 4 is an n (or p) -GaAs layer, 5 is a diffusion layer, 6
Is Ti layer, 7 is Au layer, 8 is AuGe layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−48192(JP,A) 特開 昭50−68288(JP,A) 昭和58年度電子通信学会総合全国大会 論文集(分冊4)No.961 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-48192 (JP, A) JP-A-50-68288 (JP, A) Proceedings of the 1984 IEICE General Conference (Section 4) No. . 961

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n(またはp)−GaAs基板上に、n(また
はp)−AlpGa1-pAs層と、n(またはp)−AlqGa1-qAs
層とを交互に多層積層してなる反射膜層が形成され、こ
の反射膜層上にn(またはp)−AlxGa1-xAs層と、AlyG
a1-yAs層と、p(またはn)−AlxGa1-xAs層(ただし、
y<x、p≠q、p>y、q>y)との3層を1組とす
る合成層が所定層数だけ形成され、各合成層間で接する
p(またはn)とn(またはp)の前記各AlxGa1-xAs層
は少なくともその接する部分でのキャリャー濃度が該接
合部分でトンネル接合が形成される濃度となるように形
成され、最上の合成層上または前記n(またはp)−Ga
As基板内の少なくとも一方に拡散やエッチング等により
局部を除いて電流阻止層が形成され、この電流阻止層の
表面ならびに電流阻止層が除かれた前記局部上には拡散
層が連続的に形成されていることを特徴とする面発光レ
ーザ。
An n (or p) -AlpGa 1 -pAs layer and an n (or p) -AlqGa 1 -qAs layer on an n (or p) -GaAs substrate.
A reflective film layer is formed by alternately laminating layers, and an n (or p) -AlxGa1 - xAs layer and an AlyG
a 1- yAs layer and p (or n) -AlxGa 1- xAs layer (however,
y <x, p ≠ q, p> y, q> y), a predetermined number of composite layers each including three layers are formed, and p (or n) and n (or p) in contact with each other between the composite layers. The above AlxGa1 - xAs layers are formed such that the carrier concentration at least at the contacting portion is a concentration at which a tunnel junction is formed at the joining portion, and is formed on the uppermost synthetic layer or at the n (or p)- Ga
A current blocking layer is formed on at least one of the As substrates except for a local portion by diffusion, etching, or the like, and a diffusion layer is continuously formed on the surface of the current blocking layer and on the local portion where the current blocking layer is removed. A surface emitting laser.
JP58205324A 1983-10-31 1983-10-31 Surface emitting laser Expired - Lifetime JP2574670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205324A JP2574670B2 (en) 1983-10-31 1983-10-31 Surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205324A JP2574670B2 (en) 1983-10-31 1983-10-31 Surface emitting laser

Publications (2)

Publication Number Publication Date
JPS6095991A JPS6095991A (en) 1985-05-29
JP2574670B2 true JP2574670B2 (en) 1997-01-22

Family

ID=16505048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205324A Expired - Lifetime JP2574670B2 (en) 1983-10-31 1983-10-31 Surface emitting laser

Country Status (1)

Country Link
JP (1) JP2574670B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309670A (en) * 1979-09-13 1982-01-05 Xerox Corporation Transverse light emitting electroluminescent devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和58年度電子通信学会総合全国大会論文集(分冊4)No.961

Also Published As

Publication number Publication date
JPS6095991A (en) 1985-05-29

Similar Documents

Publication Publication Date Title
US6653660B2 (en) Vertical cavity-type semiconductor light-emitting device and optical module using vertical cavity-type semiconductor light-emitting device
JP2008147531A (en) Surface light emitting semiconductor laser element
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP3152812B2 (en) Semiconductor light emitting device
JPH0738196A (en) Surface light emitting element
JPS5939083A (en) Light emitting surface type semiconductor laser
JP3212008B2 (en) Gallium nitride based compound semiconductor laser device
US4636821A (en) Surface-emitting semiconductor elements
JP2574670B2 (en) Surface emitting laser
US5406575A (en) Semiconductor heterostructure laser
JPH10294533A (en) Nitride compound semiconductor laser and its manufacture
JPH10335742A (en) Semiconductor laser system
JPS6083389A (en) Surface luminescent laser oscillator
US7173273B2 (en) Semiconductor laser device
JPH01264275A (en) Semiconductor light-emitting device
JPH1126879A (en) Compound semiconductor light emitting element
JPH0669106B2 (en) LED element
JPH0156547B2 (en)
JPH07202320A (en) Semiconductor laser element
JPH03105991A (en) Semiconductor laser device
Tsang et al. New large optical cavity laser with distributed active layers
JP2806094B2 (en) Super luminescent diode
JP2814584B2 (en) Semiconductor laser
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JP2769053B2 (en) Super luminescent diode