JPS6381453A - 感光体 - Google Patents

感光体

Info

Publication number
JPS6381453A
JPS6381453A JP22935986A JP22935986A JPS6381453A JP S6381453 A JPS6381453 A JP S6381453A JP 22935986 A JP22935986 A JP 22935986A JP 22935986 A JP22935986 A JP 22935986A JP S6381453 A JPS6381453 A JP S6381453A
Authority
JP
Japan
Prior art keywords
flow rate
gas
film
atoms
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22935986A
Other languages
English (en)
Inventor
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Hideo Yasutomi
英雄 保富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP22935986A priority Critical patent/JPS6381453A/ja
Publication of JPS6381453A publication Critical patent/JPS6381453A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電荷発生層と電荷輸送層とを有する感光体に
関する。
従米技桓 カールソン法の発明以来、電子写真の応用分野は著しい
発展を続け、電子写真用感光体にも様々な材料が開発さ
れ実用化されてぎた。
従来用いられて来た電子写真感光体材料の主なものとし
ては、非晶質セレン、セレン砒素、セレンテルル、硫化
カドミウム、酸化亜鉛、アモルファスシリコン等の無機
物質、ポリビニルカルバゾール、金属フタロシアニン、
ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料、トリフ
ェニルメタン化合物、トリフェニルアミン化合物、ヒド
ラゾン化合物、スチリル化合物、ピラゾリン化合物、オ
キサゾール化合物、オキサジアゾール化合物、等の有機
物質が挙げられる。また、その構成形態としては、これ
らの物質を単体で用いる単層型構成、結着材中に分散さ
せて用いるバインダー型構成、機能別に電荷発生層と電
荷輸送層とを設ける覆層型構成等が挙げられる。
しかしながら、従来用いられて来た電子写真感光体材料
にはそれぞれ欠点があった。その一つとして人体への有
害性が挙げられるが、前述したアモルファスシリコンを
除く無機物質においては、何れも好ましくない性質を持
つものであった。また、電子写真感光体が実際に複写機
内で用いられるためには、帯電、露光、現像、転写、除
電、清掃等の苛酷な環境条件に曝された場合においても
、常に安定な性能を維持している必要があるが、前述し
た有機物質においては、何れも耐久性に乏しく、性能面
での不安定要素が多かった。
このような欠点を解消すべく、近年、有害性を改善し耐
久性に富んだ材料として、グロー放電法により生成きれ
るアモルファスシリコンの電子写真感光体への応用が進
んで来ている。゛しかし、アモルファスシリコンは、原
料としてシランガスを多量に必要とする反面、高価なガ
スであることから、出来上がった電子写真感光体も従来
の感光体に比べ大幅に高価なものとなる。また、成膜速
度が遅く、成膜時間の増大に伴い爆発性を有するシラン
未分解生成物を粉麿状に発生する等、生産上の不都合も
多い。また、この粉塵が製造時に感光層中に混入した場
合には、画像品質に著しく悪影響を及ぼす。ざらに、ア
モルファスシリコンは、元来、比誘電率が高いため市電
性能が低く、複写機内で所定の表面電位に帯電するため
には膜厚を厚くする必要があり、高価なアモルファスシ
リコン膜を長時間堆積させ卒くてはならない。
ところでアモルファスカーボン膜自体は、プラズマ有機
重合膜として古くより知られており、例えばジエン(M
、5hen)及びベル(A、T。
Be1.l)により、1973年発行ののジャーナル・
オブ・アプライド・ポリマー・サイエンス(Journ
al  of  Applied  P。
lymer  Sc fence)第17巻の第885
頁乃至第892頁において、あらゆる有機化合物のガス
から作製され得る事が、また、同著者により、1979
年のアメリカンケミカルソサエティー(America
n  ChemjcalSociety)発行によるプ
ラズマボリマライゼーション(Plasma  Pol
ymerization)の中でもその成膜性が論じら
れている。
しかしながら従来の方法で作製したプラズマ有機重合膜
は絶縁性を前提とした用途に限って用いられ、即ちそれ
らの膜は通常のポリエチレン膜の如<1016Ωcm程
度の比抵抗を有する絶縁膜と考えられ、或は、少なくと
もそのような膜であるとの認識のもとに用いられていた
。実際に電子写真感光体への用途にしても同様の認識か
ら、保護層、接着層、ブロッキング層もしくは絶縁層に
限られており、所謂アンダーコート層もしくはオーバー
コート層としてしか用いられていなかった。
例えば、特開昭59−28161号公報には、基板上に
ブロッキング層及び接着層としてプラズマ重合された網
目構造を有する高分子層を設け、その上にアモルファス
シリコン層を設けた感光体が開示されている。特開昭5
9−38753号公報には、基板上にブロッキング層及
び接着層として酸素と窒素と炭化水素の混合ガスから生
成される1013〜1015Ωcmの高抵抗のプラズマ
重合膜を10λ〜100人設けた上にアモルファスシリ
コン層を設けた感光体が開示されている。特開昭59−
136742号公報には、アルミ基板上に設けたアモル
ファスシリコン層内へ光照射時にアルミ原子が拡散する
のを防止するための保護層として1〜5μm程度の炭素
膜を基板表面に形成せしめた感光体が開示きれている。
特開昭60−63541号公報には、アルミ基板とその
上に設けたアモルファスシリコン層との接着性を改善す
るために、接着層として200人〜2μmのダイヤモン
ド状炭素膜を中間に設けた感光体が開示され、残留電荷
の面から膜厚は2μm以下が好ましいとされている。
これらの開示は、何れも基板とアモルファスシリコン層
との間に、所謂アンダーコート層を設けた発明であり、
電荷輸送性についての開示は全くなく、また、a−3i
の有する前記した本質的問題を解決するものではない。
また、例えば、特開昭50−20728号公報には、ポ
リビニルカルバゾール−セレン系感光体の表面に保護層
としてグロー放電重合によるポリマー膜を0.1〜1μ
m設けた感光体が開示されている。特開昭59−214
859号公報には、アモルファスシリコン感光体の表面
に保護層としてスチレンやアセチレン等の有機炭化水素
モノマーをプラズマ重合させて5μm程度の膜を形成き
せる技術が開示きれている。特開昭60−61761号
公報には、表面保護層として、500人〜2μmのダイ
ヤモンド状炭素薄膜を設けた感光体が開示され、透光性
の面から膜厚は2μm以下が好ましいときれてている。
特開昭60−249115号公報には、0.05〜5μ
m程度の無定形炭素または硬質炭素膜を表面保護層とし
て用いる技術が開示され、膜厚が5μmを越えると感光
体活 ′性に悪影響が及ぶとされている。
これらの開示は、何れも感光体表面に所謂オーバーコー
ト層を設けた発明であり、電荷輸送性についての開示は
全くなく、また、a−3iの有する前記した本質的問題
を解決するものではない。
また、特開昭51−46130号公報には、ポリビニル
カルバゾール系電子写真感光体の表面にグロー放電重合
を行なってo、ooi〜3μmのポリマー膜を形成せし
めた電子写真感光板が開示されているが、電荷輸送性に
ついては全く言及されていないし、a−5iの持つ前記
した本質的問題を解決するものではない。
一方、アモルファスシリコン膜については、スピア(W
、E、5pear)及びレコンバ(P。
G、LeComber)により1976年発行のフイロ
ソフイカル・マガジン(Philosophical 
 Magazine)第33巻の第935頁乃至第94
9頁において、極性制御が可能な材料である事が報じら
れて以来、種々の光電デバイスへの応用が試みられて来
た。感光体への応用に関しては、例えば、特開昭56−
62254号公報、特開昭57−119356号公報、
特開昭57−177147号公報、特開昭57−119
357号公報、特開昭57−177149号公報、特開
昭57−119357号公報、特開昭57−17714
6号公報、特開昭57−177148号公報、特開昭5
7−174448号公報、特開昭57−174449号
公報、特開昭57−174450号公報、等に、炭素原
子を含有したアモルファスシリコン感光体が開示されて
いるが、何れもアモルファスシリコンの光導電性を炭素
原子により調整する事を目的としたものであり、また、
アモルファスシリコン自体厚い膜を必要としている。
Bが解決しようとする W県 以上のように、従来、電子写真感光体に用いられている
プラズマ有機重合膜は所謂アンダーコート層もしくはオ
ーバーコート層として使用されていたが、それらはキャ
リアの輸送機能を必要としない膜であって、有機重合膜
が絶縁性で有るとの判断にたって用いられている。従っ
てその膜厚も高々5μm程度の極めて薄い膜としてしか
用いられず、キャリアはトンネル効果で膜中を通過する
か、トンネル効果が期待できない場合には、残留電位の
発生に関して事実上問題にならずに済む程度の薄い膜で
しか用いられていない。また、従来、電子写真に用いら
れているアモルファスシリコン膜は所謂厚膜で使用され
ており、価格或は生産性等に、不都合な点が多い。
本発明者らは、アモルファスカーボン膜の電子写真感光
体への応用を検討しているうちに、本来絶縁性であると
考えられていた水素化アモルファスカーボン膜が、燐原
子及び硼素原子のうち少なくとも一方を含有すると共に
酸素原子を含有してなる水素化或は弗素化アモルファス
シリコン膜との積層においては電荷輸送性を有し、容易
に好適な電子写真特性を示し始める事を見出した。その
理論的解釈には本発明者においても不明確な点が多く詳
細に亙り言及はできないが、水素化アモルファスカーボ
ン膜中に捕捉きれている比較的不安定なエネルギー状態
の電子、例えばπ電子、不対電子、残存フリーラジカル
等が形成するバンド構造が、燐原子及び硼素原子のうち
少なくとも一方を含有すると共に酸素原子を含有してな
る水素化或は弗素化アモルファスシリコン膜が形成する
バンド構造と電導帯もしくは荷電子帯において近似した
エネルギー準位を有するため、燐原子及び硼素原子のう
ち少なくとも一方を含有すると共に酸素原子を含有して
なる水素化或は弗素化アモルファスシリコン膜中で発生
したキャリアが容易に水素化アモルファスカーボン膜中
へ注入され、ざらに、このキャリアは前述の比較的不安
定なエネルギー状態の電子の作用により水素化アモルフ
ァスカーボン膜中を好適に走行し得るためと推定される
本発明はその新たな知見を利用することにより、アモル
ファスシリコン感光体の持つ前述の如き本質的問題点を
全て解消し、また従来とは全く使用目的も特性も異なる
、有機プラズマ重合膜、特に水素化アモルファスカーボ
ン膜を電荷輸送層として使用し、かつ、燐原子及び硼素
原子のうち少なくとも一方を含有すると共に酸素原子を
含有してなる水素化或は弗素化アモルファスシリコンの
薄膜を電荷発生層として使用した感光体を提供する事を
目的とする。
圓顔点1厘迭ユゑム叉9王閃 即ち、本発明は、電荷発生層と電荷輸送層とを有する機
能分離型感光体において、該電荷輸送層がプラズマ重合
反応から生成される水素化アモルファスカーボン膜であ
り、かつ、該電荷発生層が燐原子及び硼素原子のうち少
なくとも一方を含有すると共に酸素原子を含有してなる
水素化或は弗素化アモルファスシリコン膜であることを
特fGとする感光体に関する(以下、本発明による電荷
輸送層をa−C膜及び電荷発生層をa−3i膜と称する
) 本発明は、従来のアモルファスシリコン感光体において
は、電荷発生層として優れた機能を有するアモルファス
シリコンを、電荷発生能が無くても電荷輸送能ざえあれ
ば済む電荷輸送層としても併用していたため発生してい
たこれらの問題点を解決すべく成されたものである。
即ち、本発明は、電荷輸送層としてグロー放電により生
成きれる水素化アモルファスカーボン膜を設け、かつ、
電荷発生層として同じくグロー放電により生成される燐
原子及び硼素原子のうち少なくとも一方を含有すると共
に酸素原子を含有してなる水素化或は弗素化アモルファ
スシリコン膜を設けた事を特徴とする機能分離型感光体
に関する。該電荷輸送層は、可視光もしくは半導体レー
ザー光付近の波長の光に対しては明確なる光導電性は有
ざないが、好適な輸送性を有し、ざらに、帯電能、耐久
性、耐候性、耐環境汚染性等の電子写真感光体性能に優
れ、しかも透光性にも優れるため、機能分離型感光体と
しての積層構造を形成する場合においても極めて高い自
由度が得られるものである。また、該電荷発生層は、可
視光もしくは半導体レーザー光付近の波長の光に対して
優れた光導電性を有し、しかも従来のアモルファスシリ
コン感光体に比べて極めて薄い膜厚で、その機能を活か
す事ができるものである。
本発明においては、a−C膜を形成するために有機化合
物ガス、特に炭化水素ガスが用いられる。
該炭化水素における相状態は常温常圧において必ずしも
気相である必要はなく、加熱或は減圧等により溶融、蒸
発、昇華等を経て気化しうるものであれば、液相でも固
相でも使用可能である。
使用可能な炭化水素には種類が多いが、飽和炭化水素と
しては、例えば、メタン、エタン、プロパン、ブタン、
ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デ
カン、ウンデカン、トチ゛カン、トリテ”カン、テトラ
コサン、ペンタデカン、ヘキサデカン、ヘプタデカン、
オクタデカン、ノナデカン、エイコサン、ヘンエイコサ
ン、トコサン、トリコサン、テトラコサン、ペンタコサ
ン、ヘキサコサン、ヘプタコサン、オクタコサン、ノナ
コサン、トリアコンタン、トドリアコンタン、ペンタト
リアコンタン、等のノルマルパラフィン並びに、イソブ
タン、イソペンタン、ネオペンタン、イソヘキサン、ネ
オヘキサン、2,3−ジメチルブタン、2−メチルヘキ
サン、3−エヂルベンタン、2.2−ジメチルペンタン
、2.4−ジメチルペンタン、3,3−ジメチルペンタ
ン、トリブタン、2−メチルへブタン、3−メチルへブ
タン、2,2−ジメチルヘキサン、2,2.5−ジメチ
ルヘキサン、2.2.3−)ジメチルペンタン、2,2
.4−トリメチルペンタン、2,3゜3−トリメチルペ
ンタン、2.3.4−トリメチルペンタン、イソナノン
、等のイソパラフィン、等が用いられる。不飽和炭化水
素としては、例えば、エチレン、プロピレン、イソブチ
レン、1−ブテン、2−ブテン、1−ペンテン、2−ペ
ンテン、2−メチル−1−ブテン、3−メチル−1−ブ
テン、2−メチル−2−ブテン、1−ヘキセン、テトラ
メチルエチレン、1−ヘプテン、1−オクテン、1−ノ
ネン、1−デセン、等のオレフィン、並びに、アレン、
メチルアレン、ブタジェン、ペンタジェン、ヘキサジエ
ン、シクロペンタジェン、等のジオレフィン、並びに、
オシメン、アロオシメン、ミルセン、ヘキサトリエン、
等のトリオレフイン、並びに、アセチレン、ブタジイン
、1゜3−ペンタジイン、2.4−へキサジイン、メチ
ルアセチレン、1−ブチン、2−ブチン、1−ペンチン
、1−ヘキシン、1−ヘプチン、1−オクチン、1−ノ
ニン、1−デシン、等が用いられる。
脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロペンタン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロドデカン、シクロトリデ
カン、シクロテトラデカン、シクロペンタデカン、シク
ロヘキサデカン、等のシクロパラフィン並びに、シクロ
プロペン、シクロブテン、シクロペンテン、シクロヘキ
セン、シクロヘプテン、シクロオクテン、シクロノネン
、シクロデセン、等のシクロオレフィン並びに、リモネ
ン、テルビルン、フエランドレン、シルベストレン、ツ
エン、カレン、ピネン、ボルニレン、カンフエン、フエ
ンチェン、シクロウンデカン、トリシクレン、ビサボレ
ン、ジンギベレン、クルクメン、フムレン、カジネンセ
スキベニヘン、セリネン、カリオフィレン、サンタレン
、セドレン、カンホレン、フィロクラテン、ボドヵルブ
レン、ミレン、等のテルペン並びに、ステロイド等が用
いられる。芳香族炭化水素としては、例えば、ベンゼン
、トルエン、キシレン、ヘミメリテン、プソイドクメン
、メシチレン、プレニテン、イソジュレン、ジュレン、
ペンタメチルベンゼン、ヘキサメチルベンゼン、エチル
ベンゼン、プロピルベンゼン、クメン、スチレン、ピフ
ェニル、テルフェニル、ジフェニルメタン、トリフェニ
ルメタン、ジベンジル、スチルベン、インデン、ナフタ
リン、テトラリン、アントラセン、フェナントレン、等
が用いられる。
本発明におけるa −C膜中に含まれる水素原子の量は
グロー放電を用いるというその製造面から必然的に定ま
るが、炭素原子と水素原子の総量に対して、概ね30乃
至60原子%含有される。ここで、炭素原子並びに水素
原子の膜中含有量は、有機元素分析の常法、例えばON
H分析を用いる事により知る事ができる。
本発明におけるa −C膜中に含まれる水素原子の量は
、成膜装置の形態並びに成膜時の条件により変化するが
、例えば、基板温度を高くする、圧力を低くする、原料
炭化水素ガスの希釈率を低くする、印加電力を高くする
、交番電界の周波数を低くする、交番電界に重畳せしめ
た直流電界強度を高くする、等の手段、或は、これらの
組合せ操作は、含有水素量を低くする効果を有する。
本発明における電荷輸送層としてのa −C膜の膜厚は
、通常の電子写真プロセスで用いるためには、5乃至5
0μm1特に7乃至20μmが適当であり、5μmより
薄いと、帯電電位が低いため充分な複写画像濃度を得る
事ができない。また、50μmより厚いと、生産性の面
で好ましくない。
このa−C膜は、高透光性、高暗抵抗を有するとともに
電荷輸送性に富み、膜厚を上記の様に5μm以上として
もキャリアはトラップされる事無く輸送され明減衰に寄
与する事が可能である。
本発明における原料気体からa −C膜を形成する過程
としては、原料気体が、直流、低周波、高周波、或はマ
イクロ波等を用いたプラズマ法により生成されるプラズ
マ状態を経て形成きれる方法が最も好ましいが、その他
にも、イオン化蒸着法、或はイオンビーム蒸着法等によ
り生成されるイオン状態を経て形成されてもよいし、真
空蒸着法、或はスパッタリング法等により生成される中
性粒子から形成されてもよいし、ざらには、これらの組
み合わせにより形成きれてもよい。
本発明においては、a−Si膜を形成するためにシラン
ガス、ジシランガス、或は、弗化シランガスが用いられ
る。また、化学的修飾物質として燐原子或は硼素原子を
膜中に含有せしめるための原料ガスとして、ホスフィン
ガス或はジボランガス等が用いられる。ざらに、化学的
修飾物質として酸素原子を膜中に含有せしめるための原
料ガスとして、酸素ガス、亜酸化窒素ガス、オゾンガス
、或は、−酸化炭素ガス、等の酸素化合物ガスが用いら
れる。
本発明において化学的修飾物質として含有きれる燐原子
或は硼素原子の量は、全構成原子に対して20000原
子ppm以下である。ここで燐原子或は硼素原子の膜中
含有量は、元素分析の常法、例えばオージェ分析或はI
MA分析により知る事ができる。燐原子或は硼素原子の
膜中含有量が2oooo原子ppmより高い場合には、
少量の添加では好適な輸送性、或は、極性制御効果を保
証していた燐原子或は硼素原子が、逆に膜の低抵抗化を
招く作用を示し、帯電能の低下を来たす。従って、本発
明における燐原子或は硼素原子添加量の範囲は重要であ
る。
本発明において化学的修飾物質として含有きれる酸素原
子の量は、全構成原子に対して0.001乃至1原子%
である。ここで酸素原子の膜中含有量は、元素分析の常
法、例えばオージェ分析或はIMA分析により知る事が
できる。酸素原子の膜中含有量が0.001原子%より
低い場合には、a−Si膜の電気抵抗値が低くなる事が
らa−Si膜にコロナ帯電等による電界がかかりにくく
なり、光励起キャリアが必ずしも効率よ<a、−C膜中
に注入されなくなり感度の低下を招く。また、帯電能も
低下する。酸素原子の膜中含有量が1原子%より高い場
合には、逆にa−3i膜の電気抵抗値が青くなりすぎる
事から、光励起キャリアの発生効率並びに異動速度が低
下し、感度の低下を招く。従って、本発明における酸素
原子添加量の範囲は重要である。
本発明におけるa−SiFJc中に含まれる水素原子或
は弗素原子の量はグロー放電を用いるというその製造面
から必然的に定まるが、シリコン原子と水素原子或はシ
リコン原子と弗素原子の総量に対しC1概ね10乃至3
5原子%含有される。ここで、水素原子或は弗素原子の
膜中含有量は、元素分析の常法、例えばONH分析、オ
ージェ分析等を用いる事により知る事かで伊る。
本発明における電荷発生層としてのa−Si膜の膜厚は
、通常の電子写真プロセスで用いるためには、0.1乃
至5μmが適当であり、0.1μmより薄いと、光吸収
が不十分となり充分な電荷発生が行なわれなくなり、感
度の低下を招く。また、5μmより厚いと、生産性の面
で好ましくない。このa−3i膜は電荷発生能に富み、
ざらに、本発明の最も特徴とするところのa−C膜との
積層構成において効率よ<a−C膜中に発生キャリアを
注入せしめ、好適な明減衰に寄与する事が可能である。
本発明における原料気体からa−3iF?を形成する過
程は、a−C膜を形成する場合と同様にして行なわれる
本発明において化学的修飾物質として含有される酸素原
子、燐原子、或は、硼素原子の量は、主に、プラズマ反
応を行なう反応室への前述の酸素化合物ガス、ホスフィ
ンガス、或は、ジボランガスの導入量を増減することに
より制御することが可能である。酸素化合物ガス、ホス
フィンガス、或は、ジボランガスの導入量を増大させれ
ば、本発明によるa−Si膜中への酸素原子、燐原子、
或は、硼素原子の添加量を貰くすることが可能であり、
逆に酸素化合物ガス、ホスフィンガス、或は、ジボラン
ガスの導入量を減少させれば、本発明によるa−3i膜
中への酸素原子、燐原子、或は、硼素原子の添加量を低
くすることが可能である。
本発明における感光体は、電荷発生層と電荷輸送層から
成る機能分離型の構成とするのが最適で、該電荷発生層
と該電荷輸送層の積層構成は、必要に応じて適宜選択す
ることが可能である。
第1図は、その一形態として、導電性基板(1)上に電
荷輸送層(2)と電荷発生層(3)を順次積層してなる
構成を示したものである。第2図は、別の一形態として
、導電性基板(1)上に電荷発生層(3)と電荷輸送層
(2)を順次viit、てなる構成を示したものである
。第3図は、別の−形態として、導電性基板(1)上に
、電荷輸送層(2)と電荷発生層(3)と電荷輸送層(
2)を順次積層してなる構成を示したものである。
感光体表面を、例えばコロナ帯電器等により正帯電した
後、画像露光して使用する場合においては、第1図では
電荷発生層(3)で発生した正孔が電荷輸送層(2)中
を導電性基板(1)に向は走行し、第2図では電荷発生
層(3)で発生した電子が電荷輸送層(2)中を感光体
表面に向は走行し、第3図では電荷発生層(3)で発生
した正孔が導電性基板側の電荷輸送層(2)中を導電性
基板(1)に向は走行すると共に、同時に電荷発生層(
3)で発生した電子が表面側の電荷輸送層(2)中を感
光体表面に向は走行し、好適な明減衰に保証された静電
潜像の形成が行なわれる。反対に感光体表面を負棗電し
た後、画像露光して使用する場合においては、電子と正
孔の挙動を入れ代えて、キャリアーの走行性を解すれば
よい。第2図及び第3図では、画像露光用の照射光が電
荷輸送層中を通過する事になるが、本発明による電荷輸
送層は透光性に優れることから、好適な潜像形成を行な
うことが可能である°。
第4図は、ざらなる一形態として、導電性基板(1)上
に電荷輸送層(2)と電荷発生層(3)と表面保護層(
4)を順次積層してなる構成を示したものである。即ち
第1図の形態に表面保護層を設けた形態に相当するが、
第1図の形態では、最表面が#4湿性に乏しいa−Si
膜で有ることから、多くの場合実用上の対湿度安定性を
確保するために表面保護層を設けることが好ましい。第
2図及び第3図の構成の場合、最表面が耐久性に優れた
a−CH*であるため表面保護層を設けなくてもよいが
、例えば現像剤の付着による感光体表面の汚れを防止す
るような、複写機内の各種エレメントに対する整合性を
調整する目的から、表面保護層を設けることもざらなる
一形態と成りうる。
第5図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷発生層(3)と電荷輸送層(2)
を順次積層してなる構成を示したものである。即ち第2
図の形態に中間層を設けた形態に相当するが、第2図の
形態では、導電性基板との接合面がa−Sil!!であ
る事から、多くの場合接着性及び注入阻止効果を確保す
るために中間層を設ける事が好ましい。第1図及び第3
図の構成の場合、導電性基板との接合面が、接着性及び
注入阻止効果に優れた、本発明による電荷輸送層である
ため、中間層を設けなくてもよいが、例えば導電性基板
の前処理方法のような、感光層形成以前の製造工程との
整合性を調整する目的から、中間層を設けることもざら
なる一形態と成りうる。
第6図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷輸送層(2)と電荷発生層(3)
と表面保護層(4)を順次積層してなる構成を示したも
のである。即ち第1図の形態に中間層と表面保護層を設
けた形態に相当する。
中間層と表面保護層の設置理由は前述と同様であり、従
って第2図及び第3図の構成において中間層と表面保護
層を設けることもざらなる一形態と成りうる。
本発明において中間層と表面保護層は、材料的にも、製
法的にも、特に限定を受けるものではなく所定の目的が
達せられるものであれば、適宜選択することが可能であ
る。本発明によるa−C膜を用いてもよい。但し、用い
る材料が、例えば従来例で述べた如き絶縁性材料である
場合には、残留電位発生の防止のため膜厚は5μm以下
に留める必要がある。
本発明による感光体の電荷輸送層は、気相状態の分子を
減圧下で放電分解し、発生したプラズマ雰囲気中に含ま
れる活性中性種あるいは荷電種を基板上に拡散、電気力
、あるいは磁気力等により誘導し、基板上での再結合反
応により固相として堆積きせる、所謂プラズマ重合反応
から生成される事が好ましい。
第7図は本発明に係わる感光体の製造装着を示し、図中
(701)〜(706)は常温において気相状態にある
原料化合物及びキャリアガスを密封した第1乃至第6タ
ンクで、各々のタンクは第1乃至第6調節弁(707)
〜(712)と第1乃至第6流量制御器(713)〜(
718)に接続されている。図中(719)〜(721
)は常温において液相または固相状態にある原料化合物
を封入した第1乃至第3容器で、各々の容器は気化のた
め第1乃至第3温調器(722)〜(724)により与
熱可能であり、ざらに各々の容器は第7乃至第9調節弁
(725)〜(727)と第7乃至第9流量制御器(7
28)〜(730)に接続されている。これらのガスは
混合器(731)で混合された後、主管(732)を介
して反応室(733)に送り込まれる。途中の配管は、
常温において液相または固相状態にあった原料化合物が
気化したガスが、途中で凝結しないように、適宜配置さ
れた配管加熱器(734)により、与熱可能とされてい
る。反応室内には接地電極(735)と電力印加電極(
736)が対向して設Wきれ、各々の電極は電極加熱器
(737)により与熱可能とされている。電力印加電極
(736)には、高周波電力用整合器(738)を介し
て高周波電源(739) 、低周波電力用整合器(74
0)を介して低周波1f源(741)、ローパスフィル
タ(742)を介して直流電K(743)が接続されて
おり、接続選択スイッチ(744)により周波数の異な
る電力が印加可能ときれている。反応室(733)内の
圧力は圧力制御弁(745)により調整可能であり、反
応室(733)内の減圧は、排気系選択弁(746)を
介して、拡散ポンプ(747) 、油回転ポンプ(74
8) 、或は、冷却除外装置f (749) 、メカニ
カルブースターポンプ(750)、油回転ポンプ(74
8)により行なわれる。排ガスについては、ざらに適当
な除外装置(753)により安全無害化した後、大気中
に排気きれる。これら排気系配管についても、常温にお
いて液相または固相状態にあった原料化合物が気化した
ガスが、途中で凝結しないように、適宜配置きれた配管
加熱器(734)により、与熱可能とされている。反応
室(733)も同様の理由から反応室加熱器(751)
により与熱可能ときれ、内部に配された電極上に導電性
基板(752)が設置される。第7図において導電性基
板(752)は接地Ttl極(735)に固定して配さ
れているが、電力印加電極(736)に固定して配され
てもよく、ざらに双方に配されてもよい。
第8図は本発明に係わる感光体の製造装置の別の一形態
を示し、反応室(833)内部の形態以外は、第7図に
示した本発明に係わる感光体の製造装置と同様であり、
付記された番号は、700番台のものを800番台に置
き換えて解すればよい。第8図において、反応室(83
3)内部には、第7区における接地型wii(735)
を兼ねた円筒形の導電性基板(852)が設置され、内
側には電極加熱器(837)が配されている。導電性基
板(852)周囲には同じく円筒形状をした電力印加電
極(836)が配され、外側には電極加熱器(837)
が配きれている。導電性基板(852)は、外部より駆
動モータ(854)を用いて自転可能となっている。
感光体製造に供する反応室は、拡散ポンプにより予め1
0−4乃至10=Torr程度にまで減圧し、真空度の
確認と装置内部に吸着したガスの脱着を行なう。同時に
電極加熱器により、電極並びに電極に固定して配きれた
導電性基板を所定の温度まで昇温する。導電性基板には
、前述の如き感光体構成の中から所望の構成を得るため
に、必要であれば、予めアンダーコート層或は電荷発生
層を設けて置いてもよい。アンダーコート層或は電荷発
生層の設置には、本装置を用いてもよいし別装置を用い
てもよい。次いで、第1乃至第6タンク及び第1乃至第
3容器から、原料ガスを適宜第1乃至第9流量制御器を
用いて定流量化しながら反応室内に導入し、圧力調節弁
により反応室内を一定の減圧状態に保つ。ガス流量が安
定化した後、接続選択スイッチにより、例えば高周波電
源を選択し、電力印加電極に高周波電力を投入する。両
電極間には放電が開始され、時間と共に基板上に固相の
膜が形成される。a−3i膜或はa−C膜は、原料ガス
を代える事により任意に形成可能である。放電を一旦停
止し、原料ガス組成を変更した後、再び放電を再開すれ
ば異なる組成の膜を積層する事ができる。また、放電を
持続させながら原料ガス流量だけを徐々に代え、異なる
組成の膜を勾配を持たせながら積層する事も可能である
反応時間により膜厚を制御し、所定の膜厚並びに積層構
成に達したところで放電を停止し、本発明による感光体
を得る。次いで、第1乃至第9調節弁を閉じ、反応室内
を充分に排気する。ここで所望の感光体構成が得られる
場合には反応室内の真空を破り、反応室より本発明によ
る感光体を取り出す。更に所望の感光体構成において、
電荷発生層或はオーバーコート層が必要とされる場合に
は、そのまま本装置を用いるか、或は同様に一旦真空を
破り取り出して別装置に移してこれらの層を設け、本発
明による感光体を得る。
以下実施例を挙げながら、本発明を説明する。
大嵐泗よ 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1、及び第2調節弁(707、及び7
08)を解放し、第1タンク(701)より水素ガス、
及び第2タンク(702)よりブタジェンガスを各々出
力圧1゜0Kg70m2の下で第1、及び第2流量制御
器(713、及び714)内へ流入させた。水素ガスの
流量を60secm、及びブタジェンガスの流量を60
secmとなるように設定して、途中混合器(731)
を介して、主管(732)より反応室(733)内へ流
入した。各々の流量が安定した後に、反応室(733)
内の圧力が2.0Torrとなるように圧力調節弁(7
45)を調整した。一方、導電性基板(752)として
は、樅50×横50×厚3mmのアルミニウム基板を用
いて、予め130℃に加熱しておき、ガス流量及び圧力
が安定した状態で、予め接続選択スイッチ(744)に
より接続しておいた低周波電源(741)を投入し、電
力印加電極(736)に120Wattの電力を周波数
400KHzの下で印加して約30分間プラズマ重合反
応を行ない、導電性基板(752)上に厚き15umの
a−C膜を電荷輸送層として形成した。成膜完了後は、
電力印加を停止し、調節弁を閉じ、反応室(733)内
を充分に排気した。
以上のようにして得られたa −CFJにつき金属中O
NH分析(板場製作所製EMGA−1300)を行なっ
たところ、含有される水素原子の量は炭素原子と水素原
子の総量に対して55原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707)、第5調節弁(711)
、及び第6調節弁(712)を解放し、第1タンク(7
01)’から水素ガス、第5タンク(705)から亜酸
化窒素ガス、及び第6タンク(706)からシランガス
を、出力圧IKg/cm2の下で第1、第5、及び第6
流量制御器(713,717、及び718)内へ流入さ
せた。同時に、第4調節弁(710)を解放し、第4タ
ンク(704)より水素ガスで1100ppに希釈きれ
たジボランガスを、出力圧1.5Kg/cm2の下で第
4流量制御器(716)内へ、流入きせた。
各流量制御器の目盛を調整して水素ガスの流量を200
secm1亜酸化窒素ガスの流量を3secm、シラン
ガスの流量を101005e、水素ガスで100 p 
pmに希釈されたジボランガスの流量を10105eに
設定し、反応室(733)内に流入させた。各々の流量
が安定した後に、反応室(733)内の圧力がL 0T
orrとなるように圧力調節弁(745)を調整した。
一方、a−C膜が形成されている導電性基板(752)
は、240℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MHzの下で電力印加電極(736)に45Watt
の電力を印加し、グロー放電を発生きせな。この放電を
5分間行ない、厚き0゜3μmの電荷発生層を得た。
得られたa−Si膜につき、金属中○NH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して21原子%、硼素原子は11原子ppm
、酸素原子は0.31原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一720V (+720V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は47V/μm(47V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解きれた
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約18秒(約15
秒)であり、このことから充分な電荷保持性能を有する
事が理Mきれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は1.5ルツク
ス・秒(2,2ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
X旋透旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの頭に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10=To r r程度の高真
空にした後、第1、及び第2 (707、及び708)
を解放し、第1タンク(701)より水素ガス、及び第
2タンク(702)よりエチレンを各々出力圧1.0K
g/am2の下で第1、及び第2流量制罪器(713、
及び714)内へ流入させな。そして各流量制御器の目
盛を調整して、水素ガスの流量を60secm、及びエ
チレンガスの流量を60secms となるように設定
して、途中混合器(731)を介して、主管(732)
より反応室(733)内へ流入した。各々の流量が安定
した後に、反応室(733)内の圧力が1.ITorr
となるように圧力調節弁(745)を調整した。一方、
導電性基板(752)としては、樅50X横50×厚3
mmのアルミニウム基板を用いて、予め250℃に加熱
しておき、ガス流量及び圧力が安定した状態で、予め接
続選択スイッチ(744)により接続しておいた高周波
電源(739)を投入し、電力印加電極(736)に2
00Wattの電力を周波数13.56MHzの下で印
加して約10時間プラズマ重合反応を行ない、導電性基
板(752)上に厚き15μmのa−C膜を電荷輸送層
として形成した。成膜完了後は、電力印加を停止し、調
節弁を閉じ、反応室(733)内を充分に排気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所製EMGA−1300)を行なった
ところ、含有される水素原子の量は炭素原子と水素原子
の総量に対して39原子%であっ電荷発生層形成工程: 次いで、第1調節弁(707)、第5tAfm弁(71
1L及び第6調節弁(712)を解放し、第1タンク(
701)から水素ガス、第5タンク(705)から酸素
ガス、及び第6タンク(706)からシランガスを、出
力圧IKg/cm2の下で第1、第5、及び第6流量制
御器(713,717、及び718)内へ流入させた。
同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで10ppmに希釈されたホスフ
ィンガスを、出力圧1.5Kg/cm2の下で第4流量
制御器(716)内へ、流入させた。各流量制譚器の目
盛を調整して水素ガスの流量を200secm、−酸素
ガスの流量を1.3secm。
シランガスの流量を200secm、水素ガスで110
0ppに希釈きれたホスフィンガスの流量を10105
eに設定し、反応室(733)内に流入きせた。各々の
流量が安定した後に、反応室(733)内の圧力が0.
9Torrとなるように圧力調節弁(745)を調整し
た。一方、a−C膜が形成されている導電性基板(75
2)は、250℃に加熱しておき、ガス流量及び圧力が
安定した状態で、高周波電源(739)より周波数13
.56MHzの下で電力印加電極(736)に35Wa
ttの電力を印加し、グロー放電を発生させた。この放
電を5分間行ない、厚さ0.3μmの電荷発生層を得た
得られたa−Sf膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して18原子%、燐原子は12原子pPmN
酸素原子は0.3原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如ぎ性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一540V (+760V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1um当り
の帯電能は35V/μm (49V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約12秒(約16
秒)であり、このことから充分な電荷保持性能を有する
事が理解きれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要ときれた光量は1.フルック
ス・秒(5,フルックス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
宜施泗溢 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1容!(719)よりスチレンガスを
第1温調器(722)1度20℃のもとで、第7流量制
御器(728)内へ流入させた。流量制御器の目盛を調
整して、スチレンガスの流量を40scamとなるよう
に設定して、主管(732)より反応室(733)内へ
流入した。各々の流量が安定した後に、反応室(733
)内の圧力が0.8Torrとなるように圧力調節弁(
745)を調整した。一方、導電性基板(752)とし
ては、縦50×横50×厚3mmのアルミニウム基板を
用いて、予め150℃に加熱しておき、ガス流量及び圧
力が安定した状態で、予め接続選択スイッチ(744)
により接続しておいた低周波電源(741)を投入し、
電力印加電極(736)に140Wattの電力を周波
数13.56MHzの下で印加して約1時間半プラズマ
重合反応を行ない、導電性基板(752)上に厚き15
umのa−C膜を電荷輸送層として形成した。成膜完了
後は、電力印加を停止し、調節弁を閉じ、反応室(73
3)内を充分に排気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所製EMGA−1300)を行なった
ところ、含有される水素原子の量は炭素原子と水素原子
の総量に対して43原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707) 、第5調節弁(711
L及び第6調節弁(712)を解放し、第1タンク(7
01)から水素ガス、第5タンク(705)から亜酸化
窒素ガス、及び第6タンク(706)からシランガスを
、出力圧IKg/cm2の下で第1、第51及び第6流
量制御器(713,717、及び718)内へ流入させ
た。同時に、第4調節弁(710)を解放し、第4タン
ク(704)より水素ガスで1100ppに希釈された
ジボランガスを、出力圧1.5Kg/cm2の下で第4
流量制御器(716)内へ、流入させた。
各流量制御器の目盛を調整して水素ガスの流量を20Q
sccm、亜酸化窒素ガスの流量を0.Olsecm、
シランガスの流量を101005e・水素ガスで110
0ppに希釈されたジボランガスの流量を10105e
となるように設定し、反応室(733)内に流入させな
。各々の流量が安定した後に、反応室(733)内の圧
力が0.8Torrとなるように圧力調節弁(745)
を調整した。一方、a−C膜が形成されている導電性基
板(752)は、250℃に加熱しておき、ガス流量及
び圧力が安定した状態で、高周波電源(739)より周
波数13.56MHzの下で電力印加電極(736)に
35Wattの電力を印加し、グロー放電を発生させな
。この放電を5分間行ない、厚き0.3μmの電荷発生
層を得た。
1与られたa−5i膜にっ沙、金属中ONH分析(板場
製作所製EMGA−1300) 、オージェ分析、及び
IMA分析を行なったところ、含有される水素原子は全
構成原子に対して22原子%、硼素原子は10原子pp
m、酸素原子は0.001原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一900V (+900V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は59V/μm (59V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約40秒(約45
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は3.フルック
ス・秒(3,6ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
叉施倒4 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を1O−6Torr程度の高真空
にした後、第1容器(719)よりミルセンガスを第1
温調器(722)温度13o℃のもとで、第7流量制蓮
器(728)内へ流入させた。流量制御器の目盛を調整
して、ミルセンガスのfJを15secmとなるように
設定して、主管(732)より反応室(733)内へ流
入した。流量が安定した後に、反応室(733)内の圧
力が1.○Torrとなるように圧力調節弁(745)
を調整した。一方、導電性基板(752)としては、縦
50×横50×厚3mmのアルミニウム基板を用いて、
予め180℃に加熱しておき、ガス流量及び圧力が安定
した状態で、予め接続選択スイッチ(744)により接
続しておいた低周波電源(741)を投入し、電力印加
電極(736)に180Wattの電力を周波数40K
Hzの下で印加して約3時間プラズマ重合反応を行ない
、導電性基板(752)上に厚さ15μmのa−C膜を
電荷輸送層として形成した。成膜完了後は、電力印加を
停止し、調節弁を閉じ、反応室(733)内を充分に排
気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所製EMGA−1300)を行なった
ところ、含有される水素原子の量は炭素原子と水素原子
の総量に対して47原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707)、第5調筋弁(711)
、及び第6調節弁(712)を解放し、第1タンク(7
01)から水素ガス、第5タンク(705)から酸素ガ
ス、及び第6タンク(706)からシランガスを、出力
圧IKg/cm2の下で第1、第5、及び第6流量制御
器(713,717、及び718)内へ流入させな。同
時に、第4調節弁(710)を解放し、第4タンク(7
04)より水素ガスで1100ppに希釈されたジボラ
ンガスを、出力圧1.5Kg/cm2の下で第4流量制
御器(716)内へ、流入させた。各流量制御器の目盛
を調整して水素ガスの流量を2゜Osccm1酸素ガス
の流量を5secmsシランガスの流量を101005
e、水素ガスで10oppmに希釈されたジボランガス
の流量を10105eに設定し、反応室(733)内に
流入させた。各々の流量が安定した後に、反応室(73
3)内の圧力が0.8Torrとなるように圧力調節弁
(745)を調整した。一方、a −C膜が形成されて
いる導電性基板(752)は、250℃に加熱しておき
、ガス流量及び圧力が安定した状態で、高周波電源(7
39)より周波数13.56MHzの下で電力印加電極
(736)に40Wattの電力を印加し、グロー放電
を発生きせた。
この放電を5分間行ない、厚ざ0.3μmの電荷発生層
を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300)、オージェ分析、及びIM
A分析を行なったところ、含有される水素原子は全構成
原子に対して24原子%、硼素原子は10原子ppm、
酸素原子は1原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時のとII定値を括弧内に示すが、
最高帯電電位は一600V (+620V)で有り、即
ち、全感光体膜厚が15゜3μmであることから1μm
当りの帯電能は39V/μm(41V/μm)と極めて
高く、このことから充分な帯電性能を有する事が理解き
れた。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約15秒(約16
秒)であり、このことから充分な電荷保持性能を有する
事が理解きれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は2.34ルツ
クス・秒(4,5ルツクス・秒)であり、このことから
充分な光感度性能を有する事が理解きれた。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
実施備品 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10”6To r r程度の高
真空にした後、第1、及び第2調節弁(7o7、及び7
08)を解放し、第1タンク(701)より水素ガス、
及び第2タンク(702)よりアセチレンガスを各々出
力圧1.0Kg/cm2の下で第1、及び第2流量制都
器(713、及び714)内へ流入させた。そして各流
量制瀕器の目盛を調整して、水素ガスの流量を100s
CCm %及びアセチレンガスの流量を30SCCmと
なるように設定して、途中混合器(731)を介して、
主管(732)より反応室(733)内へ流入した。各
々の流量が安定した後に、反応室(733)内の圧力が
1.5Torrとなるように圧力調節弁(745)を調
整した。一方、導電性基板(752)としては、!50
X横50X厚3mmのアルミニウム基板を用いて、予め
2゜0℃に加熱しておき、ガス流量及び圧力が安定した
状態で、予め接続選択スイッチ(744)により接続し
ておいた高周波電源(739)を投入し、電力印加電極
(736)に170Wattの電力を周波数13.56
MHzの下で印加して約5時間プラズマ重合反応を行な
い、導電性基板(752)上に厚ざ15μmのa −C
膜を電荷輸送層として形成した。成膜完了後は、電力印
加を停止し、調節弁を閉じ、反応室(733)内を充分
に排気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所製EMGA−1300)を行なった
ところ、含有きれる水素原子の量は炭素原子と水素原子
の総量に対して3o原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707)、第3調節弁(709)
、第5調節弁(711)、及び第6調停弁(712)を
解放し、第1タンク(701)から水素ガス、第3タン
ク(703)から四弗化シランガス、第5タンク(70
5)から亜酸化窒素ガス、及び第6タンク(706)か
らシランガスを、出力圧IKg/cm2の下で第1、第
3、第5、及び第6流量制御器(713,715,71
7、及び718)内へ流入させた。同時に、第4調節弁
(710)を解放い第4タンク(704)より水素ガス
で10ppmに希釈されたホスフィンガスを、出力圧1
.5Kg/am2の下で第4流量制罪器(716)内へ
、流入させた。各流量制御器の目盛を調整して水素ガス
の流量を200secm、四弗化シランガスの流量を5
0secm・亜酸化窒素ガスの流量をO,lsecm、
シランガスの流量を55secm、水素ガスで1100
ppに希釈されたホスフィンガスの流量を1oscam
に設定し、反応室(733)内に流入させた。各々の流
量が安定した後に、反応室(733)内の圧力が0.8
Torrとなるように圧力調節弁(745)を調整した
。一方、a−Cfliが形成されている導電性基板(7
52)は、240℃に加熱しておき、ガス流量及び圧力
が安定した状態で、高周波電源(739)より周波数1
3.56MHzの下で電力印加型i (736)に35
Wa11の電力を印加し、グロー放電を発生とせな。
この放電を5分間行ない、厚き0.3μmの電荷発生層
を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して2o原子%、燐原子は1o原子りI)m
%酸素原子は0.1原子%、弗素原子は4.9原子%で
あった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一360V (+500V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は24■/μm (33V/μm)と棲めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約6秒(約9秒)
であり、このことから充分な電荷保持性能を有する事が
理解きれた。また、最高帯電電位に初期帯電した後、白
色光を用いて最高帯電電位の20%の表面電位にまで明
減衰させたとこる必要ときれた光量は2.フルックス・
秒(6゜9ルツクス・秒)であり、このことから充分な
光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
叉旅透旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 実施例1と同様にして本発明による感光体の電荷輸送層
を形成した。
電荷発生層形成工程: 次いで、第1調節弁(707) 、第5調節弁(711
)、及び第6調節弁(712)を解放し、第1タンク(
701)から水素ガス、第5タンク(705)から酸素
ガス、及び第6タンク(706)からシランガスを、出
力圧IKg/am2の下で第1、第5、及び第6流量制
御器(713,717、及び718)内へ流入させた。
同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスで10ppmに希釈されたホスフ
ィンガスを、出力圧1.5Kg/Cm”の下で第4流量
制御器(716)内へ、流入させた。各流量制御器の目
盛を調整して水素ガスの流量を200secm、酸素ガ
スの流量をQ、、5secm1シランガスの流量を20
0secm、水素ガスで1100ppに希釈されたホス
フィンガスの流量を10105eに設定し、反応室(7
33)内に流入させた。各々の流量が安定した後に、反
応室(733)内の圧力が1.0Torrとなるように
圧力調節弁(745)を調整した。一方、a −C膜が
形成されている導電性基板(752)は、250℃に加
熱しておき、ガス流量及び圧力が安定した状態で、高周
波電源(739)より周波数13.56MHzの下で電
力印加量ffi (736)に40Wattの電力を印
加し、グロー放電を発生きせた。この放電を5分間行な
い、厚き0.3μmの電荷発生層を得た。
得られたa−3i膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して23原子%、燐原子は13原子ppm、
酸素原子は0.1原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一540V (+780V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は35V/μm(51V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解きれた
また、暗中にてVmaxからVmaxの90%の表面電
位にまで#減衰するのに要した時間は約14秒(約20
秒)であり、このことから充分な電荷保持性能を有する
事が理解きれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要ときれた光量は1.0ルツク
ス・秒(2,9ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解きれた。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
火旅然ヱ 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1、及び第2 (707、及び708
)を解放し、第1タンク(701)より水素ガス、及び
第2タンク(702)よりエチレンを各々出力圧1.0
Kg/cm2の下で第1、及び第2流量制御器(713
、及び714)内へ流入させた。そして各流量制御器の
目盛を調整して、水素ガスの流量を60secm、及び
エチレンガスの流量を60secm1となるように設定
して、途中混合M(731)を介して、主管(732)
より反応室(733)内へ流入した。各々の流量が安定
した後に、反応室(733)内の圧力が1.ITorr
となるように圧力調節弁(745)を調整した。一方、
導電性基板(752)としては、!50X横50X厚3
mmのアルミニウム基板を用いて、予め250℃に加熱
しておき、ガス流量及び圧力が安定した状態で、予め接
続選択スイッチ(744)により接続しておいた高周波
電源(739)を投入し、電力印加電極(736)に2
00Wattの電力を周波数13.56MHzの下で印
加して約10時間プラズマ重合反応を行ない、導電性基
板(752)上に厚き15μmのa−C膜を電荷輸送層
として形成した。成膜完了後は、電力印加を停止し、調
節弁を閉じ、反応室(733)内を充分に排気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所要EMGA−1300)を行なった
ところ、含有される水素原子の量は炭素原子と水素原子
の総量に対して39原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707)、第5調節弁(711)
、及び第6調節弁(712)を解放い第1タンク(70
1)から水素ガス、第5タンク(705)から酸素ガス
、及び第6タンク(706)からシランガスを、出力圧
IKg/cm2の下で第1、第5、及び第6流量制祁器
(713,717、及び718)内へ流入させな。同時
に、第4調節弁(710)を解放し、第4タンク(70
4)より水素ガスで1100ppに希釈されたジボラン
ガスを、出力圧1.5Kg/am2の下で第4流量制御
器(716)内へ、流入きせた。各流量制祁器の目盛を
調整して水素ガスの流量を200secm、酸素ガスの
流量を0.5secm。
シランガスの流量を101005e、水素ガスで100
 p pmに希釈されたジボランガスの流量を1010
5eに設定し、反応室(733)内に流入させた。各々
の流量が安定した後に、反応室(733)内の圧力が0
.9Torrとなるように圧力調節弁(745)を調整
した。一方、a−C膜が形成されている導電性基板(7
52)は、230℃に加熱しておき、ガス流量及び圧力
が安定した状態で、高周波電!(739)より周波数1
3.56MHzの下で電力印加電極(736)に35W
attの電力を印加し、グロー放電を発生とせな。この
放電を5分間行ない、厚さ0.3μmの電荷発生層を得
た。
得られたa−3t膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して2o原子%、硼素原子は12原子ppm
5酸素原子は0.1原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一600V (+590V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は39■/μm (38V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約14秒(約13
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は1.9ルツク
ス・秒(2,3ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られp
こ。
X施遡旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 実施例5と同様にして本発明による感光体の電荷輸送層
を形成した。
電荷発生層形成工程: 次いで、第1調節弁(707)、第5調節弁(711)
、及び第6調節弁(712)を解放し、第1タンク(7
01)から水素ガス、第5タンク(705)から亜酸化
窒素ガス、及び第6タンク(706)からシランガスを
、出力圧IKg/cm2の下で第1、第5、及び第6流
量制御器(713,717、及び718)内へ流入させ
た。同時に、第4調節弁(710)を解放し、第4タン
ク(704)より水素ガスで10pI)mに希釈された
ホスフィンガスを、出力圧1.5Kg/cm2の下で第
4流量制御器(716)内へ、流入させた。
各流量制御器の目盛を調整して水素ガスの流量を20Q
sccm、亜酸化窒素ガスの流量を10105e、シラ
ンガスの流量を200secm、水素ガスで1100p
pに希釈されたホスフィンガスの流量を10105eに
設定し、反応室(733)内に流入させた。各々の流量
が安定した後に、反応室(733)内の圧力が0.8T
orrとなるように圧力調節弁(745)を調整した。
一方、a−C膜が形成されている導電性基板(752)
は、230℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MH,zの下で電力印加電極(736)に35Wat
tの電力を印加し、グロー放電を発生きせた。この放電
を5分間行ない、厚さ0゜3μmの電荷発生層を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して22原子%、燐原子は10原子ppm%
酸素原子は1.0原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次あ如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一40’OV (+540V)で有り、即ち
、全感光体膜厚が15゜3amであることから1μm当
りの帯電能は26V/μm(35V/μm)と極めて高
く、このことから充分な市電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時mlは約8秒(約11
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は3.3ルツク
ス・秒(10,8ルツクス・秒)であり、このことから
充分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
X塵倒2 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 実施例3と同様にして本発明による感光体の電荷輸送層
を形成した。
電荷発生層形成工程: 次いで、第1調節弁(707)、第3調節弁(709)
、第5調節弁(711L及び第6調節弁(712)を解
放し、第1タンク(701)から水素ガス、第3タンク
(703)から四弗化シランガス、第5タンク(705
)から亜酸化窒素ガス、及び第6タンク(706)から
シランガスを、出力圧IKg/cm2の下で第1、第3
、第5、及び第6流量制御器(713,715,717
、及び718)内へ流入させた。同時に、第4調節弁(
710)を解放し、第4タンク(704)ヨリ水素ガス
で1100ppに希釈されたジボランガスを、出力圧1
.5Kg/cm2の下で第4流量制御器(716)内へ
、流入させた。各流量制卸器の目盛を調整して水素ガス
の流量を200scam1四弗化シランガスの流量を5
0secm。
亜酸化窒素ガスの流量を1 s e c m sシラン
ガスの流量を50secm1水素ガスで1100ppに
希釈されたジボランガスの流量を10105eとなるよ
うに設定し、反応室(733)内に流入させた。各々の
流量が安定した後に、反応室(733)内の圧力が0.
9Torrとなるように圧力調節弁(745)を調整し
た。一方、a −C膜が形成きれている導電性基板(7
52)は、250℃に加熱しておき、ガス流量及び圧力
が安定した状態で、高周波電源(739)より周波数1
3゜56MHzの下で電力印加電極(736)に35W
attの電力を印加し、グロー放電を発生きせた。この
放電を5分間行ない、厚き0.3μmの電荷発生層を得
た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有きれる水素原子は全構
成原子に対して22原子%、硼素原子は10原子ppm
、弗素原子は5原子%、酸素原子は0.1原子%であう
な。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一950V (+920V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は62■/μm (60V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約45秒(約40
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要ときれた光量は4.1ルツク
ス・秒(4,8ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解きれた。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
去施例上Ω 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−’To r r程度の高
真空にした後、第1容器(719)よりミルセンガスを
第1温調器(722)1度130℃のもとで、第7流量
制御jX!J!(728)内へ流入きせた。流量制御器
の目盛を調整して、ミルセンガスの流量を15secm
となるように設定して、主! (732)より反応室(
733)内へ流入した。流量が安定した後に、反応室(
733)内の圧力が1.0Torrとなるように圧力調
節弁(745)を調整した。一方、導電性基板(752
)としては、[50X横50×厚3 m m (1)ア
ルミニウム基板を用いて、予め180℃に加熱しておき
、ガス流量及び圧力が安定した状態で、予め接続選択ス
イッチ(744)により接続しておいた低周波電源(7
41)を投入し、電力印加電極(736)に180Wa
ttの電力を周波数40KHzの下で印加して約3時間
プラズマ重合反応を行ない、導電性基板(752)上に
厚ざ15μmのa−CPAを電荷輸送層として形成した
。成膜完了後は、電力印加を停止し、調節弁を閉じ、反
応室(733)内を充分に排気した。
以上のようにして得られたa −C膜につき金属中ON
H分析(板場製作所製EMGA−1300)を行なった
ところ、含有きれる水素原子の量は炭素原子と水素原子
の総量に対して47原子%であった。
電荷発生層形成工程: 次いで、第1調節弁(707)、第5調節弁(711)
、及び第6調節弁(712)を解放し、第1タンク(7
01)から水素ガス、第5タンク(705)から亜酸化
窒素ガス、及び第6タンク(706)からシランガスを
、出力圧I K g / cm2の下で第1、第5、及
び第6流量制vlJ器(713,717、及び718)
内へ流入させた。同時に、第4調節弁(710)を解放
し、第4タンク(704)より水素ガスで10ppmに
希釈されたホスフィンガスを、出力圧1.5Kg/cm
2の下で第4流量制御器(716)内へ、流入させた。
各流量制御器の目盛を調整して水素ガスの流量を200
secm、亜酸化窒素ガスの流量をO9゜lsecm1
シランガスの流量を200scCm%水素ガスで110
0ppに希釈きれたホスフィンガスの流量を10105
eに設定し、反応室(733)内に流入させた。各々の
流量が安定した後に、反応室(733)内の圧力が0.
8Torrとなるように圧力調節弁(745)を調整し
た。
一方、a−C膜が形成されている導電性基板(752)
は、250℃に加熱しておき、ガス流量及び圧力が安定
した状態で、高周波電源(739)より周波数13.5
6MHzの下で電力印加電極(736)に40Watt
の電力を印加し、グロー放電を発生させた。この放電を
5分間行ない、厚き0.3μmの電荷発生層を得た。
得られたa−Sf膜につ伊、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及cI
IMA分析を行なったところ、含有される水素原子は全
構成原子に対して20原子%、燐原子は10原子ppm
1酸素原子は0.001原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一380V (+580V)で有り、即ち、
全感光体膜厚が15゜3μmであることからlum当り
の帯電能は25V/μm(37V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解きれた
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約10秒(約14
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高*g電位の20%の表面電位にま
で明減衰才せたとこる必要とされた光量は1.4ルツク
ス・秒(3,2ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解きれる。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
【図面の簡単な説明】
第1図乃至第6図は本発明感光体の構成を示す図面、第
7図乃至第8図は本発明に係わる感光体の製造装置を示
す図面である。 出願人 ミノルタカメラ株式会社 第1図 第2図 第3図  第4図 第5図  第6図 手続補正書 昭和62年10月21日

Claims (1)

    【特許請求の範囲】
  1. 電荷発生層と電荷輸送層とを有する機能分離型感光体に
    おいて、該電荷輸送層は水素化アモルファスカーボン膜
    であり、かつ、該電荷発生層は酸素原子を含有すると共
    に燐原子及び硼素原子のうち少なくとも一方を含有して
    なる水素化アモルファスシリコン膜或は酸素原子を含有
    すると共に燐原子及び硼素原子のうち少なくとも一方を
    含有してなる弗素化アモルファスシリコン膜であること
    を特徴とする感光体。
JP22935986A 1986-09-26 1986-09-26 感光体 Pending JPS6381453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22935986A JPS6381453A (ja) 1986-09-26 1986-09-26 感光体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22935986A JPS6381453A (ja) 1986-09-26 1986-09-26 感光体

Publications (1)

Publication Number Publication Date
JPS6381453A true JPS6381453A (ja) 1988-04-12

Family

ID=16890931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22935986A Pending JPS6381453A (ja) 1986-09-26 1986-09-26 感光体

Country Status (1)

Country Link
JP (1) JPS6381453A (ja)

Similar Documents

Publication Publication Date Title
JPS6381481A (ja) 感光体
JPS6381453A (ja) 感光体
JPS6381462A (ja) 感光体
JPS6381461A (ja) 感光体
JPS6382477A (ja) 感光体
JPS6382456A (ja) 感光体
JPS6382441A (ja) 感光体
JPS6382478A (ja) 感光体
JPS6382442A (ja) 感光体
JPS6381473A (ja) 感光体
JPS6382447A (ja) 感光体
JPS6382457A (ja) 感光体
JPS6381479A (ja) 感光体
JPS6382455A (ja) 感光体
JPS6381457A (ja) 感光体
JPS6381485A (ja) 感光体
JPS6382448A (ja) 感光体
JPS6382454A (ja) 感光体
JPS6382433A (ja) 感光体
JPS6382483A (ja) 感光体
JPS6382458A (ja) 感光体
JPS6382475A (ja) 感光体
JPS6381482A (ja) 感光体
JPS6381449A (ja) 感光体
JPS6382471A (ja) 感光体