JPS6382471A - 感光体 - Google Patents

感光体

Info

Publication number
JPS6382471A
JPS6382471A JP22944386A JP22944386A JPS6382471A JP S6382471 A JPS6382471 A JP S6382471A JP 22944386 A JP22944386 A JP 22944386A JP 22944386 A JP22944386 A JP 22944386A JP S6382471 A JPS6382471 A JP S6382471A
Authority
JP
Japan
Prior art keywords
atoms
film
gas
flow rate
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22944386A
Other languages
English (en)
Inventor
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Hideo Yasutomi
英雄 保富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP22944386A priority Critical patent/JPS6382471A/ja
Priority to EP87113883A priority patent/EP0261654A3/en
Publication of JPS6382471A publication Critical patent/JPS6382471A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電荷発生層と電荷輸送層とを有する感光体に
関する。
従来技術 カールソン法の発明以来、電子写真の応用分野は著しい
発展を続け、電子写真用感光体にも様々な材料が開発さ
れ実用化されてきた。
従来用いられて来た電子写真感光体材料の主なものとし
ては、非晶質セレン、セレン砒素、セレンテルル、硫化
カドミウム、酸化亜鉛、アモルファスシリコン等の無機
物質、ポリビニルカルバゾール、金属フタロシアニン、
ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料、トリフ
ェニルメタン化合物、トリフェニルアミン化合物、ヒド
ラゾン化合物、スチリル化合物、ピラゾリン化合物、オ
キサゾール化合物、オキサジアゾール化合物、等の有機
物質が挙げられる。また、その構成形態としては、これ
らの物質を単体で用いる単層型構成、結着材中に分散さ
せて用いるバインダー型構成、機能別に電荷発生層と電
荷輸送層とを設ける積層型構成等が挙げられる。
しかしながら、従来用いられて来た電子写真感光体材料
にはそれぞれ欠点があった。その一つとして人体への有
害性が挙げられるが、前述したアモルファスシリコンを
除く無機物質においては、何れも好ましくない性質を持
つものであった。また、電子写真感光体が実際に複写機
内で用いられるためには、帯電、露光、現像、転写、除
電、清掃等の苛酷な環境条件に曝された場合においても
、常に安定な性能を維持している必要があるが、前述し
た有機物質においては、何れも耐久性に乏しく、性能面
での不安定要素が多かった。
このような欠点を解消すべく、近年、有害性を改善し耐
久性に富んだ材料として、グロー放電法により生成され
るアモルファスシリコンの電子写真感光体への応用が進
んで来ている。しかし、アモルファスシリコンは、原料
としてシランガスを多量に必要とする反面、高価なガス
であることから、出来上がった電子写真感光体も従来の
感光体に比べ大幅に高価なものとなる。また、成膜速度
が遅く、成膜時間の増大に伴い爆発性を有するシラン未
分解生成物を粉塵状に発生する等、生産上の不都合も多
い。また、この粉塵が製造時に感光層中に混入した場合
には、画像品質に著しく悪影響を及ぼす。ざらに、アモ
ルファスシリコンは、元来、比誘電率が高いため帯電性
能が低く、複写機内で所定の表面電位に帯電するために
は膜厚を厚くする必要があり、高価なアモルファスシリ
コン膜を長時間堆積させなくてはならない。
ところでアモルファスカーボン膜自体は、プラズマ有機
重合膜として古くより知られており、例えばジエン(M
、5hen)及びベル(A、T。
Be1l)により、1973年発行ののジャーナル・オ
ブ・アプライド・ポリマー・サイエンス(Journa
 l  of  App 1 ied  P。
lymer  5cfence)第17巻の第885頁
乃至第892頁において、あらゆる有機化合物のガスか
ら作製され得る事が、また、同著者により、1979年
のアメリカンケミカルソサエティ  (America
n  ChemicalSociety)発行によるプ
ラズマボリマライゼーション(Plasma  Pol
ymerization)の中でもその成膜性が論じら
れている。
しカルながら従来の方法で作製したプラズマ有機重合膜
は絶縁性を前提とした用途に限って用いられ、即ちそれ
らの膜は通常のポリエチレン膜の如<10”Ωcm程度
の比抵抗を有する絶縁膜と考えられ、或は、少なくとも
そのような膜であるとの認識のもとに用いられていた。
実際に電子写真感光体への用途にしても同様の認識から
、保護層、接着層、ブロッキング層もしくは絶縁層に限
られており、所謂アンダーコート層もしくはオーバーコ
ート層としてしか用いられていなかった。
例えば、特開昭59−28161号公報には、基板上に
ブロッキング層及び接着層としてプラズマ重合された網
目構造を有する窩分子層を設け、その上にアモルファス
シリコン層を設けた感光体が開示されている。特開昭5
9−38753号公報には、基板上にブロッキング層及
び接着層として酸素と窒素と炭化水素の混合ガスから生
成される1013〜1015Ωcmの高抵抗のプラズマ
重合膜を10人〜100人設けた上にアモルファスシリ
コン層を設けた感光体が開示されている。特開昭59−
136742号公報には、アルミ基板上に設けたアモル
ファスシリコン層内へ光照射時にアルミ原子が拡散する
のを防止するための保MINとして1〜5μm程度の炭
素膜を基板表面に形成せしめた感光体が開示されている
。特開昭60−63541号公報には、アルミ基板とそ
の上に設けたアモルファスシリコン層との接着性を改善
するために、接着層として200人〜2μmのダイヤモ
ンド状炭素膜を中間に設けた感光体が開示され、残留電
荷の面から膜厚は2μm以下が好ましいとされている。
これらの開示は、何れも基板とアモルファスシリコン層
との間に、所謂アンダーコート層を設けた発明であり、
電荷輸送性についての開示は全くなく、また、a−Si
の有する前記した本質的問題を解決するものではない。
また、例えば、特開昭50−20728号公報には、ポ
リビニルカルバゾール−セレン系感光体の表面に保護層
としてグロー放電重合によるポリマー膜を0.1〜1μ
m設けた感光体が開示されている。特5F+昭59−2
14859号公報には、アモルファスシリコン感光体の
表面に保護層としてスチレンやアセチレン等の有機炭化
水素モノマ−をプラズマ重合させて5μm程度の膜を形
成させる技術が開示されている。特開昭60−6176
1号公報には、表面保護層として、500人〜2μmの
ダイヤモンド状炭素薄膜を設けた感光体が開示きれ、透
光性の面から膜厚は2μm以下が好ましいとされててい
る。特開昭60−249115号公報には、0.o5〜
5μm程度の無定形炭素または硬質炭素膜を表面保護層
として用いる技術が開示され、膜厚が5μmを越えると
感光体活性に悪影響が及ぶとされている。
これらの開示は、何れも感光体表面に所謂オーバーコー
ト層を設けた発明であり、電荷輸送性についての開示は
全くなく、また、a−Siの有する前記した本質的問題
を解決するものではない。
また、特開昭51−46130号公報には、ポリビニル
カルバゾール系電子写真感光体の表面にグロー放電重合
を行なって0.001〜3μmのポリマー膜を形成せし
めた電子写真感光板が開示されているが、電荷輸送性に
ついては全く言及されていないし、a−3iの持つ前記
した本質的問題を解決するものではない。
一方、アモルファスシリコン膜については、スピア(W
、E、5pear)及びレコンパ(P。
G、LeComber)により1976年発行のフィロ
ソフィカル・マガジン(PhilosophicaI 
 Magazine)第33巻の第935頁乃至第94
9頁において、極性制御が可能な材料である事が報じら
れて以来、種々の光電デバイスへの応用が試みられて来
た。感光体への応用に関しては、例えば、特開昭56−
62254号公報、特開昭57−119356号公報、
特開昭57−177147号公報、特開昭57−119
357号公報、特開昭57−177149号公報、特開
昭57−119357号公報、特開昭57−17714
6号公報、特開昭57−177148号公報、特開昭5
7−174448号公報、特開昭57−174449号
公報、特開昭57−174450号公報、等に、炭素原
子を含有したアモルファスシリコン感光体が開示されて
いるが、何れもアモルファスシリコンの光導電性を炭素
原子により調整する事を目的としたものであり、また、
アモルファスシリコン自体厚い膜を必要としている。
Iが ° しようとする間 Φ 以上のように、従来、電子写真感光体に用いられている
プラズマ有機重合膜は所謂アンダーコート層もしくはオ
ーバーコート層として使用されていたが、それらはキャ
リアの輸送機能を必要としない膜であって、有機重合膜
が絶縁性で有るとの判断にたって用いられている。従っ
てその膜厚も高々5μm程度の極めて薄い膜としてしか
用いられず、キャリアはトンネル効果で膜中を通過する
か、トンネル効果が期待できない場合には、残留電位の
発生に関して事実上問題にならずに済む程度の薄い膜で
しか用いられていない。また、従来、電子写真に用いら
れているアモルファスシリコン膜は所謂厚膜で使用され
ており、価格或は生産性等に、不都合な点が多い。
本発明者らは、アモルファスカーボン膜の電子写真感光
体への応用を検討しているうちに、本来絶縁性であると
考えられていた水素化アモルファスカーボン膜が、燐原
子及び硼素原子のうち少なくとも一方を含有すると共に
窒素原子を含有してなる水素化或は弗素化アモルファス
シリコンゲルマニウム膜との積層においては電荷輸送性
を有し、容易に好適な電子写真特性を示し始める事を見
出した。その理論的解釈には本発明者においても不明確
な点が多く詳細に亙り言及はできないが、水素化アモル
ファスカーボン膜中に捕捉されている比較的不安定なエ
ネルギー状態の電子、例えばπ電子、不対電子、残存フ
リーラジカル等が形成するバンド構造が、燐原子及び硼
素原子のうち少なくとも一方を含有すると共に窒素原子
を含有してなる水素化或は弗素化アモルファスシリコン
ゲルマニウム膜が形成するバンド構造と電導帯もしくは
荷電子帯において近似したエネルギー準位を有するため
、燐原子及び硼素原子のうち少なくとも一方を含有する
と共に窒素原子を含有してなる水素化或は弗素化アモル
ファスシリコンゲルマニウム膜中で発生したキャリアが
容易に水素化アモルファスカーボン膜中へ注入され、さ
らに、このキャリアは前述の比較的不安定なエネルギー
状態の電子の作用により水素化アモルファスカーボン膜
中を好適に走行し得るためと推定される。
本発明はその新たな知見を利用することにより、アモル
ファスシリコン感光体の持つ前述の如き本質的問題点を
全て解消し、また従来とは全く使用目的も特性も異なる
、有機プラズマ重合膜、特に水素化アモルファスカーボ
ン膜を電荷輸送層として使用し、かつ、燐原子及び硼素
原子のうち少なくとも一方を含有すると共に窒素原子を
含有してなる水素化或は弗素化アモルファスシリコンゲ
ルマニウムの薄膜を電荷発生層として使用した感光体を
提供する事を目的とする。
皿厘△至脛決工至ム汝9土閃 即ち、本発明は、電荷発生層と電荷輸送層とを有する機
能分離型感光体において、該電荷輸送層がプラズマ重合
反応から生成される水素化アモルファスカーボン膜であ
り、かつ、該電荷発生層が燐原子及び硼素原子のうち少
なくとも一方を含有すると共に窒素原子を含有してなる
水素化或は弗素化アモルファスシリコンゲルマニウム膜
であることを特徴とする感光体に関する(以下、本発明
による電荷輸送層をa  CH’A及び電荷発生層をa
−Si膜と称する)。
本発明は、従来のアモルファスシリコン感光体において
は、電荷発生層として優れた機能を有するアモルファス
シリコンを、電荷発生能が無くても電荷輸送能さえあれ
ば済む電荷輸送層としても併用していたため発生してい
たこれらの問題点を解決すべく成されたものである。
即ち、本発明は、電荷輸送層としてグロー放電により生
成される水素化アモルファスカーボン膜を設け、かつ、
電荷発生層として同じくグロー放電により生成される燐
原子及び硼素原子のうち少なくとも一方を含有すると共
に窒素原子を含有してなる水素化或は弗素化アモルファ
スシリコンゲルマニウム膜を設けた事を特徴とする機能
分離型感光体に関する。該電荷輸送層は、可視光もしく
は半導体レーザー光付近の波長の光に対しては明確なる
光導電性は有ざないが、好適な輸送性を有し、ざらに、
帯電能、耐久性、耐候性、耐環境汚染性等の電子写真感
光体性能に優れ、しかも透光性にも優れるため、機能分
離型感光体としての積層構造を形成する場合においても
極めて高い自由度が得られるものである。また、該電荷
発生層は、可視光もしくは半導体レーザー光付近の波長
の光に対して優れた光導電性を有し、しかも従来のアモ
ルファスシリコン感光体に比べて極めて薄い膜厚で、そ
の機能を活かす事ができるものである。
本発明においては、a−C膜を形成するために有機化合
物ガス、特に炭化水素ガスが用いられる。
該炭化水素における相状態は常温常圧において必ずしも
気相である必要はなく、加熱或は減圧等により溶融、蒸
発、昇華等を経て気化しうるものであれば、液相でも固
相でも使用可能である。
使用可能な炭化水素には種類が多いが、飽和炭化水素と
しては、例えば、メタン、エタン、プロパン、ブタン、
ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デ
カン、ウンデカン、ドデカン、トリデカン、テトラデカ
ン、ペンタデカン、ヘキサデカン、ヘプタデカン、オク
タデカン、ノナデカン、エイコサン、ヘンエイコサン、
トコサン、トリコサン、テトラコサン、ペンタコサン、
ヘキサコサン、ヘプタコサン、オクタコサン、ノナコサ
ン、トリアコンタン、トドリアコンタン、ペンタトリア
コンタン、等のノルマルパラフィン並びに、イソブタン
、イソペンタン、ネオペンタン、インヘキサン、ネオヘ
キサン、2,3−ジメチルブタン、2−メチルヘキサン
、3−エチルペンタン、2,2−ジメチルペンタン、2
.4−ジメチルペンタン、3,3−ジメチルペンタン、
トリブタン、2−メチルへブタン、3−メチルへブタン
、2.2−ジメチルヘキサン、2.2.5−ジメチルヘ
キサン、2.2.3−トリメチルペンタン、2.2.4
−トリメチルペンタン、2I3゜3−トリメチルペンタ
ン、2,3.4−トリメチルペンタン、インナノン、等
のイソパラフィン、等が用いられる。不飽和炭化水素と
しては、例えば、エチレン、プロピレン、インブチレン
、1−ブテン、2−ブテン、1−ペンテン、2−ペンテ
ン、2−メチル−1−ブテン、3−メチル−1−ブテン
、2−メチル−2−ブテン、1−ヘキセン、テトラメチ
ルエチレン、1−ヘプテン、1−オクテン、1−ノネン
、1−デセン、等のオレフィン、並びに、アレン、メチ
ルアレン、ブタジェン、ペンタジェン、ヘキサジエン、
シクロペンタジェン、等のジオレフィン、並びに、オシ
メン、アロオシメン、ミルセン、ヘキサトリエン、等の
トリオレフイン、並びに、アセチレン、ブタジイン、1
゜3−ペンタジイン、2.4−へキサジイン、メチルア
セチレン、1−ブチン、2−ブチン、1−ペンチン、1
−ヘキシン、1−ヘプチン、1−オクチン、1−ノニン
、1−デシン、等が用いられる。
脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロペンタン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロドデカン、シクロトリデ
カン、シクロテトラデカン、シクロペンタデカン、シク
ロヘキサデカン、等のシクロパラフィン並びに、シクロ
プロペン、シクロブテン、シクロペンテン、シクロヘキ
セン、シクロヘプテン、シクロオクテン、シクロノネン
、シクロデセン、等のシクロオレフィン並びに、リモネ
ン、テルビルン、フエランドレン、シルベストレン、ツ
エン、カレン、ピネン、ボルニレン、カンフエン、フエ
ンチェン、シクロウンデカン、トリシクレン、ビサボレ
ン、ジンギベレン、クルクメン、フムレン、カジネンセ
スキベニヘン、セリネン、カリオフィレン、サンタレン
、セドレン、カンホレン、フィロクラテン、ボドカルブ
レン、デシン、等のテルペン並びに、ステロイド等が用
いられる。芳香族炭化水素としては、例えば、ベンゼン
、トルエン、キシレン、ヘミメリテン、プソイドクメン
、メシチレン、プレニテン、イソジュレン、ジュレン、
ペンタメチルベンゼン、ヘキサメチルベンゼン、エチル
ベンゼン、プロピルベンゼン、クメン、スチレン、ビフ
ェニル、テルフェニル、ジフェニルメタン、トリフェニ
ルメタン、ジベンジル、スチルベン、インデン、ナフタ
リン、テトラリン、アントラセン、フェナントレン、等
が用いられる。
本発明におけるa −C膜中に含まれる水素原子の量は
グロー放電を用いるというその製造面から必然的に定ま
るが、炭素原子と水素原子の総量に対して、概ね30乃
至60原子%含有される。ここで、炭素原子並びに水素
原子の膜中含有量は、有機元素分析の常法、例えばON
H分析を用いる事により知る事ができる。
本発明におけるa −C膜中に含まれる水素原子の量は
、成膜装置の形態並びに成膜時の条件により変化するが
、例えば、基板温度を高くする、圧力を低くする、原料
炭化水素ガスの希釈率を低くする、印加電力を高くする
、交番電界の周波数を低くする、交番電界に重畳せしめ
た直流電界強度を高(する、等の手段、或は、これらの
組合せ操作は、含有水素量を低くする効果を有する。
本発明における電荷輸送層としてのa −C膜の膜厚は
、通常の電子写真プロセスで用いるためには、5乃至5
0μm1特に7乃至20umが適当であり、5μmより
薄いと、帯電電位が低いため充分な複写画像濃度を得る
事ができない。また、50μmより厚いと、生産性の面
で好ましくない。
このa−C膜は、高透光性、高暗抵抗を有するとともに
電荷輸送性に富み、膜厚を上記の様に5μm以上として
もキャリアはトラップされる事無く輸送され明減衰に寄
与する事が可能である。
本発明における原料気体からa −C膜を形成する過程
としては、原料気体が、直流、低周波、高周波、或はマ
イクロ波等を用いたプラズマ法により生成されるプラズ
マ状態を経て形成される方法が最も好ましいが、その他
にも、イオン化蒸着法、或はイオンビーム蒸着法等によ
り生成されるイオン状態を経て形成されてもよいし、真
空蒸着法、或はスパッタリング法等により生成される中
性粒子から形成されてもよいし、ざらには、これらの組
み合わせにより形成されてもよい。
本発明においては a  3i11fiを形成するため
にシランガス、ジシランガス、或は、弗化シランガスが
用いられる。また、化学的修飾物質とじて燐原子或は硼
素原子を膜中に含有せしめるための原料ガスとして、ホ
スフィンガス或はジボランガス等が用いられる。ざらに
、化学的修飾物質として窒素原子を膜中に含有せしめる
ための原料ガスとして、窒素ガス、アンモニアガス、亜
酸化窒素ガス、或は、二酸化窒素ガス、等の窒素化合物
ガスが用いられる。また、ゲルマニウム原子を含有させ
るために、ゲルマンガスが用いられる。
本発明におけるa−Si膜中に含有きれるゲルマニウム
原子の含有量は、シリコン原子とゲルマニウム原子との
総和に対して、30原子%以下が好ましい。ここで、ゲ
ルマニウム原子及びシリコン原子の含有率は、元素分析
の常法、例えばオージェ分析により知る事ができる。ゲ
ルマニウム原子の含有量は、膜形成時に流入するゲルマ
ンガスの流量を増加する事により高くなる。ゲルマニウ
ム原子の含有量が高くなるにつれ本発明感光体の長波長
感度は向上し、短波長領域から長波長領域にまで幅広く
露光源が選択され得るようになり好ましいが、ゲルマニ
ウム原子が30原子%より多く含有きれると帯電能の低
下を招くため、過剰の添加は好ましくない。従って、本
発明におけるa−5i膜中に含有されるゲルマニウム原
子の含有量は重要である。
本発明において化学的修飾物質として含有される燐原子
或は硼素原子の量は、全構成原子に対して20000原
子ppm以下である。ここで燐原子或は硼素原子の膜中
含有量は、元素分析の常法、例えばオージェ分析或はI
MA分析により知る事ができる。燐原子或は硼素原子の
膜中含有量が20000原子ppmより高い場合には、
少量の添加では好適な輸送性、或は、極性制御効果を保
証していた燐原子或は硼素原子が、逆に膜の低抵抗化を
招く作用を示し、帯電能の低下を来たす。従って、本発
明における燐原子或は硼素原子添加量の範囲は重要であ
る。
本発明において化学的修飾物質として含有される窒素原
子の量は、全構成原子に対して0.001乃至3原子%
である。ここで窒素原子の膜中含有量は、元素分析の常
法、例えばオージェ分析或はIMA分析により知る事が
できる。窒素原子の膜中含有量が0.001原子%より
低い場合には、a−Si膜の電気抵抗値が低くなる事が
らa−3i膜にコロナ帯電等による電界がかかりにくく
なり、光励起キャリアが必ずしも効率よ<a−C膜中に
注入されなくなり感度の低下を招く。また、帯電能も低
下する。窒素原子の膜中含有量が3原子%より高い場合
には、微量の添加においては好適な帯電能を保証してい
た窒素原子が、過剰の添加ではa−3i膜を高抵抗化し
電荷の易動度を低下ならしめることから感度低下を招く
。従って、本発明における窒素原子添加量の範囲は重要
である。
本発明におけるa−Si膜中に含まれる水素原子或は弗
素原子の量はグロー放電を用いるというその製造面から
必然的に定まるが、シリコン原子と水素原子或はシリコ
ン原子と弗素原子の総量に対して、概ね10乃至35原
子%含有される。ここで、水素原子或は弗素原子の膜中
含有量は、元素分析の常法、例えばONH分析、オージ
ェ分析等を用いる事により知る事ができる。
本発明における電荷発生層としてのa−Si膜の膜厚は
、通常の電子写真プロセスで用いるためには、0.1乃
至5μmが適当であり、0.1μmより薄いと、光吸収
が不十分となり充分な電荷発生が行なわれなくなり、感
度の低下を招く。また、5μmより厚いと、生産性の面
で好ましくない。このa−Sill!ffは電荷発生能
に富み、ざらに、本発明の最も特徴とするところのa−
C膜との積層構成において効率よ<a−C膜中に発生キ
ャリアを注入せしめ、好適な明減衰に寄与する事が可能
である。
本発明における原料気体からa−SiFJを形成する過
程は、a−C膜を形成する場合と同様にして行なわれる
本発明において化学的修飾物質として含有される窒素原
子、燐原子、或は、硼素原子の量は、主に、プラズマ反
応を行なう反応室への前述の窒素化合物ガス、ホスフィ
ンガス、或は、ジボランガスの導入量を#減することに
よりfa御することが可能である。窒素化合物ガス、ホ
スフィンガス、或は、ジボランガスの導入量を増大させ
れば、本発明によるa−Si膜中への窒素原子、燐原子
、或は、硼素原子の添加量を高くすることが可能であり
、逆に窒素化合物ガス、ホスフィンガス、或は、ジボラ
ンガスの導入量を減少させれば、本発明によるa−5i
膜中への窒素原子、燐原子、或は、硼素原子の添加量を
低くすることが可能である。
本発明における感光体は、電荷発生層と電荷輸送層から
成る機能分離型の構成とするのが最適で、該電荷発生層
と該電荷輸送層の積層構成は、必要に応じて適宜選択す
ることが可能である。
第1図は、その一形態として、導電性基板(1)上に電
荷輸送層(2)と電荷発生層(3)を順次積層してなる
構成を示したものである。第2図ば、別の一形態として
、導電性基板(1)上に電荷発生層(3)と電荷輸送層
(2)を順次積層してなる構成を示したものである。第
3図は、別の一形態として、導電性基板(1)上に、電
荷輸送層(2)と電荷発生層(3)と電荷輸送層(2)
を順次積層してなる構成を示したものである。
感光体表面を、例えばコロナ帯電器等により正帯電した
後、画像露光して使用する場合においては、第1図では
電荷発生層(3)で発生した正孔が電荷輸送層(2)中
を導電性基板(1)に向は走行し、第2図では電荷発生
層(3)で発生した電子が電荷輸送層(2)中を感光体
表面に向は走行し、第3図では電荷発生層(3)で発生
した正孔が導電性基板側の電荷輸送層(2)中を導電性
基板(1)に向は走行すると共に、同時に電荷発生層(
3)で発生した電子が表面側の電荷輸送層(2)中を感
光体表面に向は走行し、好適な明減衰に保証された静電
潜像の形成が行なわれる。反対に感光体表面を負帯電し
た後、画像露光して使用する場合においては、電子と正
孔の挙動を入れ代えて、キャリアーの走行性を解すれば
よい。第2図及び第3図では、画像露光用の照射光がM
R輸送層中を通過する事になるが、本発明による電荷輸
送層は透光性に優れることから、好適な潜像形成を行な
うことが可能である。
第4図は、さらなる一形態として、導電性基板(1)上
に電荷輸送層(2)と電荷発生層(3)と表面保護層(
4)を順次積層してなる構成を示したものである。即ち
第1図の形態に表面保護層を設けた形態に相当するが、
第1図の形態では、最表面が耐湿性に乏しいa−Si膜
で有ることから、多くの場合実用上の対湿度安定性を確
保するために表面保護層を設けることが好ましい。第2
図及び第3図の構成の場合、最表面が耐久性に優れたa
−C膜であるため表面保護層を設けなくてもよいが、例
えば現像剤の付着による感光体表面の汚れを防止するよ
うな、複写機内の各種エレメントに対する整合性を調整
する目的から、表面保護層を設けることもざらなる一形
態と成りうる。
第5図は、ざらなる一形態として、導電性基板(1)上
に中間層(5)と電荷発生層(3)と電荷輸送層(2)
を順次積層してなる構成を示したものである。即ち第2
図の形態に中間層を設けた形態に相当するが、第2図の
形態では、導電性基板との接合面がa−Si膜である事
から、多くの場合接着性及び注入阻止効果を確保するた
めに中間層を設ける事が好ましい。第1図及び第3図の
構成の場合、導電性基板との接合面が、接着性及び注入
阻止効果に優れた、本発明による電荷輸送層であるため
、中間層を設けなくてもよいが、例えば導電性基板の前
処理方法のような、感光層形成以前の製造工程との整合
性を調整する目的から、中間層を設けることもさらなる
一形態と成りうる。
第6図は、さらなる一形態として、導電性基板(1)上
に中間層(5)と電荷輸送層(2)と電荷発生層(3)
と表面保護層(4)を順次積層してなる構成を示したも
のである。即ち第1図の形態に中間層と表面保護層を設
けた形態に相当する。
中間層と表面保護層の設置理由は前述と同様であり、従
って第2図及び第3図の構成において中間層と表面保護
層を設けることもざらなる一形態と成りうる。
本発明において中間層と表面保護層は、材料的にも、製
法的にも、特に限定を受けるものではなく所定の目的が
達せられるものであれば、適宜選択することが可能であ
る。本発明によるa−C膜を用いてもよい。但し、用い
る材料が、例えば従来例で述べた如き絶縁性材料である
場合には、残留電位発生の防止のため膜厚は5μm以下
に留める必要がある。
本発明による感光体の電荷輸送層は、気相状態の分子を
減圧下で放電分解し、発生したプラズマ雰囲気中に含ま
れる活性中性種あるいは荷電種を基板上に拡散、電気力
、あるいは磁気力等により誘導し、基板上での再結合反
応により固相として堆積きせる、所謂プラズマ重合反応
から生成きれる事が好ましい。
第7図は本発明に係わる感光体の製造装置を示し、図中
(701)〜(706)は常温において気相状態にある
原料化合物及びキャリアガスを密封した第1乃至第6タ
ンクで、各々のタンクは第1乃至第6調節弁(707)
〜(712)と第1乃至第6流量制御器(713)〜(
718)に接続されている。図中(719)〜(721
)は常温において液相または固相状態にある原料化合物
を封入した第1乃至第3容器で、各々の容器は気化のた
め第1乃至第3温調器(722)〜(724)により与
熱可能であり、さらに各々の容器は第7乃至第9調節弁
(725)〜(727)と第7乃至第9流量制御器(7
28)〜(730)に接続されている。これらのガスは
混合器(731)で混合された後、主管(732)を介
して反応室(733)に送り込まれる。途中の配管は、
常温において液相または固相状態にあった原料化合物が
気化したガスが、途中で凝結しないように、適宜配置さ
れた配管加熱器(734)により、与熱可能とされてい
る。反応室内には接地電極(735)と電力印加電極(
736)が対向して設置され、各々の電極は電極加熱器
(737)により与熱可能とされている。電力印加電極
(736)には、高周波電力用整合器(738)を介し
て高周波電源(739L低周波電力用整合器(740)
を介して低周波電源(741)、ローパスフィルタ(7
42)を介して直流電源(743)が接続されており、
接続選択スイッチ(744)により周波数の異なる電力
が印加可能とされている。反応室(733)内の圧力は
圧力制御弁(745)によりFl整可能であり、反応室
(733)内の減圧は、排気系選択弁(746)を介し
て、拡散ポンプ(747) 、油回転ポンプ(748)
 、或は、冷却除外装置(749) 、メカニカルブー
スターポンプ(750)、油回転ポンプ(748)によ
り行なわれる。排ガスについては、ざらに適当な除外装
置(753)により安全無害化した後、大気中に排気さ
れる。これら排気系配管についても、常温において液相
または固相状態にあった原料化合物が気化したガスが、
途中で凝結しないように、適宜配置された配管加熱器(
734)により、与熱可能とされている。反応室(73
3)も同様の理由から反応室加熱器(751)により与
熱可能とされ、内部に配された電極上に導電性基板(7
52)が設置きれる。第7図において導電性基板(75
2)は接地電極(735)に固定して配されているが、
電力印加電極(736)に固定して配されてもよく、ざ
らに双方に配されてもよい。
第8図は本発明に係わる感光体の製造装置の別の一形態
を示し、反応室(833)内部の形態以外は、第7図に
示した本発明に係わる感光体の製造装置と同様であり、
付記された番号は、700番台のものを800番台に置
き換えて解すればよい。第8図において、反応室(83
3)内部には、第7図における接地電極(735)を兼
ねた円筒形の導電性基板(852)が設置され、内側に
は電極加熱器(837)が配されている。導電性基板(
852)周囲には同じく円筒形状をした電力印加電極(
836)が配され、外側には電極加熱器(837)が配
されている。導電性基板(852)は、外部より駆動モ
ータ(854)を用いて自転可能となっている。
感光体製造に供する反応室は、拡散ポンプにより予め1
0−4乃至1O−6Torr程度にまで減圧し、真空度
の確認と装置内部に吸着したガスの脱着を行なう。同時
に電極加熱器により、電極並びに電極に固定して配され
た導電性基板を所定の温度まで昇温する。導電性基板に
は、前述の如き感光体構成の中から所望の構成を得るた
めに、必要であれば、予めアンダーコート層或は電荷発
生層を設けて置いてもよい。アンダーコート層或は電荷
発生層の設置には、本装置を用いてもよいし別装置を用
いてもよい。次いで、第1乃至第6タンク及び第1乃至
第3容器から、原料ガスを適宜第1乃至第9流量制御器
を用いて定流量化しながら反応室内に導入し、圧力調節
弁により反応室内を一定の減圧状態に保つ。ガス流量が
安定化した後、接続選択スイッチにより、例えば貰周波
電源を選択し、電力印加電極に高周波電力を投入する。
画電極間には放電が開始され、時間と共に基板上に固相
の膜が形成される。a−Si膜或はa−C膜は、原料ガ
スを代える事により任意に形成可能である。放電を一旦
停止し、原料ガス組成を変更した後、再び放電を再開す
れば異なる組成の膜を積層する事がで伊る。また、放電
を持続させながら原料ガス流量だけを徐々に代え、異な
る組成の膜を勾配を持たせながら積層する事も可能であ
る。
反応時間により膜厚を制御し、所定の膜厚並びに積層構
成に達したところで放電を停止し、本発明による感光体
を得る。次いで、第1乃至第9調節弁を閉じ、反応室内
を充分に排気する。ここで所望の感光体構成が得られる
場合には反応室内の真空を破り、反応室より本発明によ
る感光体を取り出す。更に所望の感光体構成において、
電荷発生層或はオーバーコート層が必要ときれる場合に
は、そのまま本装置を用いるか、或は同様に一旦真空を
破り取り出して別装置に移してこれらの層を設け、本発
明による感光体を得る。
以下実施例を挙げながら、本発明を説明する。
実施例1 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1容器(719)よりスチレンガスを
第1温調器(722) 温度20℃のもとで、第7流量
制御W(728)内へ流入させた。流量##器の目盛を
調整して、スチレンガスの流量を40secmとなるよ
うに設定して、主管(732)より反応室(733)内
へ流入した。各々の流量が安定した後に、反応室(73
3)内の圧力が0.8Torrとなるように圧力調節弁
(745)を調整した。一方、導電性基板(752)と
しては、樅50×横50X厚3mmのアルミニウム基板
を用いて、予め150℃に加熱しておき、ガス流量及び
圧力が安定した状態で、予め接続選択スイッチ(744
)により接続しておいた低周波電源(741)を投入し
、電力印加電極(736)に140Wattの電力を周
波数13.56MHzの下で印加して約1時間半プラズ
マ重合反応を行ない、導電性基板(752)上に厚さ1
5μmのa−C膜を電荷輸送層として形成した。成膜完
了後は、電力印加を停止し、調節弁を閉じ、反応室(7
33)内を充分に排気した。
以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有される水素原子の量は炭素原
子と水素原子の総量に対して43原子%であフた。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708) 、第5調節弁(711)、及び
第6調節弁(712)を解放し、第1タンク(701)
から水素ガス、第2タンク(702)からゲルマンガス
、第5タンク(705)から窒素ガス、及び第6タンク
(706)からシランガスを、出力圧IKg/am2の
下で第1、第2、第5、及び第6流量制御器(713,
714,717、及び718)内へ流入させな。同時に
、第4調節弁(710)を解放し、第4タンク(704
)より水素ガスで1100ppに希釈されたジボランガ
スを、出力圧1.5Kg/am2の下で第4流量制御器
(716)内へ、流入させた。
各流量制御器の目盛を調整して水素ガスの流量を200
secm、ゲルマンガスの流量6sccm1を窒素ガス
の流量をO,Olsecm、シランガスの流量を101
005e、水素ガスで1100ppに希釈されたジボラ
ンガスの流量を1105caとなるように設定し、反応
室(733)内に流入させな。各々の流量が安定した後
に、反応室(733)内の圧力が0.8Torrとなる
ように圧力調節弁(745)を調整した。一方、a−C
膜が形成されている導電性基板(752)は、250℃
に加熱しておき、ガス流量及び圧力が安定した状態で、
高周波電源(739)より周波数13.56MHzの下
で電力印加電極(736)に35Wattの電力を印加
し、グロー放電を発生させな。この放電を5分間行ない
、厚き0.3μmの電荷発生層を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して23原子%、硼素原子は1o原子ppm
、窒素原子は0.001原子%、ゲルマニウム原子は1
1原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一770V (+720V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は50■/μm(47V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解された
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約41秒(約38
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたところ必要とされた光量は3.1ルツク
ス・秒(360ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
去旅透旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1、及び第2調節弁(7o7、及び7
08)を解放し、第1タンク(701)より水素ガス、
及び第2タンク(702)よりアセチレンガスを各々出
力圧1.0Kg/cm2の下で第1、及び第2流量制御
器(713、及び714)内へ流入きせた。そして各流
量制御器の目盛を調整して、水素ガスの流量を1005
CCm %及びアセチレンガスの流量を30secmと
なるように設定して、途中混合!(731)を介して、
主管(732)より反応室(733)内へ流入した。各
々の流量が安定した後に、反応室(733)内の圧力が
1.5Torrとなるように圧力調節弁(745)を調
整した。一方、導゛電性基板(752)としては、M5
0×横50X厚3mmのアルミニウム基板を用いて、予
め200℃に加熱しておき、ガス流量及び圧力が安定し
た状態で、予め接続選択スイッチ(744)により接続
しておいた高周波電源(739)を投入し、電力印加電
極(736)に170Wattの電力を周波数13.5
6MHzの下で印加して約5時間プラズマ重合反応を行
ない、導電性基板(752)上に厚き15μmのa −
C膜を電荷輸送層として形成した。成膜完了後は、電力
印加を停止し、調節弁を閉じ、反応室(733)内を充
分に排気した。
以上のようにして得られたa−CMにつき有機元素分析
を行なったところ、含有される水素原子の量は炭素原子
と水素原子の総量に対して30原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2F1節弁(708)、第5m節弁(711)、及び
第6調節弁(712)を解放し、第1タンク(701)
から水素ガス、第2タンク(702)からゲルマンガス
、第5タンク(705)から窒素ガス、及び第6タンク
(706)からシランガスを、出力圧IKg/am2の
下で第1、第2、第5、及び第6流量pg#器(713
,714,717、及び718)内へ流入させた。同時
に、第4調節弁(710)を解放し、第4タンク(70
4)より水素ガスで1100ppに希釈されたジボラン
ガスを、出力圧1−5Kg/cm2の下で第4流量制御
器(716)内へ、流入させた。
各流量制all器の目盛を調整して水素ガスの流量を2
00secm、窒素ガスの流量を10sccrr+。
ゲルマンガスの流量を10105e、シランガスの流量
を101005e、水素ガスで1100ppに希釈され
たジボランガスの流量を50secmに設定し、反応室
(733)内に流入させな。
各々の流量が安定した後に、反応室(733)内の圧力
が0.8Torrとなるように圧力調節弁(745)を
調整した。一方、a −C膜が形成−されている導電性
基板(752)は、250℃に加熱しておき、ガス流量
及び圧力が安定した状態で、高周波電源(739)より
周波数13.56MH2の下で電力印加電極(736)
に40Wattの電力を印加し、グロー放電を発生させ
た。この放電を5分間行ない、厚ざ0.3μmの電荷発
生層を得た。
得られたa−St膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して24原子%、硼素原子は45原子ppm
1窒素原子は1.0原子%、ゲルマニウム原子は15.
8原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一360V (+360V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は24V/μm (24V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約7秒(約8秒)
であり、このことから充分な電荷保持性能を有する事が
理解された。また、最高帯電電位に初M帯電した後、白
色光を用いて最高帯電電位の20%の表面電位にまで明
減衰させたところ必要ときれた光量は3.6ルツクス・
秒(2゜4ルツクス・秒)であり、このことから充分な
光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
X塵鍔旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10””To r r程度の高
真空にした後、第1、及び第2 (707、及び708
)を解放し、第1タンク(701)より水素ガス、及び
第2タンク(702)よりエチレンを各々出力圧1.0
Kg/cm2の下で第1、及び第2流量制都器(713
、及び714)内へ流入させた。そして各流量制御器の
目盛を調整して、水素ガスの流量を60secm、及び
エチレンガスの流量を60secm1となるように設定
して、途中混合器(731)を介して、主管(732)
より反応室(733)内へ流入した。各々の流量が安定
した後に、反応室(733)内の圧力が1.ITorr
となるように圧力調節弁(745)を調整した。一方、
導電性基板(752)としては、t1150X横50×
厚3mmのアルミニラム基板を用いて、予め250℃に
加熱しておき、ガス流量及び圧力が安定した状態で、予
め接続選択スイッチ(744)により接続しておいた高
周波電源(739)を投入し、電力印加電極(736)
に200Wattの電力を周波数13.56MHzの下
で印加して約10時間プラズマ重合反応を行ない、導電
性基板(752)上に厚き15μmのa−C膜を電荷輸
送層として形成した。成膜完了後は、電力印加を停止し
、調節弁を閉じ、反応室(733)内を充分に排気した
以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有される水素原子の量は炭素原
子と水素原子の総量に対して39原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第5調節弁(711)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)からゲルマンガス、
第5タンク(705)からアンモニアガス、及び第6タ
ンク(706)からシランガスを、出力圧IKg/am
2の下で第1、第2、第5、及び第6流量制御器(71
3,714,717、及び718)内へ流入させた。同
時に、第4調節弁(710)を解放し、第4タンク(7
04)より水素ガスで1100ppに希釈されたジボラ
ンガスを、出力圧1.5Kg/cm2の下で第4流量制
御器(716)内へ、流入させた。各流量洞部器の目盛
を調整して水素ガスの流量を180secm、ゲルマン
ガスの流量を8secm、アンモニアガスの流量を2s
ecm1シランガスの流量を101005e、水素ガス
で1100ppに希釈されたジボランガスの流量を10
105eに設定し、反応室(733)内に流入させた。
各々の流量が安定した後に、反応室(733)内の圧力
が0.9Torrとなるように圧力調節弁(745)を
調整した。一方、a−C膜が形成されている導電性基板
(752)は、240℃に加熱しておき、ガス流量及び
圧力が安定した状態で、高周波電源(739)より周波
数13.56MHzの下で電力印加電極(736)に4
5Wattの電力を印加し、グロー放電を発生させた。
この放電を5分間行ない、厚き0.3μmの電荷発生層
を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して21原子%、硼素原子は11原子ppm
%窒素原子は0.3原子%、ゲルマニウム原子は13.
2原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一490V (+485V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は32V/am (32V/μm) と極めて
高(、コノコとから充分な帯電性能を有する事が理解さ
れた。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約11秒(約10
秒)であり、このことから充分な電荷保持性能を有する
事が理解きれた。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたとこる必要とされた光量は3.4ルツク
ス・秒(1,フルックス・秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
去塵男挟 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10=To r r程度の高真
空にした後、第1、及び第2調箇弁(707、及び70
8)を解放し、第1タンク(701)より水素ガス、及
び第2タンク(702)よりブタジェンガスを各々出力
圧1.0Kg/cm2の下で第1、及び第2流量制御器
(713、及び714)内へ流入させた。水素ガスの流
量を60secm、及びブタジェンガスの流量を60s
ecmとなるように設定して、途中混合器(731)を
介して、主管(732)より反応室(733)内へ流入
した。各々の流量が安定した後に、反応室(733)内
の圧力が2.0Torrとなるように圧力調節弁(74
5)を調整した。一方、導電性基板(752)としては
、縦50×横50×厚3mmのアルミニウム基板を用い
て、予め130℃に加熱してお沙、ガス流量及び圧力が
安定した状態で、予め接続選択スイッチ(744)によ
り接続しておいた低周波電源(741)を投入し、電力
印加電極(736)に120Wattの電力を周波数4
00KHzの下で印加して約30分間プラズマ重合反応
を行ない、導電性基板(752)上に厚さ15μmのa
 −C膜を電荷輸送層として形成した。成膜完了後は、
電力印加を停止し、調節弁を閉じ、反応室(733)内
を充分に排気した。
以上のようにして得られたa−C膜につき有機元素分析
を行なったところ、含有される水素原子の量は炭素原子
と水素原子の総量に対して55原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(7o7)、
第2調節弁(708)、第3調節弁(709)、第5調
節弁(711)、及び第6調節弁(712)を解放し、
第1タンク(701)から水素ガス、第2タンク(70
2)からゲルマンガス、第3タンク(703)から四弗
化シランガス、第5タンク(705)から窒素ガス、及
び第6タンク(706)からシランガスを、出力圧IK
g/cm2の下で第1、第2、第3、第5、及び第6流
量制御器(713,714,715,717、及び71
8)内へ流入させた。同時に、第4調節弁(710)を
解放し、第4タンク(704)より水素ガスで1100
ppに希釈されたジボランガスを、出力圧1.5Kg/
am2の下で第4流量制御器(716)内へ、流入きせ
た。各流量洞部器の目盛を調整して水素ガスの流量を2
00secm、ゲルマンガスの流量を6secm、四弗
化シランガスの流量を50secm、窒素ガスの流量を
lsccm、シランガスの流量を50secm1水素ガ
スで1100ppに希釈されたジボランガスの流量を1
01005eとなるように設定し、反応室(733)内
に流入させな。各々の流量が安定した後に、反応室(7
33)内の圧力が0.9Torrとなるように圧力調節
弁(745)を調整した。一方、a−C膜が形成されて
いる導電性基板(752)は、250℃に加熱しておき
、ガス流量及び圧力が安定した状態で、高周波電源(7
39)より周波数13.56MHzの下で電力印加電極
(736)に35Wattの電力を印加し、グロー放電
を発生させた。この放電を5分間行ない、厚き0.3μ
mの電荷発生層を得た。
得られたa−Si膜につき、金属中ONH分析(板場製
作所製EMGA−1300) 、オージェ分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して22原子%、硼素原子は95原子ppm
、弗素原子は5原子%、窒素原子は0.1原子%、ゲル
マニウム原子は10.3原子%であった。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一600V (+660V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は39■/μm (43V/μm)と極めて高
く、このことから充分な帯電性能を有する事が理解され
た。
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約12秒(約11
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰させたところ必要とされた光量は1.5ルツク
ス・秒(1,3ルツクス・秒)であり、このことから充
分な光感度性能を有する事が理解された。また、最高帯
電電位に初期帯電した後、半導体レーザー光(発光波長
780nm)を用いて最高帯電電位の20%の表面電位
にまで明減衰させたとこる必要とされた光量は8.2e
rg/cm2(7,8erg/am2)であり、このこ
とから充分な長波長光感度性能を有する事が理解された
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
去施透旦 本発明に係わる製造装置を用いて、第1図に示す如き、
導電性基板、電荷輸送層、電荷発生層をこの順に設けた
本発明感光体を作製した。
電荷輸送層形成工程: 第7図に示すグロー放電分解装置において、まず、反応
装置(733)の内部を10−6To r r程度の高
真空にした後、第1容器(719)よりミルセンガスを
第1温調器(722)温度45℃のもとで、第7流量制
御器(728)内へ流入させた。流量制御器の目盛を調
整して、ミルセンガスの流量を15secmとなるよう
に設定して、主管(732)より反応室(733)内へ
流入した。流量が安定した後に、反応室(733)内の
圧力が1.0Torrとなるように圧力調節弁(745
)を調整した。一方、導電性基板(752)としては、
縦50×横50X厚3mmのアルミニウム基板を用いて
、予め180℃に加熱しておき、ガス流量及び圧力が安
定した状態で、予め接続選択スイッチ(744)により
接続しておいた低周波電源(741)を投入し、電力印
加電極(736)に180Wattの電力を周波数40
KHzの下で印加して約3時間プラズマ重合反応を行な
い、導電性基板(752)上に厚ざ15μmのa−C膜
を電荷輸送層として形成した。成膜完了後は、電力印加
を停止し、調節弁を閉じ、反応室(733)内を充分に
排気した。
以上のようにして得られたa −C膜につき有機元素分
析を行なったところ、含有される水素原子の量は炭素原
子と水素原子の総量に対して47原子%であった。
電荷発生層形成工程: 次いで、一部タンクを交換し、第1調節弁(707)、
第2調節弁(708)、第5調節弁(711)、及び第
6調節弁(712)を解放し、第1タンク(701)か
ら水素ガス、第2タンク(702)からゲルマンガス、
第5タンク(705)から窒素ガス、及び第6タンク(
706)からシランガスを、出力圧IKg/cm2の下
で第1、第2、第5、及ヒ第6流量制御8111!(7
13,714,717、及び718)内へ流入きせた。
同時に、第4調節弁(710)を解放し、第4タンク(
704)より水素ガスでtoppmに希釈きれたホスフ
ィンガスを、出力圧1.5Kg/Cm2の下で第4流量
制alII器(716)内へ、流入させた。
各流量制御器の目盛をgl!整して水素ガスの流量を2
00secmsゲルマンガスの流量を6secm1窒素
ガスの流量を3secm、シランガスの流量を200s
ecm、水素ガスで1100ppに希釈されたホスフィ
ンガスの流量を10105eに設定し、反応室(733
)内に流入させた。
各々の流量が安定した後に、反応室(733)内の圧力
が0.9Torrとなるように圧力調節弁(745)を
調整した。一方、a −C膜が形成されている導電性基
板(752)は、250℃に加熱しておき、ガス流量及
び圧力が安定した状態で、高周波電源(739)より周
波数13.56MH2の下で電力印加量w1(736)
に35Wattの電力を印加し、グロー放電を発生させ
た。この放電を5分間行ない、厚き0.3μmの電荷発
生層を得た。
得られたa−3i膜につ伊、金属中ONH分析(板場製
作所製EMGA−1300) 、オージ工分析、及びI
MA分析を行なったところ、含有される水素原子は全構
成原子に対して18原子%、燐原子は12原子ppm%
窒素原子は0.3原子%、ゲルマニウム原子は10.0
原子%であフた。
特性: 得られた感光体を常用のカールソンプロセスの中で負帯
電並びに正帯電で用いたところ次の如き性能が得られた
。ここでは、正帯電時の測定値を括弧内に示すが、最高
帯電電位は一380V (+580V)で有り、即ち、
全感光体膜厚が15゜3μmであることから1μm当り
の帯電能は25■/μm(38V/μm)と極めて高く
、このことから充分な帯電性能を有する事が理解された
また、暗中にてVmaxからVmaxの90%の表面電
位にまで暗減衰するのに要した時間は約10秒(約14
秒)であり、このことから充分な電荷保持性能を有する
事が理解された。また、最高帯電電位に初期帯電した後
、白色光を用いて最高帯電電位の20%の表面電位にま
で明減衰とせたところ必要ときれた光量は1.3ルツク
ス・秒(4,1ルックスφ秒)であり、このことから充
分な光感度性能を有する事が理解された。
以上より、本例に示した本発明による感光体は、感光体
として優れた性能を有するものである事が理解される。
また、この感光体に対して常用のカールソンプロセスの
中で、作像して転写したところ、鮮明な画像が得られた
【図面の簡単な説明】
第1図乃至第6図は本発明感光体の構成を示す図面、!
!7図乃至第8図は本発明に係わる感光体の製造装置を
示す図面である。 出願人 ミノルタカメラ株式会社 第1図 第2図 第4図 第6図 手続補正書 昭和62年lO月21日

Claims (1)

    【特許請求の範囲】
  1. 電荷発生層と電荷輸送層とを有する機能分離型感光体に
    おいて、該電荷輸送層は水素化アモルファスカーボン膜
    であり、かつ、該電荷発生層は窒素原子を含有すると共
    に燐原子及び硼素原子のうち少なくとも一方を含有して
    なる水素化アモルファスシリコンゲルマニウム膜或は窒
    素原子を含有すると共に燐原子及び硼素原子のうち少な
    くとも一方を含有してなる弗素化アモルファスシリコン
    ゲルマニウム膜であることを特徴とする感光体。
JP22944386A 1986-09-26 1986-09-26 感光体 Pending JPS6382471A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22944386A JPS6382471A (ja) 1986-09-26 1986-09-26 感光体
EP87113883A EP0261654A3 (en) 1986-09-26 1987-09-23 Photosensitive member comprising charge generating layer and charge transporting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944386A JPS6382471A (ja) 1986-09-26 1986-09-26 感光体

Publications (1)

Publication Number Publication Date
JPS6382471A true JPS6382471A (ja) 1988-04-13

Family

ID=16892293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944386A Pending JPS6382471A (ja) 1986-09-26 1986-09-26 感光体

Country Status (1)

Country Link
JP (1) JPS6382471A (ja)

Similar Documents

Publication Publication Date Title
JPS6381481A (ja) 感光体
JPS6382471A (ja) 感光体
JPS62289848A (ja) 感光体
JPS6382441A (ja) 感光体
JPS6382477A (ja) 感光体
JPS6381461A (ja) 感光体
JPS6381482A (ja) 感光体
JPS6381473A (ja) 感光体
JPS6381485A (ja) 感光体
JPS6382455A (ja) 感光体
JPS6382483A (ja) 感光体
JPS6382457A (ja) 感光体
JPS6381449A (ja) 感光体
JPS6382454A (ja) 感光体
JPS6382447A (ja) 感光体
JPS6382478A (ja) 感光体
JPS6382433A (ja) 感光体
JPS6382442A (ja) 感光体
JPS6381469A (ja) 感光体
JPS6382475A (ja) 感光体
JPS6382484A (ja) 感光体
JPS6381484A (ja) 感光体
JPS6381453A (ja) 感光体
JPS6382456A (ja) 感光体
JPS6381483A (ja) 感光体