JPS6350912B2 - - Google Patents

Info

Publication number
JPS6350912B2
JPS6350912B2 JP56187558A JP18755881A JPS6350912B2 JP S6350912 B2 JPS6350912 B2 JP S6350912B2 JP 56187558 A JP56187558 A JP 56187558A JP 18755881 A JP18755881 A JP 18755881A JP S6350912 B2 JPS6350912 B2 JP S6350912B2
Authority
JP
Japan
Prior art keywords
solid
state imaging
amorphous
forbidden band
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56187558A
Other languages
Japanese (ja)
Other versions
JPS5888977A (en
Inventor
Takao Chikamura
Yutaka Myata
Koshiro Mori
Shinji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56187558A priority Critical patent/JPS5888977A/en
Publication of JPS5888977A publication Critical patent/JPS5888977A/en
Publication of JPS6350912B2 publication Critical patent/JPS6350912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は、高感度でブルーミングの少ない固体
撮像装置に関するもので、特に低残像とカラーカ
メラとして必要とされる安定な分光特性の得られ
る光導電膜積層型固体撮像装置を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device with high sensitivity and little blooming, and in particular to a photoconductive film-stacked solid-state imaging device that provides low afterimage and stable spectral characteristics required for a color camera. It provides:

固体撮像装置は集積回路技術の進展と共に急激
な発展をみせ、最近では単板カラーカメラとして
の実用的な絵素数(約20万個)を有するものが実
現されるようになつた。一方、性能面での改良も
はかられ、とりわけ走査機能を有するSi基板上に
光導電膜を積層した固体撮像装置は、高感度でブ
ルーミングが少ない等の特徴を有し、撮像管に匹
適し得るデバイスとして有用である。そのような
デバイスとして例えば特開昭54−103630号公報と
特開昭55−39404号公報が挙げられる。
Solid-state imaging devices have shown rapid development along with advances in integrated circuit technology, and recently, devices with a practical number of picture elements (approximately 200,000) for single-chip color cameras have been realized. On the other hand, improvements have been made in terms of performance, and in particular, solid-state imaging devices in which a photoconductive film is laminated on a Si substrate with a scanning function have features such as high sensitivity and little blooming, making them comparable to image pickup tubes. It is useful as a device for obtaining Examples of such devices include Japanese Patent Application Laid-open Nos. 54-103630 and 55-39404.

このような光導電膜積層型固体撮像装置の実現
には、すぐれた走査機能を有するSi基板の開発と
同様、すぐれた光電変換機能を有する膜の開発が
必須である。前記公報においては、光導電膜とし
て−族化合物の異種接合膜あるいは非晶質Si
膜等を用いている。非晶質Si膜はその製膜プロセ
スが一般に低圧ガス雰囲気中で行なうために凹凸
を有する基板上に形成する場合の被覆性にすぐれ
ているが、一方性能面においては残像が遅いとい
う欠点や印加電圧に対して分光特性が変化すると
いう欠点を有していた。Si基板のみによる固体撮
像装置は残像や分光特性の安定性は極めてよいの
で、上記のような欠点は、光導電膜を積層したこ
とによる利点、即ち感度増加やブルーミングの減
少を相殺するものである。
In order to realize such a photoconductive film stacked solid-state imaging device, it is essential to develop a film that has an excellent photoelectric conversion function, as well as the development of a Si substrate that has an excellent scanning function. In the above publication, a heterojunction film of - group compounds or amorphous Si is used as a photoconductive film.
Membranes, etc. are used. Since the film forming process of amorphous Si film is generally carried out in a low-pressure gas atmosphere, it has excellent coverage when formed on a substrate with unevenness. It had the disadvantage that the spectral characteristics changed with respect to voltage. Solid-state imaging devices using only a Si substrate have extremely stable afterimages and spectral characteristics, so the drawbacks mentioned above are offset by the advantages of stacking photoconductive films, namely increased sensitivity and reduced blooming. .

本発明の固体撮像装置は、上記のような従来の
欠点を克服するために開発されたもので、光電変
換膜の光入射側の一部に禁止帯幅の小なる部分を
形成することにより、残像及び分光特性の印加電
圧による変化を大幅に減少させた固体撮像装置を
提供するものである。
The solid-state imaging device of the present invention was developed to overcome the above-mentioned conventional drawbacks, and by forming a portion with a small forbidden band width on a part of the light incident side of the photoelectric conversion film, The present invention provides a solid-state imaging device in which afterimages and changes in spectral characteristics due to applied voltage are significantly reduced.

第1図に本発明の一実施例における固体撮像装
置の単位絵素の断面図を示した。本実施例では走
査機能として電荷結合型デバイス(以下、これを
CCDと呼ぶ)を用いて説明するが、これはCCD
に限定されるものではなく、Backet Brigade
Device(BBD)あるいはMOSマトリツクス型素
子であつても良いことは言うまでもない。
FIG. 1 shows a cross-sectional view of a unit pixel of a solid-state imaging device according to an embodiment of the present invention. In this example, a charge-coupled device (hereinafter referred to as this) is used as the scanning function.
This is explained using a CCD (called a CCD).
Backet Brigade, but not limited to
Needless to say, it may be a device (BBD) or a MOS matrix type element.

同図において1はP型Si基板で、2はn型領域
でP型Si基板1との間にダイオードを形成してい
る。3はn-型領域で埋込み型のチヤンネルとな
つている。4は読み込みゲート電極5の下の絶縁
膜である。ゲート電極5は読み込み動作と転送動
作を兼ねており、後述するようにここに印加する
パルスの高さにより読み込み動作と転送動作の区
別をおこなう。6は低融点ガラス等よりなる絶縁
体でありn+型領域2の一部のみ開口している。
7は光励起されたキヤリアの収集電極でMo、
Ta、Al等よりなり絵素間分離のためモザイク状
に形成されn+型領域2と電気的に接続されてい
る。8は本発明にかかわる非晶質Siよりなる光電
変換膜で、光入射側の一部に禁止帯幅の小なる部
分9を形成している。禁止帯幅の小なる部分9の
光の吸収係数が大きいため青色光はもちろん赤色
光もこの部分で吸収される。10はITO(Indium
Tin Oxide)よりなる透明電極、11は入射光で
ある。12は非晶質Si8に最適な印加電圧を与え
るための外部電源である。
In the figure, 1 is a P-type Si substrate, and 2 is an n-type region forming a diode between it and the P-type Si substrate 1. 3 is an n - type region and is a buried channel. 4 is an insulating film under the read gate electrode 5. The gate electrode 5 serves both a reading operation and a transfer operation, and as described later, the reading operation and the transfer operation are distinguished by the height of the pulse applied thereto. Reference numeral 6 is an insulator made of low melting point glass or the like, and only a portion of the n + type region 2 is open.
7 is a collection electrode of photo-excited carriers made of Mo,
It is made of Ta, Al, etc., and is formed in a mosaic shape for isolation between picture elements, and is electrically connected to the n + type region 2. Reference numeral 8 denotes a photoelectric conversion film made of amorphous Si according to the present invention, in which a portion 9 with a small forbidden band width is formed in a portion on the light incident side. Since the light absorption coefficient of the portion 9 with the small forbidden band width is large, not only blue light but also red light is absorbed in this portion. 10 is ITO (Indium
11 is incident light. 12 is an external power supply for applying an optimum voltage to the amorphous Si 8.

次に、上記固体撮像装置の動作について説明す
る。第2図に、本装置の要部平面図を示した。第
3図a,bは駆動パルス波形と入射光がある場合
のn-型領域2の電位変化を示したものである。
はじめに、第1フイールドにおいて光で生成した
キヤリアは電極7に集められる。ゲート電極5に
VCHなる読み込みパルスを印加するとn-型領域2
はVCH−VTに充電されるために(ここでVTはn+
型領域2とn-型領域3およびゲート電極5でな
るトランジスタの閾値電圧である)、信号電荷は
n-領域3に移される。12および12′は転送動
作を行なわせるためリン等のイオン注入により形
成した障壁部である。垂直転送はゲート電極5お
よび5′に順次パルスV〓を印加することにより電
位勾配が形成され矢印13に示した方向に順次転
送することが出来る。第2フイールドにおいては
n-領域2′に収集された電荷が同様な方法により
読み出すことが出来る。
Next, the operation of the solid-state imaging device will be explained. FIG. 2 shows a plan view of the main parts of this device. FIGS. 3a and 3b show potential changes in the n - type region 2 when there is a drive pulse waveform and incident light.
First, carriers generated by light in the first field are collected at the electrode 7. to gate electrode 5
When a read pulse of V CH is applied, the n - type region 2
is charged to V CH −V T (where V T is n +
threshold voltage of the transistor consisting of type region 2, n - type region 3 and gate electrode 5), the signal charge is
n - moved to area 3. Reference numerals 12 and 12' denote barrier portions formed by implanting ions of phosphorus or the like in order to perform a transfer operation. In the vertical transfer, a potential gradient is formed by sequentially applying pulses V to the gate electrodes 5 and 5', and the data can be transferred sequentially in the direction shown by the arrow 13. In the second field
The charges collected in the n -region 2' can be read out in a similar manner.

次に上記固体撮像装置の製造法について説明す
る。P型Si基板1の熱拡散等によりP等を拡散さ
せn+型領域2を形成する。n-型領域の埋込みチ
ヤンネル3はPあるいはAS等をイオン注入する
ことにより形成する。更に、P型Si基板1の表面
にゲート酸化膜4を形成した後、非晶質シリコン
(Poly−Si)等によりゲート電極5を形成する。
しかる後に絶縁層6を形成するがこれはn+型領
域2の一部を開口した後、段差緩和のためメルト
フローを行なうので、リンシリケートガラスのよ
うな低融点物質が望ましい。絶縁層6を形成した
後、Al、Mo、W、Ta、Cr等より電荷収集用の
第一電極7を形成する。この第一電極は絵素分離
を行なうためモザイク状に形成している。
Next, a method for manufacturing the solid-state imaging device will be described. P and the like are diffused by thermal diffusion of the P-type Si substrate 1 to form an n + -type region 2 . The buried channel 3 in the n - type region is formed by ion implantation of P or AS . Furthermore, after forming a gate oxide film 4 on the surface of the P-type Si substrate 1, a gate electrode 5 is formed of amorphous silicon (Poly-Si) or the like.
Thereafter, the insulating layer 6 is formed, but after opening a part of the n + type region 2, melt flow is performed to alleviate the step difference, so a low melting point material such as phosphorus silicate glass is preferable. After forming the insulating layer 6, a first electrode 7 for charge collection is formed from Al, Mo, W, Ta, Cr, or the like. This first electrode is formed in a mosaic shape to perform picture element separation.

非晶質Si8の形成法として主なものにグロー放
電による方法とスパツタリングによる方法があ
る。グロー放電法においてはSiH4あるいはSi2H6
をベースとしてH2添加等を行なう。非晶質Si中
含有されるHの量は10〜40%が望ましい。本発明
の特徴である禁止帯幅の狭い層9の形成は、上記
非晶質Si形成中に一時的にH2ガス流量を減少さ
せたり基板温度を上昇させたりして非晶質Si中に
含有されるH濃度を減少させることにより得るこ
とが出来る。
The main methods for forming amorphous Si 8 include a method using glow discharge and a method using sputtering. In the glow discharge method, SiH 4 or Si 2 H 6
Addition of H2 , etc. is carried out based on this. The amount of H contained in amorphous Si is preferably 10 to 40%. Formation of the layer 9 with a narrow forbidden band width, which is a feature of the present invention, is achieved by temporarily reducing the H 2 gas flow rate or increasing the substrate temperature during the formation of the amorphous Si. This can be obtained by reducing the H concentration contained.

禁止帯幅の狭い層9の形成法としてH含有量を
減少させても形成できるが、この方法に限定され
るものではなく、例えばGe等を含有させること
によつても禁止帯幅を狭ばめることは可能であり
全く同等の効果が得られる。またスパツタリング
法で作製する場合にはSiをターゲツトとして雰囲
気ガスとしてArとH2を導入してスパツタリング
を行なうことにより非晶質Siが得られるが、H2
とArの混合比を変えることにより非晶質Si中の
H含有量を制御することが可能であるのでグロー
放電法の場合と同様に、非晶質Si中の一部に禁止
帯幅の狭い層を作製することが出来る。第4図に
H含有量に対する禁止帯幅の依存性を示した。こ
の図より、例えば30%水素量含有量8を約1μm
形成し、その後5%水素量含有層(禁止帯幅の狭
い層9)を約0.3μm形成し、更に30%水素量含有
層(非晶質Si8)を0.2μm形成すれば第1図に示
した構造の非晶質Siが得られる。また、スパツタ
リング法においてGe等を一部に含有させる場合
には、Siターゲツト中に混合した合金ターゲツト
を用いるかあるいはSiターゲツト表面の一部に
Geを設置することにより、任意の量のGeを含有
させることが出来る。このようにして形成した非
晶質Siの上にスパツタリング法等によりインジウ
ム・スズの酸化物である透明電極10を形成する
ことにより、本実施例の素子を得ることが出来
る。
The layer 9 with a narrow forbidden band width can be formed by reducing the H content, but the method is not limited to this method. For example, the forbidden band width can also be narrowed by containing Ge or the like. It is possible to obtain the same effect. In addition, when manufacturing by sputtering method, amorphous Si can be obtained by sputtering with Si as a target and Ar and H 2 introduced as atmospheric gases, but H 2
It is possible to control the H content in amorphous Si by changing the mixing ratio of layers can be created. Figure 4 shows the dependence of the forbidden band width on the H content. From this figure, for example, 30% hydrogen content 8 is approximately 1 μm.
After that, a layer containing 5% hydrogen (layer 9 with a narrow forbidden band width) is formed to a thickness of approximately 0.3 μm, and a layer containing 30% hydrogen (amorphous Si 8) is further formed to a thickness of 0.2 μm, as shown in Fig. 1. Amorphous Si with a similar structure is obtained. In addition, when partially containing Ge etc. in the sputtering method, an alloy target mixed in the Si target or a part of the Si target surface is used.
By installing Ge, an arbitrary amount of Ge can be contained. The element of this example can be obtained by forming a transparent electrode 10 made of indium tin oxide on the amorphous Si thus formed by a sputtering method or the like.

次に、本発明の実施例における固体撮像装置の
効果について述べる。第5図は本発明の実施例お
よび従来例における固体撮像装置光電流の電圧依
存性を示したものである。従来例は非晶質Si8の
中に禁止帯幅の狭い層9を形成しない場合である
が光電流は電圧増加と共に増加の傾向を示す。5
1,52は従来例の場合の特性曲線を示してお
り、特性曲線51は赤色光に対するもの、特性曲
線52は青色光に対するものである。従来例にお
いて特に問題となるのは赤色光と青色光に対する
光電流の増加割合が異なつていることである。通
常、光導電膜積層型固体撮像板において、光導電
膜への印加電圧は幅をもたせる。このことは設定
電圧により非晶質Siの分光特性が異なることを意
味し、単板カラーカメラとして固体撮像上にフイ
ルターを形成した時に色再現性の劣下となる。し
かるに本発明の実施例の固体撮像装置のように禁
止帯幅の狭い層9を設けることにより、光電流の
電圧依存性は小さくなり、単板カラーカメラとし
た時の色再現性は一段と改善される。第5図にお
いて、特性曲線53,54は本発明の実施例に関
するものであり、53は赤色光に対するもの、5
4は青色光に対するものである。
Next, the effects of the solid-state imaging device according to the embodiment of the present invention will be described. FIG. 5 shows the voltage dependence of the photocurrent of the solid-state imaging device in the embodiment of the present invention and the conventional example. In the conventional example, a layer 9 with a narrow forbidden band width is not formed in the amorphous Si 8, but the photocurrent tends to increase as the voltage increases. 5
Reference numerals 1 and 52 indicate characteristic curves in the case of the conventional example, in which the characteristic curve 51 is for red light, and the characteristic curve 52 is for blue light. A particular problem in the conventional example is that the rate of increase in photocurrent for red light and blue light is different. Usually, in a photoconductive film laminated solid-state imaging plate, the voltage applied to the photoconductive film has a range. This means that the spectral characteristics of amorphous Si differ depending on the set voltage, which results in poor color reproducibility when a filter is formed on a solid-state image sensor in a single-chip color camera. However, by providing the layer 9 with a narrow forbidden band width as in the solid-state imaging device of the embodiment of the present invention, the voltage dependence of the photocurrent becomes smaller, and the color reproducibility when used as a single-chip color camera is further improved. Ru. In FIG. 5, characteristic curves 53, 54 relate to embodiments of the invention, 53 for red light;
4 is for blue light.

本発明の実施例におけるさらに他の効果は残像
の改善である。第6図に残像のフイールド依存性
を示した。フイールドにおける残像は、本発明の
実施例に関する特性曲線61では5%以下である
が、禁止帯幅の狭い層9を形成しない従来の場合
(特性曲線62)においては約18%と遅く、かつ、
長い時間にわたり残像成分が残る。
Still another effect of the embodiments of the present invention is improvement of afterimages. FIG. 6 shows the field dependence of the afterimage. The afterimage in the field is 5% or less in the characteristic curve 61 related to the embodiment of the present invention, but it is slow at about 18% in the conventional case (characteristic curve 62) in which the layer 9 with a narrow bandgap width is not formed, and
Afterimage components remain for a long time.

上記に示した禁止帯幅の小なる部分を形成した
ことによる効果は、主に非晶質Siの電子の易動度
μeと正孔の易動度μhが大幅に異なるためである。
即ち、通常μeは約10-1cm2/V・secであるがμh
約10-2cm2/V・sec以下である。従つて、第7図
aの従来例の場合においては禁止帯幅の狭い層9
が存在しないときは青色光による励起キヤリア
は、71で示すように透明電極10付近で生成さ
れ、主な走行キヤリアは電子72となるが、赤色
光による励起キヤリアは73で示すように非晶質
Si8の第一電極7付近で生成されるため主な走行
キヤリアは正孔74となり赤色光の飽和特性が劣
下する。
The above-mentioned effect of forming the portion with a small forbidden band width is mainly due to the large difference between the electron mobility μ e and the hole mobility μ h of amorphous Si.
That is, normally μ e is about 10 −1 cm 2 /V·sec, but μ h is about 10 −2 cm 2 /V·sec or less. Therefore, in the case of the conventional example shown in FIG. 7a, the layer 9 with a narrow forbidden band width
When the blue light does not exist, carriers excited by the blue light are generated near the transparent electrode 10 as shown at 71, and the main traveling carriers are electrons 72, but carriers excited by the red light are generated near the transparent electrode 10 as shown at 73.
Since it is generated near the first electrode 7 of Si8, the main traveling carriers are holes 74, which deteriorates the saturation characteristics of red light.

これに対して第7図bの本発明の実施例の場合
には入射光側の一部に禁止帯幅の小なる部分を形
成するならその部分における光吸収係数が増加す
るため入射光の青色光は無論のこと赤色光の大部
分もこの吸収係数の大きい禁止帯幅の小なる部分
で吸収される。従つて、青色光および赤色光を含
む可視域の光による励起キヤリアは75に示すよ
うに禁止帯の小なる部分で生成されるため膜中の
主な走行キヤリアは移動度が大きい電子となるの
で、低電界においても電子が第一電極7に到達し
やすくなり光電流の飽和特性が向上すると共に、
光電流の波長依存性も減少する。更に、主な走行
キヤリアが電子となるため当然ながら残像も改善
される。また、第1図のように光電変換膜8の禁
止帯幅の小なる部分9(第1図中の膜8略中央の
点で示す領域)より上層に、この部分9より比較
的禁止帯域の大きい部分7を設けていることで、
上記部分9を透明電極10に接して設けた場合に
生ずる特に青色光励起キヤリヤの表面再結合もな
く、赤色光の光再現性を改善するために青色光の
光再現性を劣化させるという不都合も生じないも
のであります。
On the other hand, in the case of the embodiment of the present invention shown in FIG. 7b, if a part with a small forbidden band width is formed on a part of the incident light side, the light absorption coefficient in that part increases, so that the incident light becomes blue. Most of the red light, as well as light, is absorbed in a small portion of the forbidden band width where the absorption coefficient is large. Therefore, carriers excited by light in the visible range including blue light and red light are generated in a small portion of the forbidden band, as shown in 75, and the main carriers traveling in the film are electrons with high mobility. , electrons can easily reach the first electrode 7 even in a low electric field, and the saturation characteristics of the photocurrent are improved.
The wavelength dependence of the photocurrent is also reduced. Furthermore, since the main traveling carrier is electronic, afterimages are naturally improved. In addition, as shown in FIG. 1, a layer above a portion 9 of the photoelectric conversion film 8 where the forbidden band width is small (the region indicated by a point approximately in the center of the film 8 in FIG. 1) has a relatively narrow forbidden band width than this portion 9. By providing the large part 7,
In particular, there is no surface recombination of the blue light excitation carrier that occurs when the portion 9 is provided in contact with the transparent electrode 10, and there is also the disadvantage that the optical reproducibility of blue light is degraded in order to improve the optical reproducibility of red light. It's something that doesn't exist.

以上述べてきたように、本発明の固体撮像装置
は光入射側の一部に禁止帯幅の小なる部分を形成
した非晶質Si等よりなる光導電膜を走査デバイス
上に積層した固体撮像板で、残像と分光特性の電
圧依存性の安定化をはかることにより色再現性を
向上させた固体撮像板を提供するもので、その高
感度・低ブルーミング特性とあわせて、その産業
上の意義はきわめて大きいものと言える。
As described above, the solid-state imaging device of the present invention is a solid-state imaging device in which a photoconductive film made of amorphous Si or the like is laminated on a scanning device with a small forbidden band width formed on a part of the light incident side. This product provides a solid-state imaging plate that improves color reproducibility by stabilizing afterimages and the voltage dependence of spectral characteristics.In addition to its high sensitivity and low blooming characteristics, its industrial significance is can be said to be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における固体撮像装
置の要部断面図、第2図は同固体撮像装置の要部
平面図、第3図a,bは同固体撮像装置の駆動パ
ルスとダイオード電位変化を示す図、第4図は非
晶質Siの水素含有率と禁止帯幅の相関図、第5図
は従来および本発明の実施例における非晶質Siの
電流・電圧特性を示す図、第6図は従来および本
発明の実施例における固体撮像装置の残像特性
図、第7図a,bはそれぞれ従来および本発明の
固体撮像装置の動作を説明するためのバンドモデ
ル図である。 1……P型Si基板、2……n型領域、3……n-
領域、5……ゲート電極、6……絶縁体、7……
収集電極(第1電極)、8……非晶質Si層、9…
…禁止帯幅の小さい層(部分)、10……透明電
極。
FIG. 1 is a sectional view of the main parts of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view of the main parts of the solid-state imaging device, and FIGS. 3a and 3b are drive pulses and diodes of the solid-state imaging device. A diagram showing potential changes, Figure 4 is a correlation diagram between hydrogen content and forbidden band width of amorphous Si, and Figure 5 is a diagram showing current/voltage characteristics of amorphous Si in conventional and embodiments of the present invention. , FIG. 6 is an afterimage characteristic diagram of solid-state imaging devices in the conventional and embodiments of the present invention, and FIGS. 7a and 7b are band model diagrams for explaining the operations of the conventional and inventive solid-state imaging devices, respectively. 1... P-type Si substrate, 2... n-type region, 3... n -
region, 5... gate electrode, 6... insulator, 7...
Collection electrode (first electrode), 8...Amorphous Si layer, 9...
...Layer (portion) with small forbidden band width, 10...Transparent electrode.

Claims (1)

【特許請求の範囲】 1 信号電荷を順次選択走査する手段を有する半
導体基板と上記半導体基板上に非晶質Siを主体と
する光電変換膜を積層してなる固体撮像装置であ
つて、上記非晶質Siを主体とする光電変換膜には
膜中の光入射側にその禁止帯幅が他の部分の禁止
帯幅より小である部分を設けたことを特徴とする
固体撮像装置。 2 非晶質Siの禁止帯幅の小なる部分は水素含有
量を他の部分より小とすることにより形成されて
いることを特徴とする特許請求の範囲第1項記載
の固体撮像装置。
[Scope of Claims] 1. A solid-state imaging device comprising: a semiconductor substrate having means for sequentially selectively scanning signal charges; and a photoelectric conversion film mainly made of amorphous Si laminated on the semiconductor substrate; A solid-state imaging device characterized in that a photoelectric conversion film mainly made of crystalline Si is provided with a portion on the light incident side of the film, the forbidden band width of which is smaller than the forbidden band width of other portions. 2. The solid-state imaging device according to claim 1, wherein the portion of the amorphous Si where the forbidden band width is small is formed by making the hydrogen content smaller than the other portion.
JP56187558A 1981-11-20 1981-11-20 Solid-state image pickup device Granted JPS5888977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187558A JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187558A JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS5888977A JPS5888977A (en) 1983-05-27
JPS6350912B2 true JPS6350912B2 (en) 1988-10-12

Family

ID=16208175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187558A Granted JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS5888977A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564350A (en) * 1978-11-08 1980-05-15 Hitachi Ltd Radioactive-ray receiving face

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564350A (en) * 1978-11-08 1980-05-15 Hitachi Ltd Radioactive-ray receiving face

Also Published As

Publication number Publication date
JPS5888977A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
US4862237A (en) Solid state image sensor
US4351856A (en) Semiconductor device and method of manufacturing the same
CN101079967B (en) Solid-state imaging device, method for producing same, and camera
US4354104A (en) Solid-state image pickup device
CN103050501A (en) Solid-state imaging device, method for producing same, and camera
JPH0513748A (en) Solid-state image pickup element
EP0023079B1 (en) Method of producing a solid state photoelectric device
JP2959460B2 (en) Solid-state imaging device
JPS6292365A (en) Semiconductor device and manufacture thereof
JPS6350912B2 (en)
JP3057801B2 (en) Solid-state imaging device
JPH04343472A (en) Solid-state image pickup element
JPS61187267A (en) Solid-state image pickup device
JPH0666920B2 (en) Imaging device
JPS60169165A (en) Solid image sensor element
JPH07335936A (en) Optoelectric transducer
JP3020563B2 (en) Solid-state imaging device
JPS6243163A (en) Solid-state image pickup device
JP2906961B2 (en) Solid-state imaging device
JPS5917774A (en) Solid-state image pickup device
JPH0459828B2 (en)
JPH08191143A (en) Photoelectric conversion device
JPH0340573A (en) Photoelectric converter
JPS62269356A (en) Solid-state image sensing device
JPH0689994A (en) Manufacture of solid-state image pickup