JPS5888977A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS5888977A
JPS5888977A JP56187558A JP18755881A JPS5888977A JP S5888977 A JPS5888977 A JP S5888977A JP 56187558 A JP56187558 A JP 56187558A JP 18755881 A JP18755881 A JP 18755881A JP S5888977 A JPS5888977 A JP S5888977A
Authority
JP
Japan
Prior art keywords
solid
state imaging
amorphous
imaging device
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56187558A
Other languages
Japanese (ja)
Other versions
JPS6350912B2 (en
Inventor
Takao Chikamura
隆夫 近村
Yutaka Miyata
豊 宮田
Koshiro Mori
森 幸四郎
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56187558A priority Critical patent/JPS5888977A/en
Publication of JPS5888977A publication Critical patent/JPS5888977A/en
Publication of JPS6350912B2 publication Critical patent/JPS6350912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To decrease the change in residual image and spectrum characteristics with an applied voltage, by forming a part having small forbidden band width at a part of the light incident side of a photoelectric conversion film. CONSTITUTION:An incident light 11 is applied to a photoelectric conversion film 8 made of amorphous Si via a transparent potential 10. The film 8 forms a part 9 having a small fobidden band width at a part of the light incident side. Carriers formed with the light are collected on an electrode 7. In applying a reading pulse being a VCH to a gate electrode 5, since an n<-> region 3 is charged to VCH-VT (where; VT is a threshold voltage of a transistor consisting of an n<+> region 2, the region 3 and the gate electrode 5), the signal charges are transferred to th region 3. In the vertical transfer, a potential gradient is formed by applying a pulse Vf to the gate electrodes 5, 5' sequentially and the transfer is done sequentially toward the arrow 13.

Description

【発明の詳細な説明】 うとして必要とされる安定な分光特性の得られる光導電
膜積層型固体撮像装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a photoconductive film stacked solid-state imaging device that can obtain stable spectral characteristics required for the purpose of achieving a photoconductive film.

固体撮像装置は集積回路技術の進展と共に急激な発展を
みせ、最近ブは単板カラーカメラとしての実用的な絵素
数(約20万個)を有するものが実現されるようになっ
た。一方、性能面での改良もはかられ、とりわけ走査機
能を有するSt基板上に光導電膜を検層した固体撮像装
置は、高感度でブルーミングが少ない等の特徴を有し、
撮像管に匹適し得るデバイスとして有用である。そのよ
うなデバイスとして例えば特開昭54−103630号
公報と特開昭55−39404号公報が挙げられる。
Solid-state imaging devices have shown rapid development along with advances in integrated circuit technology, and recently, devices with a practical number of picture elements (approximately 200,000) for single-chip color cameras have been realized. On the other hand, improvements have been made in terms of performance, and in particular, solid-state imaging devices in which a photoconductive film is logged on an St substrate with a scanning function have features such as high sensitivity and little blooming.
It is useful as a device that is comparable to an image pickup tube. Such devices include, for example, Japanese Patent Application Laid-open No. 54-103630 and Japanese Patent Application Laid-Open No. 55-39404.

このような光導電膜積層型固体撮像装置の実現には、す
ぐれた走査機能を有するSt基板の開発と同様、すぐれ
だ光電変換機能を有する膜の開発が必須である。前記公
報においては、光導電膜としてII−Vl族化合物の異
種接合膜あるいは非晶質St膜等を用いている。非晶質
St膜はその製膜プロセスが一般に低圧ガス雰囲気中で
行なうために凹凸を有する基板上に形成する場合の被覆
性にすぐれているが、一方性能面においては残像が遅い
という欠点や印加電圧に対して分光特性が変化するとい
う欠点を有していた。Si基板のみによる固体撮像装置
は残像や分光特性の安定性は極めてよいので、上記のよ
うな欠点は、光導電膜を積層したことによる利点、即ち
感度増加やプルーミングの減少を相殺するものである。
In order to realize such a photoconductive film stacked solid-state imaging device, it is essential to develop a film that has an excellent photoelectric conversion function, as well as the development of an St substrate that has an excellent scanning function. In the above publication, a heterojunction film of II-Vl group compounds or an amorphous St film is used as the photoconductive film. Since the film forming process of amorphous St film is generally carried out in a low-pressure gas atmosphere, it has excellent coverage when formed on a substrate with unevenness. It had the disadvantage that the spectral characteristics changed with respect to voltage. A solid-state imaging device using only a Si substrate has extremely stable afterimages and spectral characteristics, so the above disadvantages are offset by the advantages of laminating a photoconductive film, namely increased sensitivity and reduced pluming. .

本発明の固体撮像装置は、上記のような従来の欠点を克
服するために開発されたもので、光電変換膜の光入射側
の一部に禁止帯幅の小なる部分を形成することにより、
残像及び分光特性の印加電圧による変化を大幅に減少さ
せた固体撮像装置を提供するものでおる。
The solid-state imaging device of the present invention was developed to overcome the above-mentioned conventional drawbacks, and by forming a portion with a small forbidden band width on a part of the light incident side of the photoelectric conversion film,
The present invention provides a solid-state imaging device in which afterimages and changes in spectral characteristics due to applied voltage are significantly reduced.

第1図に本発明の一実施例における固体撮像装置の単位
絵素の断面図を示した。本実施例では走査機能として電
荷結合型デバイス(以下、これをCODと呼ぶ)を用い
て説明するが、これはC0D−に限定されるものではな
(、Backet BrigadeDevice (B
BD )あるいはM OS マトリックス型素子であっ
ても良いことは言うまでもない。
FIG. 1 shows a cross-sectional view of a unit pixel of a solid-state imaging device according to an embodiment of the present invention. In this embodiment, a charge-coupled device (hereinafter referred to as COD) is used as the scanning function, but this is not limited to C0D- (Backet Brigade Device (B
Needless to say, it may be a BD (BD) or a MOS matrix type element.

同図において1はP型St基板で、2はn型領域でP型
Si基板1との間にダイオードを形成している。3はn
−型領域で埋込み型のチャンネルとなっている。4は読
み込みゲート電極6の下の絶縁膜である。ゲート電極6
は読み込み動作と転送動作を兼ねており、後述するよう
にここに印加するパルスの高さにより読み込み動作と転
送動作の区別をおこなう。6は低融点ガラス等よりなる
絶縁体であり♂型領域2の一部のみ開口している。
In the figure, 1 is a P-type St substrate, and 2 is an n-type region forming a diode between it and the P-type Si substrate 1. 3 is n
- It is a recessed channel in the mold area. 4 is an insulating film under the read gate electrode 6. Gate electrode 6
serves both as a read operation and a transfer operation, and as described later, the read operation and the transfer operation are distinguished by the height of the pulse applied here. Reference numeral 6 denotes an insulator made of low-melting point glass or the like, and only a portion of the ♂-type region 2 is open.

7は光励起されたキャリアの収集電極で¥o、Ta。7 is a collection electrode for photo-excited carriers, ¥o, Ta.

へ1等よりなり絵素間分離のためモザイク状に形成され
♂型領域2と電気的に接続されている。8は本発明にか
かわる非晶質St よりなる光電変換膜で、光入射側の
一部に禁止帯幅の小なる部分9を形成している。禁止帯
幅の小なる部分9は光の吸収係数が大きいため青色光は
もちろん赤色光もこの部分で吸収される。10はI T
 O(IndiumTin 0xide)よりなる透明
電極、11は入射光である。12は非晶質Sisに最適
な印加電圧を与えるための外部電源である。
It is formed in a mosaic shape for isolation between picture elements, and is electrically connected to the ♂-type region 2. Reference numeral 8 denotes a photoelectric conversion film made of amorphous St 2 according to the present invention, in which a portion 9 with a small forbidden band width is formed in a portion on the light incident side. The portion 9 where the forbidden band width is small has a large light absorption coefficient, so not only blue light but also red light is absorbed in this portion. 10 is IT
A transparent electrode made of O (Indium Tin Oxide) and 11 are incident light. 12 is an external power supply for applying an optimum voltage to the amorphous Sis.

次に、上記固体撮像装置の動作について説明する。第2
図に、本装置の要部平面図を示した。第3図(、) 、
 (b)は駆動パルス波形と入射光がある場合のi型領
域2の電位変化を示したものである。はじめに、第1フ
イールドにおいて光で生成したキャリアは電極アに集め
られる。ゲート電極6にvcHなる読み込みパルスを印
加するとi型領域2はvCH”−vTに充電されるため
に(ここでvTは♂型領域2とi型領域3およびゲート
電極6でなるトランジスタの闇値電圧である)、信号電
荷はi領域3に移される。12および12′は転送動作
を行なわせるためリン等のイオン注入により形成した障
壁部である。垂直転送はゲート電極6および6′に順次
パルスVφを印加することにより電位勾配が形成され矢
印13に示した方向に順次転送することが出来る。第2
フイールドにおいてはi領域2′に収集された電荷が同
様な方法により読み出すことが出来る。
Next, the operation of the solid-state imaging device will be explained. Second
The figure shows a plan view of the main parts of this device. Figure 3 (,),
(b) shows the potential change of the i-type region 2 when there is a driving pulse waveform and incident light. First, carriers generated by light in the first field are collected at electrode A. When a read pulse of vcH is applied to the gate electrode 6, the i-type region 2 is charged to vCH''-vT (here, vT is the dark value of the transistor consisting of the male region 2, the i-type region 3, and the gate electrode 6). voltage), the signal charge is transferred to the i-region 3. 12 and 12' are barrier portions formed by ion implantation of phosphorus or the like in order to perform the transfer operation.For vertical transfer, the signal charges are transferred to the gate electrodes 6 and 6' sequentially. By applying the pulse Vφ, a potential gradient is formed and the voltage can be transferred sequentially in the direction shown by the arrow 13.Second
In the field, the charges collected in the i-region 2' can be read out in a similar manner.

次に上記固体撮像装置の製造法について説明する。P 
WS i基板1に熱拡散等によりP等を拡散させ♂型領
域2を形成する。ぎ型領域の埋込みチャンネル3はPあ
るいはA5等をイオン注入することにより形成する。更
に、P型84基板1の表面にゲート酸化膜4を形成した
後、非晶質シリコン(Poly−8t)等によりゲート
電極6を形成する。しかる後に絶縁層6を形成するがこ
れは♂型領域2の一部を開口した後、段差緩和のためメ
ルト70−を行なうので、リンシリケートガラスのよう
な低融点物質が望ましい。絶縁層6を形成した後、Al
l 、Mo 、 W 、Ta 、Cr等より電荷収集用
の第一電極7を形成する。この第一電極は絵素分離を行
なうためモザイク状に形成している。
Next, a method for manufacturing the solid-state imaging device will be described. P
P or the like is diffused into the WS i substrate 1 by thermal diffusion or the like to form an ♂ type region 2. The buried channel 3 in the square region is formed by ion implantation of P, A5, or the like. Furthermore, after forming a gate oxide film 4 on the surface of the P-type 84 substrate 1, a gate electrode 6 is formed of amorphous silicon (Poly-8T) or the like. Thereafter, the insulating layer 6 is formed, but after opening a part of the ♂-type region 2, melting 70- is performed to alleviate the step difference, so a low melting point material such as phosphosilicate glass is preferable. After forming the insulating layer 6, Al
The first electrode 7 for charge collection is formed from L, Mo, W, Ta, Cr, or the like. This first electrode is formed in a mosaic shape to perform picture element separation.

非晶質St aの形成法として主なものにグロー放電に
よる方法とスパッタリングによる方法がある。グロー放
電法においてはSiH4あるいはS i 2H6をベー
スとしてH2添加等を行なう。非晶質St中金含有れる
Hの量は10〜ao%が望ましい。本発明の特徴である
禁止帯幅の狭い層9の形成は、上記非晶質St形成中に
一時的にH2ガス流量を減少させたり基板温度を上昇さ
せたりして非晶質Si中に含有されるH濃度を減少させ
ることにより得ることが出来る。
The main methods for forming the amorphous Sta are a method using glow discharge and a method using sputtering. In the glow discharge method, H2 is added to SiH4 or Si2H6 as a base. The amount of H contained in the amorphous St gold is preferably 10 to ao%. The formation of the layer 9 with a narrow forbidden band width, which is a feature of the present invention, is achieved by temporarily reducing the H2 gas flow rate or increasing the substrate temperature during the formation of the amorphous St. This can be obtained by reducing the H concentration.

禁止帯幅の狭い層9の形成法としてH含有量を減少させ
ても形成できるが、この方法に限定されるものではなく
、例えばGe等を含有させることによっても禁止帯幅を
狭ばめることは可能であり全く同等の効果が得られる。
The layer 9 with a narrow forbidden band width can be formed by reducing the H content, but the method is not limited to this method. For example, the forbidden band width can also be narrowed by containing Ge or the like. It is possible to achieve exactly the same effect.

まだスパッタリング法で作製する場合にはStをターゲ
ットとして雰囲気ガスとしてArとH2を導入してスパ
ッタリングを行なうことにより非晶質Stが得られるが
、H2とArの混合比を変えることにより非晶質8i中
のH含有量を制御することが可能であるのでグロー放電
法の場合と同様に、非晶質Si中の一部に禁止帯幅の狭
い層を作製することが出来る。第4図にH含有量に対す
る禁止帯幅の依存性を示した。この図より、例えば30
%水素量含有層8を約1μm形成し、その後6チ水素量
含有層(禁止帯幅の狭い層9)を約0.3μm形成し、
更に30チ水素量含有層(非晶質5ta)を0.2μm
形成すれば第1図に示した構造の非晶質Stが得られる
When manufacturing by sputtering method, amorphous St can be obtained by sputtering using St as a target and introducing Ar and H2 as atmospheric gases, but amorphous St can be obtained by changing the mixing ratio of H2 and Ar. Since it is possible to control the H content in 8i, it is possible to create a layer with a narrow forbidden band width in a part of amorphous Si, similar to the glow discharge method. Figure 4 shows the dependence of the forbidden band width on the H content. From this figure, for example, 30
% hydrogen content layer 8 was formed to a thickness of about 1 μm, and then a 6% hydrogen content layer (layer 9 with a narrow forbidden band width) was formed to a thickness of about 0.3 μm.
Furthermore, a layer containing 30% hydrogen (amorphous 5ta) with a thickness of 0.2 μm
Once formed, amorphous St having the structure shown in FIG. 1 can be obtained.

また、スパッタリング法においてGe等を一部に含有さ
せる場合には、St ターゲット中に混合した合金タフ
ゲットを用いるかあるいはSt ターゲット表面の一部
にGoを設置することにより、任意の量のGoを含有さ
せることが出来る。このようにして形成した非晶質Si
O上にスパッタリング法等によりインジウム・スズの酸
化物である透明電極1oを形成することにより、本実施
例の素子を得ることが出来る。
In addition, when partially containing Ge, etc. in the sputtering method, an arbitrary amount of Go can be contained by using an alloy tough get mixed in the St target or by placing Go on a part of the St target surface. I can do it. Amorphous Si formed in this way
The element of this example can be obtained by forming a transparent electrode 1o made of indium tin oxide on O by a sputtering method or the like.

次に、本発明の実施例における固体撮像装置の効果につ
いて述べる。第6図は本発明の実施例および従来例にお
ける固体撮像装置光電流の電圧依存性を示したものであ
る。従来例は非晶質Si8の中に禁止帯幅の狭い層9を
形成しない場合であるが光電流は電圧増加と共に増加の
傾向を示す。
Next, the effects of the solid-state imaging device according to the embodiment of the present invention will be described. FIG. 6 shows the voltage dependence of the photocurrent of the solid-state imaging device in the embodiment of the present invention and the conventional example. In the conventional example, a layer 9 with a narrow forbidden band width is not formed in the amorphous Si 8, but the photocurrent tends to increase as the voltage increases.

51.52は従来例の場合の特性曲線を示しており、特
性曲線61は赤色光に対するもの、特性曲線62は青色
光に対するものである。従来例において特に問題となる
のは赤色光と青色光に対する光電流の増加割合が異なっ
ていることである。通常、光導電膜積層型固体撮像板に
おいて、光導電膜への印加電圧は幅をもたせる。このこ
とは設定電圧により非晶質Stの分光特性が異なること
を意味し、単板カラーカメラとして固体撮像上にフィル
ターを形成した時に色再現性の劣下となる。
Reference numerals 51 and 52 show characteristic curves in the case of the conventional example, where the characteristic curve 61 is for red light and the characteristic curve 62 is for blue light. A particular problem in the conventional example is that the rate of increase in photocurrent for red light and blue light is different. Usually, in a photoconductive film laminated solid-state imaging plate, the voltage applied to the photoconductive film has a range. This means that the spectral characteristics of amorphous St differ depending on the set voltage, and when a filter is formed on a solid-state image sensor as a single-plate color camera, color reproducibility deteriorates.

しかるに本発明の実施例の固体撮像装置のように禁止帯
幅の狭い層9を設けることにより、光電流の電圧依存性
は小さくなり、単板カラーカメラとした時の色再現性は
一段と改善される。第5図において、特性曲線53.5
4は本発明の実施例に関するものであり、63は赤色光
に対するもの、64は青色光に対するものである。
However, by providing the layer 9 with a narrow forbidden band width as in the solid-state imaging device of the embodiment of the present invention, the voltage dependence of the photocurrent becomes smaller, and the color reproducibility when used as a single-chip color camera is further improved. Ru. In FIG. 5, the characteristic curve 53.5
4 is related to an embodiment of the present invention, 63 is for red light, and 64 is for blue light.

本発明の実施例におけるさらに他の効果は残像の改善で
ある。第6図に残像のフィールド依存性を示した。 フ
ィールドにおける残像は、本発明の実施例に関する特性
曲線61では6チ以下であるが、禁止帯幅の狭い層9を
形成しない従来の場合(特性曲線62)においては約1
8%と遅く、0 かつ、長い時間にわたり残像成分が残る。
Still another effect of the embodiments of the present invention is improvement of afterimages. Figure 6 shows the field dependence of the afterimage. The afterimage in the field is less than 6 inches in the characteristic curve 61 related to the embodiment of the present invention, but it is about 1 in the conventional case (characteristic curve 62) in which the layer 9 with a narrow bandgap width is not formed.
It is slow at 8%, 0, and residual image components remain for a long time.

上記に示した禁止帯幅の小なる部分を形成したことによ
る効果は、主に非晶質Stの電子の易動度μeと正孔の
易動度μhが大幅に異なるためである。即ち、通常μe
は約10−’ 7 /V−seaであルカphハ約10
−2crA /V−sea以下である。従って、第7図
(a)の従来例の場合においては禁止帯幅の狭い層9が
存在しないときは青色光による励起キヤ番リアは、71
で示すように透明電極1o付近で生成され、主な走行キ
ャリアは電子72となるが、赤色光による励起キャリア
は73で示すように非晶質St sの第一電極7付近で
生成されるため主な走行キャリアは正孔74となり赤色
光の飽和特性が劣下する。
The effect of forming the portion with a small forbidden band width shown above is mainly due to the large difference between the electron mobility μe and the hole mobility μh of amorphous St. That is, normally μe
is about 10-'7/V-sea and ph is about 10
-2crA/V-sea or less. Therefore, in the case of the conventional example shown in FIG. 7(a), when the narrow forbidden band width layer 9 does not exist, the excitation carrier number rear by blue light is 71.
As shown in , electrons 72 are generated near the transparent electrode 1o, and the main traveling carriers are electrons 72, but carriers excited by red light are generated near the first electrode 7 of amorphous Sts, as shown in 73. The main traveling carriers become holes 74, and the saturation characteristics of red light deteriorate.

これに対して第7図(b)の本発明の実施例の場合には
入射光側の一部に禁止帯幅の小なる部分を形成するなら
その部分における光吸収係数が増加するため入射光の青
色光は熱論のこと赤色光の大部分もこの吸収係数の大き
い禁止帯幅の小なる部分で吸収される。従って、青色光
および赤色光を含11 む可視域の光による励起キャリアは76に示すように禁
止帯の小なる部分で生成されるため膜中の主な走行キャ
リアは移動度が大きい電子となるので、低電界において
も電子が第一電極7に到達しやすくなり光電流の飽和特
性が向上すると共に、光電流の波長依存性も減少する。
On the other hand, in the case of the embodiment of the present invention shown in FIG. Most of the blue light is thermally absorbed, and most of the red light is also absorbed in a small part of the bandgap where the absorption coefficient is large. Therefore, carriers excited by light in the visible range, including blue light and red light, are generated in a small portion of the forbidden band, as shown in 76, and the main carriers in the film are electrons with high mobility. Therefore, electrons can easily reach the first electrode 7 even in a low electric field, improving the saturation characteristics of the photocurrent and reducing the wavelength dependence of the photocurrent.

更に、主な走行キャリアが電子となるため当然ながら残
像も改善される。
Furthermore, since the main traveling carriers are electrons, afterimages are naturally improved.

以上述べてきたように、本発明の固体撮像装置は光入射
側の一部に禁止帯幅の小なる′部分を形成した非晶質S
t等よりなる光導電膜を走査デバイス上に積層した固体
撮像板で、残像と分光特性の電圧依存性の安定化をはか
ることにより色再現性を向上させた固体撮像板を提供す
るもので、その高感度・低プルーミング特性とあわせて
、その産業上の意義はきわめて大きいものと言える。
As described above, the solid-state imaging device of the present invention is made of amorphous S with a small bandgap width formed on a part of the light incident side.
The present invention provides a solid-state imaging plate in which a photoconductive film such as T is laminated on a scanning device, and has improved color reproducibility by stabilizing afterimages and voltage dependence of spectral characteristics. Together with its high sensitivity and low pluming characteristics, its industrial significance can be said to be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における固体撮像装置の要部
断面図、第2図は同固体撮像装置の要部平面図、第3図
(−) 、 (b)は同固体撮像装置の駆動パ2 ルスとダイオード電位変化を示す図、第4図は非晶質S
tの水素含有率と禁止帯幅の相関図、第6図は従来およ
び本発明の実施例における非晶質Stの電流・電圧特性
を示す図、第6図は従来および本発明の実施例における
固体撮像装置の残像特性図、第7図(a)、 (b)は
それぞれ従来および本発明の固体撮像装置の動作を説明
するだめのバンドモデル図である。 1・・・・・P型まi基板、2・・・・−n型領域、3
・・・・・・n−領域、6・・・・ゲート電極、6・・
・・絶縁体、7・・・・・・収集電極(第1電極)、8
・・・・・非晶質St層、9・・・・・禁止帯幅の小さ
い層(部分)、1o・・・・・・透明電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3WA 第4図 1¥品憤、S′i市1”スネJ贅量(勾f’M/(Ps
r+Pn) 第5図 、57 覚 11丑(V) 第6図 フィールド畝 第7図 2
FIG. 1 is a cross-sectional view of the main parts of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view of the main parts of the solid-state imaging device, and FIGS. A diagram showing drive pulses and diode potential changes, Figure 4 shows amorphous S
Figure 6 is a diagram showing the current/voltage characteristics of amorphous St in the conventional and embodiments of the present invention. The afterimage characteristic diagrams of the solid-state imaging device, FIGS. 7(a) and 7(b) are band model diagrams for explaining the operation of the conventional solid-state imaging device and the present invention, respectively. 1...P type or i substrate, 2...-n type region, 3
......n-region, 6...gate electrode, 6...
... Insulator, 7 ... Collection electrode (first electrode), 8
...Amorphous St layer, 9...Layer (portion) with a small forbidden band width, 1o...Transparent electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 2 Fig. 3 WA Fig. 4
r+Pn) Fig. 5, 57 sense 11 ox (V) Fig. 6 Field ridge Fig. 7 2

Claims (1)

【特許請求の範囲】 (1)信号電荷を順次選択走査する手段を有する半導体
基板と上記半導体基板上に光電変換膜を積層してなる固
体撮像装置であって、上記光電変換膜の光入射側に位置
する一部の禁止帯幅が他の部分の禁止帯幅より小である
ことを特徴とする固体撮像装置。 に))光電変換膜が非晶質Stを主体とすることを特徴
とする特許請求の範囲第1項記載の固体撮像装置。 (3)非晶質Stの禁止帯幅の小なる部分が水素含有量
を他の部分より小とすることにより形成されていること
を特徴とする特許請求の範囲第2項記載の固体撮像装置
[Scope of Claims] (1) A solid-state imaging device comprising a semiconductor substrate having means for sequentially selectively scanning signal charges and a photoelectric conversion film laminated on the semiconductor substrate, the light incident side of the photoelectric conversion film 1. A solid-state imaging device characterized in that a forbidden band width of a part of the solid-state imaging device is smaller than a forbidden band width of another part. 2)) The solid-state imaging device according to claim 1, wherein the photoelectric conversion film is mainly made of amorphous St. (3) A solid-state imaging device according to claim 2, characterized in that a portion of the amorphous St having a small forbidden band width is formed by making the hydrogen content smaller than other portions. .
JP56187558A 1981-11-20 1981-11-20 Solid-state image pickup device Granted JPS5888977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187558A JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187558A JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS5888977A true JPS5888977A (en) 1983-05-27
JPS6350912B2 JPS6350912B2 (en) 1988-10-12

Family

ID=16208175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187558A Granted JPS5888977A (en) 1981-11-20 1981-11-20 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS5888977A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564350A (en) * 1978-11-08 1980-05-15 Hitachi Ltd Radioactive-ray receiving face

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564350A (en) * 1978-11-08 1980-05-15 Hitachi Ltd Radioactive-ray receiving face

Also Published As

Publication number Publication date
JPS6350912B2 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4862237A (en) Solid state image sensor
EP1681722B1 (en) Multilayered semiconductor substrate and image sensor formed thereon for improved infrared response
US4351856A (en) Semiconductor device and method of manufacturing the same
US4354104A (en) Solid-state image pickup device
US6924167B1 (en) Method of forming a bandgap tuned vertical color imager cell
JPH09331058A (en) Solid state image sensor
EP0023079B1 (en) Method of producing a solid state photoelectric device
JP2959460B2 (en) Solid-state imaging device
JPS6012763A (en) Photoelectric conversion device
JPS6012760A (en) Photoelectric conversion device
JPS5888977A (en) Solid-state image pickup device
JPS61187267A (en) Solid-state image pickup device
JPS5917774A (en) Solid-state image pickup device
JPH0459828B2 (en)
JPS5870685A (en) Solid-state image pickup device
JPH08204164A (en) Multilayered solid-state image sensing device and its manufacture
JPS5918685A (en) Manufacture of photoelectric converter element
JPS586164A (en) Solid-state image pickup device
JPS601980A (en) Solid-state image pickup element
JPH02111069A (en) Solid-state image pickup device and manufacture thereof
JPH08191143A (en) Photoelectric conversion device
JPH06244406A (en) Semiconductor device and solid-state image sensor
JPH0340573A (en) Photoelectric converter
JPS60143627A (en) Manufacture of photoelectric conversion film
JPH03135069A (en) Solid-state image sensing element