JP2959460B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2959460B2
JP2959460B2 JP8014069A JP1406996A JP2959460B2 JP 2959460 B2 JP2959460 B2 JP 2959460B2 JP 8014069 A JP8014069 A JP 8014069A JP 1406996 A JP1406996 A JP 1406996A JP 2959460 B2 JP2959460 B2 JP 2959460B2
Authority
JP
Japan
Prior art keywords
crystal semiconductor
single crystal
solid
imaging device
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8014069A
Other languages
Japanese (ja)
Other versions
JPH09213923A (en
Inventor
泰明 穂苅
智弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8014069A priority Critical patent/JP2959460B2/en
Publication of JPH09213923A publication Critical patent/JPH09213923A/en
Application granted granted Critical
Publication of JP2959460B2 publication Critical patent/JP2959460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体撮像装置に関
し、特に電荷結合(CCD)型の2次元固体撮像装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly to a charge-coupled (CCD) type two-dimensional solid-state imaging device.

【0002】[0002]

【従来の技術】図7は固体撮像装置の全体構成を説明す
るための平面図であり、101は光電変換を行なうフォ
トダイオード、102は電荷を垂直方向に転送する垂直
CCDレジスタ、103は電荷を水平方向に転送する水
平CCDレジスタ、104は電荷を検知する電荷検出
部、105は増幅器、110,111,112は電荷の
転送方向を示す。この固体撮像装置の動作は概略次の通
りである。まず固体撮像装置上に画像パターンが投影さ
れ、2次元に配列された各フォトダイオードに入射する
光強度に応じた電荷が各フォトダイオード101に蓄積
される。所定時間経過した後に、蓄積された電荷が矢印
110に示されるごとく垂直CCDレジスタ102に転
送される。続いて当該電荷が垂直CCDレジスタ102
の内部を矢印111に示されるごとく下方向に転送さ
れ、次に水平CCDレジスタ103により矢印112に
示されるごとく水平方向に転送され、電荷検出器104
で電圧に変換された後、増幅器105を経て出力され
る。
2. Description of the Related Art FIG. 7 is a plan view for explaining the overall structure of a solid-state image pickup device. Reference numeral 101 denotes a photodiode for performing photoelectric conversion; 102, a vertical CCD register for transferring electric charges in a vertical direction; A horizontal CCD register for transferring in the horizontal direction, 104 is a charge detection unit for detecting charges, 105 is an amplifier, and 110, 111, and 112 indicate the transfer direction of charges. The operation of this solid-state imaging device is roughly as follows. First, an image pattern is projected on a solid-state imaging device, and charges corresponding to the light intensity incident on the two-dimensionally arranged photodiodes are accumulated in each photodiode 101. After a lapse of a predetermined time, the accumulated charges are transferred to the vertical CCD register 102 as shown by an arrow 110. Subsequently, the charges are transferred to the vertical CCD register 102.
Are transferred downward as indicated by an arrow 111, and then transferred horizontally by a horizontal CCD register 103 as indicated by an arrow 112.
After being converted into a voltage, the voltage is output through an amplifier 105.

【0003】図8(a)はフォトダイオードと垂直CC
Dレジスタの従来構造を説明するための拡大平面図、図
8(b)は図8(a)のX−X線断面図である。11は
単結晶シリコンでなるN型半導体基板、21はN型半導
体基板11の表面部のP型領域(Pウェル)、12はフ
ォトダイオードとなるN型領域(P型領域21の表面部
に形成されている)、13はCCDレジスタの転送チャ
ネルである領域、22はN型領域13の底面と接するP
型領域、23は素子を分離する高濃度P型領域、24は
Si/SiO2 界面で発生する電流を抑制すべくフォト
ダイオード(12)の表面部に設けられた高濃度のP型
領域、25はトランスファゲート(MOSトランジス
タ)の読出チャネルとなるP型領域、31は絶縁膜、3
2は層間絶縁膜、41,42は多結晶シリコンからなる
電荷転送電極、51はCCDレジスタへの光の侵入を防
止するべく設けられた遮光膜、61,62は光路をそれ
ぞれ示す。
FIG. 8A shows a photodiode and a vertical CC.
FIG. 8B is an enlarged plan view for explaining the conventional structure of the D register, and FIG. 8B is a sectional view taken along line XX of FIG. 8A. Reference numeral 11 denotes an N-type semiconductor substrate made of single-crystal silicon, 21 denotes a P-type region (P-well) on the surface of the N-type semiconductor substrate 11, and 12 denotes an N-type region (formed on the surface of the P-type region 21) to become a photodiode. 13) is a region which is a transfer channel of the CCD register, and 22 is a P which is in contact with the bottom of the N-type region 13.
A high-concentration P-type region provided on the surface of the photodiode (12) for suppressing a current generated at the Si / SiO 2 interface; Is a P-type region serving as a read channel of a transfer gate (MOS transistor); 31 is an insulating film;
2 is an interlayer insulating film, 41 and 42 are charge transfer electrodes made of polycrystalline silicon, 51 is a light shielding film provided to prevent light from entering the CCD register, and 61 and 62 are optical paths, respectively.

【0004】この素子では、N型領域12とPウェル
(21)とでPN接合のフォトダイオードを構成し、N
型領域12に入射した光61により光電変換され発生し
た電子が当該N型領域12に蓄積される。電極41はN
型領域12、垂直CCDレジスタの転送チャネル13及
びP型領域25とともにMOSトランジスタを構成し、
電極41に10〜15Vの電圧パルスを加えることでフ
ォトダイオード(12)に蓄積された電子を垂直CCD
レジスタに転送する。しかる後に電極41に−5〜−1
0Vの電圧パルスを加えることにより、垂直CCDチャ
ネル内を図8(b)の紙面に垂直方向に電子が転送され
る。この時、MOSトランジスタのチャネルとなるP型
領域25はカットオフ条件となるため、フォトダイオー
ドに蓄積中の電荷の流出は起らない。
In this element, a photodiode having a PN junction is constituted by the N-type region 12 and the P well (21),
Electrons generated by photoelectric conversion by the light 61 incident on the mold region 12 are accumulated in the N-type region 12. The electrode 41 is N
A MOS transistor together with the pattern region 12, the transfer channel 13 of the vertical CCD register, and the P-type region 25;
By applying a voltage pulse of 10 to 15 V to the electrode 41, electrons accumulated in the photodiode (12) are converted into a vertical CCD.
Transfer to register. After that, -5 to -1 is applied to the electrode 41.
By applying a voltage pulse of 0 V, electrons are transferred in the vertical CCD channel in a direction perpendicular to the plane of FIG. 8B. At this time, since the P-type region 25 serving as the channel of the MOS transistor is cut off, the charge accumulated in the photodiode does not flow out.

【0005】一般に、固体撮像装置における感度は光電
変換によりフォトダイオード内で発生する電子量に依存
する。半導体基板がシリコンの場合、フォトダイオード
表面に入射した光がシリコン中で減衰し1/eの強度に
なる深さ(吸収深さ)は、波長700nmの赤色では5
μm、550nmの緑色では2μm、450nmの青色
では1.4μmである。これに対し、現在実用化されて
いる固体撮像装置でのフォトダイオード(12)の深さ
は1μm程度であり、入射する赤色や緑色光のかなりの
量がフォトダイオードを透過してしまうため入射光が1
00%有効には利用されていない。
In general, the sensitivity of a solid-state imaging device depends on the amount of electrons generated in a photodiode by photoelectric conversion. When the semiconductor substrate is silicon, the depth (absorption depth) at which the light incident on the photodiode surface is attenuated in the silicon and becomes 1 / e in intensity (absorption depth) is 5 for red at a wavelength of 700 nm.
μm, 2 μm for green at 550 nm, and 1.4 μm for blue at 450 nm. On the other hand, the depth of the photodiode (12) in a solid-state imaging device currently in practical use is about 1 μm, and a considerable amount of incident red and green light passes through the photodiode, so that the incident light is Is 1
It is not used effectively for 00%.

【0006】従って感度を向上するには、フォトダイオ
ード(12)の深さを2〜5μmと深く形成するのが良
いが、一方ではPN接合を深く形成することは製造時に
横方向にも広く拡散されフォトダイオードの寸法が大き
く形成されることになり、現在実用化されている7μm
×7μmの小型画素に対しては適用できない。また今後
の画素の微細化に対しても対応はできない。
Therefore, in order to improve the sensitivity, the depth of the photodiode (12) is preferably formed to be as deep as 2 to 5 μm. As a result, the size of the photodiode is increased, and the 7 μm
It cannot be applied to a small pixel of × 7 μm. Further, it is impossible to cope with future miniaturization of pixels.

【0007】固体撮像装置に入射する光には、図8
(b)に示すように表面に垂直に入射する光成分61
と、斜め方向から入射する光成分62がある。斜め方向
から入射する光62は転送チャネル13近傍のPウェル
21に達し当該領域で電荷を発生し、このうち電子が転
送チャネル13に流れ込む。固体撮像装置に入射する画
像パターンの一部に強度の強い輝点がある場合には、当
該部分で斜め光62により発生した電子がCCDレジス
タに多く入り込むため、撮像画面に縦すじ状の偽信号
(スミア)が生ずる。これは画質を大きく劣化させるた
め低減する必要がある。
FIG. 8 shows the light incident on the solid-state imaging device.
As shown in (b), a light component 61 which is perpendicularly incident on the surface.
Then, there is a light component 62 incident from an oblique direction. The light 62 incident from an oblique direction reaches the P well 21 near the transfer channel 13 and generates electric charges in the corresponding region. Among them, electrons flow into the transfer channel 13. If there is a bright spot with a strong intensity in a part of the image pattern incident on the solid-state imaging device, a large amount of electrons generated by the oblique light 62 enter the CCD register at that part, so that a vertical stripe-like false signal appears on the imaging screen. (Smear) occurs. This needs to be reduced because it greatly degrades the image quality.

【0008】[0008]

【発明が解決しようとする課題】上述した課題を改善す
る手法として、特開昭64−33963号公報に記載さ
れた画素構造がある。これは図9に示すように、P+
シリコン基板211の表面部に形成されたPウェル21
2、Pウェル212の表面部に形成されたN+ 型領域2
13(蓄積ダイオード)、垂直CCDレジスタの転送チ
ャネルであるN+型領域214,素子を分離するP+
領域215,転送電極216a,216bはN+ 型多結
晶シリコン電極217、絶縁膜218、Cr電極21
9、N+ 型多結晶シリコン膜220、i型アモルファス
SiC:H膜221、高抵抗アモルファスSi:H膜2
22、P型アモルファスSiC:H膜223、ITO膜
からなる透明電極224を有している。
As a method for improving the above-mentioned problem, there is a pixel structure described in Japanese Patent Application Laid-Open No. 64-33963. This is because, as shown in FIG. 9, a P well 21 formed on the surface of a P + type silicon substrate 211 is formed.
2. N + type region 2 formed on the surface of P well 212
13 (storage diode), an N + type region 214 which is a transfer channel of a vertical CCD register, a P + type region 215 for separating elements, and transfer electrodes 216a and 216b are an N + type polycrystalline silicon electrode 217, an insulating film 218, Cr Electrode 21
9, N + -type polycrystalline silicon film 220, i-type amorphous SiC: H film 221, high-resistance amorphous Si: H film 2
22, a transparent electrode 224 made of a P-type amorphous SiC: H film 223 and an ITO film.

【0009】この装置においては、装置表面に入射した
光はITO膜224を透過し高抵抗アモルファスSi:
H膜222で光電変換される。ITO膜224にはPウ
ェル212に対して負電圧が印加されており、発生した
電子はCr電極219とn+型多結晶シリコン膜220
とで構成される下部電極に流れこみ、蓄積ダイオード2
13に蓄積される。蓄積された電子は所定の蓄積時間の
後に、電極216aに正電圧パルスを印加することで垂
直CCDレジスタ(214)に転送され、次にこのCC
Dレジスタ中を紙面に垂直方向に出力部に向けて転送さ
れる。
In this device, light incident on the surface of the device is transmitted through the ITO film 224 and has high resistance amorphous Si:
The photoelectric conversion is performed by the H film 222. A negative voltage is applied to the ITO film 224 with respect to the P well 212, and the generated electrons are transferred to the Cr electrode 219 and the n + -type polycrystalline silicon film 220.
Flows into the lower electrode composed of
13 is stored. The stored electrons are transferred to the vertical CCD register (214) by applying a positive voltage pulse to the electrode 216a after a predetermined storage time, and then the CCs are transferred.
The data is transferred to the output section in the D register in a direction perpendicular to the page.

【0010】この第2の従来例では、光電変換を行なう
アモルファスSi:H膜222は数μmと厚く形成でき
るため、感度が高いという特徴がある。なお、i型アモ
ルファスSiC:H膜221は下部電極からの正孔注入
を防止するべく設けられ、P型アモルファスSiC:H
膜223は上部電極224からの電子注入を阻止するた
めに設けられる。これは、SiCのバンドギャップがS
iの1.1eVに比べ2.1eVと広いことを利用して
いる。
In the second conventional example, since the amorphous Si: H film 222 for performing photoelectric conversion can be formed as thick as several μm, there is a characteristic that the sensitivity is high. Note that the i-type amorphous SiC: H film 221 is provided to prevent holes from being injected from the lower electrode.
The film 223 is provided to prevent electron injection from the upper electrode 224. This is because the band gap of SiC is S
The advantage is that it is 2.1 eV, which is wider than 1.1 eV of i.

【0011】また第2の従来例では、固体撮像装置に入
射する光は十分減衰した後に垂直CCDレジスタ(21
4)に達するため、スミアの発生も少ないという特徴が
ある。しかしながら、構造が複雑で製造工程が多い上
に、光を遮断した暗状態で発生する電子が多く、S/N
が悪いという欠点があった。これに対して図8に示す従
来構造の固体撮像装置(第1の従来例)は、構造が比較
的簡単で製造工程も少なく暗状態で発生する電子も少な
くS/Nが良い特徴があることから、かかる構造で感度
を高める手法が望まれていた。
In the second conventional example, the light incident on the solid-state image pickup device is sufficiently attenuated and then the vertical CCD register (21) is turned off.
Since the method reaches 4), there is a feature that generation of smear is small. However, the structure is complicated and the number of manufacturing steps is large, and more electrons are generated in a dark state where light is blocked.
Was bad. On the other hand, the solid-state imaging device having the conventional structure shown in FIG. 8 (first conventional example) has a feature that the structure is relatively simple, the number of manufacturing steps is small, the number of electrons generated in the dark state is small, and the S / N is good. Therefore, there has been a demand for a method of increasing the sensitivity with such a structure.

【0012】本発明の目的は、第1の従来例より高感度
でスミアの発生が少なく第2の従来例より構造が簡単な
固体撮像装置を提供することにある。
An object of the present invention is to provide a solid-state imaging device having higher sensitivity and less generation of smear than the first conventional example and a simpler structure than the second conventional example.

【0013】[0013]

【課題を解決するための手段】本発明の固体撮像装置
は、複数のフォトダイオードを列状に配置した光電変換
素子列及び前記各フォトダイオードと結合する垂直レジ
スタを含む固体撮像装置において、前記フォトダイオー
ドが、第1の材料でなる単結晶半導体基板の表面部の第
1導電型領域の表面部に形成された第2導電型領域と
前記第2導電型領域より可視域における光吸収係数が
きい第2の材料からなり前記第2導電型領域に積層され
た第2導電型単結晶半導体層とを有しているというもの
である。
According to the present invention, there is provided a solid-state imaging device including a photoelectric conversion element array in which a plurality of photodiodes are arranged in a row and a vertical register coupled to each of the photodiodes. A second conductivity type region formed on the surface of the first conductivity type region on the surface of the single crystal semiconductor substrate made of the first material ;
Optical absorption coefficient large in the visible region than the second conductivity type region
And a second conductivity type single crystal semiconductor layer made of a second material and laminated on the second conductivity type region.

【0014】ここで、第2導電型単結晶半導体層を単結
晶半導体基板の表面に対して凸状に設けることができ
る。
Here, the second conductivity type single crystal semiconductor layer can be provided in a convex shape with respect to the surface of the single crystal semiconductor substrate.

【0015】又、第2導電型単結晶半導体層の凸部側面
に第1導電型拡散層を設けてもよい。
Further, a first conductivity type diffusion layer may be provided on the side face of the convex portion of the second conductivity type single crystal semiconductor layer.

【0016】更に又、第2導電型単結晶半導体層の凸部
表面に第1導電型拡散層を形成してもよい。
Further, a first conductivity type diffusion layer may be formed on the surface of the convex portion of the second conductivity type single crystal semiconductor layer.

【0017】以上において、第1の材料はSi、第2の
材料はGe、SiX Ge1-X (0<x<1)、GaA
s、GaP、InP、BP又はIn1-y Gay AsZ
1-Z(0≦y<1,0≦z<1)のいずれかとすること
ができる。単結晶半導体層を相なる第2の材料でなる
多層膜とすることもできる。又、第1の材料及び第2の
材料をいずれもSiとするときは、第2導電型単結晶半
導体層を前述のように凸状に設ける。
In the above, the first material is Si, the second material is Ge, Si x Ge 1 -x (0 <x <1), GaAs
s, GaP, InP, BP or In 1-y Ga y As Z P
1-Z (0 ≦ y <1, 0 ≦ z <1). It may be a multilayer film comprising a single crystal semiconductor layer of a second material phase Naru different. When both the first material and the second material are Si, the second conductivity type single crystal semiconductor layer is provided in a convex shape as described above.

【0018】第2の材料として光吸収係数の大きいもの
を用いるかもしくは第2の材料を凸状にすることによっ
てフォトダイオードの光電変換効率が大きくなる。
The photoelectric conversion efficiency of the photodiode is increased by using a material having a large light absorption coefficient as the second material or by making the second material convex.

【0019】[0019]

【発明の実施の形態】図1(a)は本発明の第1の実施
の形態を示す平面図、図(b)は図1(a)のX−X線
断面図である。
FIG. 1A is a plan view showing a first embodiment of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG. 1A.

【0020】この実施の形態は、複数のフォトダイオー
ド(図7の101)を列状に配置した光電変換素子列及
び各フォトダイオード101と結合する垂直CCDレジ
スタ102を含む固体撮像装置において、フォトダイオ
ード101が、第1の材料(シリコン)でなる単結晶半
導体基板の表面部のP型領域21の表面部に形成された
N型領域12と、N型領域12より可視域における光吸
収係数が大きな第2の材料からなりN型領域12に積層
された単結晶半導体層71とを有しているというもので
ある。第2の材料としては、Ge,Six Ge1-x (0
<x<1),GaAs,GaP,In1-y Gay Asz
1-z (0≦y<1,0≦x<1)などが挙げられる。
This embodiment is directed to a solid-state imaging device including a photoelectric conversion element array in which a plurality of photodiodes (101 in FIG. 7) are arranged in a row and a vertical CCD register 102 coupled to each photodiode 101. Reference numeral 101 denotes an N-type region 12 formed on the surface of the P-type region 21 on the surface of the single crystal semiconductor substrate made of the first material (silicon), and a light absorption coefficient in a visible region larger than that of the N-type region 12. And a single-crystal semiconductor layer 71 made of a second material and laminated on the N-type region 12. As the second material, Ge, Si x Ge 1- x (0
<X <1), GaAs, GaP, In 1-y Gay As z
P 1-z (0 ≦ y <1, 0 ≦ x <1) and the like.

【0021】かかる材料はその性質として光の吸収係数
が大きいことから、シリコンに比べ吸収深さが1/2〜
1/4に浅くできる。従って、0.1μm〜0.5μm
程度の厚さに設けることで、固体撮像装置に入射する光
を効率良く捕捉できる。このため可視光の特に赤色や緑
色光に対する感度が向上できる。さらに、フォトダイオ
ードの上層であるN型単結晶半導体層71で光が十分に
吸収されるため、フォトダイオードの下層であるシリコ
ン基板表面に設けられたN型領域12を透過する光強度
が低減するため、スミアも抑圧されるという効果があ
る。
Since such a material has a large light absorption coefficient as its property, its absorption depth is 1/2 to that of silicon.
Can be shallow to 1/4. Therefore, 0.1 μm to 0.5 μm
By providing such a thickness, light incident on the solid-state imaging device can be efficiently captured. For this reason, the sensitivity to visible light, particularly red and green light, can be improved. Further, since light is sufficiently absorbed by the N-type single crystal semiconductor layer 71 which is the upper layer of the photodiode, the intensity of light transmitted through the N-type region 12 provided on the surface of the silicon substrate which is the lower layer of the photodiode is reduced. Therefore, there is an effect that smear is suppressed.

【0022】N型単結晶半導体層71は、単結晶半導体
基板の表面部の凹部に設けられ、かつN型単結晶半導体
層71の表面は単結晶半導体基板の表面から突き出た凸
状をなしている。第2の材料の光吸収係数が第1の材料
(シリコン)より大きい場合は必ずしも凸状にしなくて
もよい。第2の材料をシリコンにしてもよいがその場合
は凸状にすれば、同様の効果を得ることができる。
The N-type single-crystal semiconductor layer 71 is provided in a concave portion on the surface of the single-crystal semiconductor substrate, and the surface of the N-type single-crystal semiconductor layer 71 has a convex shape protruding from the surface of the single-crystal semiconductor substrate. I have. When the light absorption coefficient of the second material is larger than that of the first material (silicon), the second material does not necessarily have to be convex. The second material may be silicon, but in that case, a similar effect can be obtained by making the second material convex.

【0023】次に第1の実施の形態の製造方法について
説明する。
Next, the manufacturing method of the first embodiment will be described.

【0024】まず図2(a)に示すように、N型シリコ
ン基板11の表面部にP型領域21(Pウェル)を形成
し、次にフォトダイオードの下層であるN型領域12、
およびP型領域22,N型領域13,分離のための高濃
度P型領域23,P型領域25をイオン打込み法など周
知の技術を用いて形成する。次に図2(b)に示すよう
に、酸化シリコンなどのゲート絶縁膜31を形成し、例
えば第1層目のポリシリコン膜でなる転送電極42,第
2層目のポリシリコン膜41でなる転送電極41を形成
する。転送電極42と41とは酸化シリコン膜などで絶
縁されているものとする。次に、イオン注入法を用いて
P型領域24を形成する。
First, as shown in FIG. 2A, a P-type region 21 (P-well) is formed on the surface of an N-type silicon substrate 11, and then an N-type region 12, which is a lower layer of the photodiode, is formed.
In addition, the P-type region 22, the N-type region 13, the high-concentration P-type region 23 for separation, and the P-type region 25 are formed by using a known technique such as an ion implantation method. Next, as shown in FIG. 2B, a gate insulating film 31 of silicon oxide or the like is formed, and is formed of, for example, a transfer electrode 42 made of a first polysilicon film and a second polysilicon film 41. The transfer electrode 41 is formed. The transfer electrodes 42 and 41 is assumed to be insulated with a silicon oxide film or the like. Next, a P-type region 24 is formed using an ion implantation method.

【0025】次に例えば熱酸化法により図2(c)に示
すように、転送電極41,42の表面に層間絶縁膜32
を設け、続いてタングステンなどの高融点金属膜50を
形成し、化学的気相成長法などにより酸化シリコンなど
の絶縁膜33を形成する。次に、フォトリソグラフィー
法により、絶縁膜33,高融点金属膜50,層間絶縁膜
32,ゲート絶縁膜31をエッチングして、図2(d)
に示すように開口52を形成する。高融点金属膜50は
遮光膜51となる。次に、図3(a)に示すように、全
面に酸化シリコン膜などの絶縁膜34を堆積し、異方性
エッチングを行なうことにより、図3(b)に示すよう
に開口52の側面にスペーサ34aを形成する。次に、
露出したP型領域24をエッチングしてN型領域12を
露出させることにより、図3(c)に示すよう、凹部8
0を形成する。次にこの凹部80に、図3(d)に示す
ように、N型単結晶半導体層71を形成する。次に、図
1に示すように絶縁膜35を形成する。
Next, as shown in FIG. 2C, an interlayer insulating film 32 is formed on the surfaces of the transfer electrodes 41 and 42 by, for example, a thermal oxidation method.
Then, a refractory metal film 50 such as tungsten is formed, and an insulating film 33 such as silicon oxide is formed by a chemical vapor deposition method or the like. Next, the insulating film 33, the high-melting-point metal film 50, the interlayer insulating film 32, and the gate insulating film 31 are etched by photolithography, and FIG.
An opening 52 is formed as shown in FIG. The high melting point metal film 50 becomes the light shielding film 51. Next, as shown in FIG. 3A, an insulating film 34 such as a silicon oxide film is deposited on the entire surface, and is subjected to anisotropic etching, so that the side surface of the opening 52 is formed as shown in FIG. The spacer 34a is formed. next,
By etching the exposed P-type region 24 to expose the N-type region 12, as shown in FIG.
0 is formed. Next, an N-type single-crystal semiconductor layer 71 is formed in the recess 80 as shown in FIG. Next, an insulating film 35 is formed as shown in FIG.

【0026】N型単結晶半導体層71として、GeやS
X Ge 1-X (例えばx=0.8)を成長させるには、
GeH4 やSiH4 −GeH4 混合ガスを用いて800
℃程度の温度でエピタキシャル成長させる。
As the N-type single crystal semiconductor layer 71, Ge or S
To grow i X Ge 1-X (for example, x = 0.8)
800 using GeH 4 or SiH 4 -GeH 4 mixed gas
The epitaxial growth is performed at a temperature of about ° C.

【0027】GaAsを結晶成長する場合には、700
℃程度の温度でGaCl5 とAsH3 のガスを用いるこ
とで気相エピタキシャル成長法によりシリコン上に結晶
成長できる。
In the case of growing GaAs crystal, 700
By using a gas of GaCl 5 and AsH 3 at a temperature of about ° C., a crystal can be grown on silicon by a vapor phase epitaxial growth method.

【0028】なお、シリコン上にGeやGaAsなどを
結晶成長する場合、格子定数がマッチングしないと単結
晶が得られない。
When Ge or GaAs is grown on silicon, a single crystal cannot be obtained unless the lattice constants match.

【0029】Siの格子定数0.543nmに対し、例
えばGeは0.565nm、GaAsは0.565nm
と近い値であり、0.1μm程度の厚さであれば単結晶
層の形成が可能である。これより厚い単結晶層を形成す
るには、例えばGe層を0.1μm程度形成した後にS
i層を0.1μm程度形成し、再びGe層を形成するこ
とを繰り返し行うことで、GeとSiの積層構造の単結
晶半導体膜とすることで厚い単結晶半導体層を形成でき
る。
For example, for a lattice constant of Si of 0.543 nm, Ge is 0.565 nm and GaAs is 0.565 nm.
And a thickness of about 0.1 μm allows a single crystal layer to be formed. To form a thicker single crystal layer, for example, after forming a Ge layer to a thickness of about 0.1 μm,
By repeatedly forming an i-layer of about 0.1 μm and forming a Ge layer again, a thick single-crystal semiconductor layer can be formed by forming a single-crystal semiconductor film having a stacked structure of Ge and Si.

【0030】単結晶半導体層としてGaAsを用いる場
合には、SiとGaAsとの積層構造膜としても良い
が、GaAs層上にGaPなどの他の材料からなる結晶
膜をエピタキシャル成長させた積層構造膜とすることも
でき、その選択は自由である。なお、GeとGaAsの
如き材料を積層した膜では、接合部でバンドの不連続が
発生するため、材料の組合せを考慮する必要がある。S
iとGaAsの組合せの場合には電子に対してはバンド
の不連続は発生せず、好ましい組合せである。
When GaAs is used as the single crystal semiconductor layer, a laminated structure film of Si and GaAs may be used. However, a laminated structure film obtained by epitaxially growing a crystal film made of another material such as GaP on the GaAs layer may be used. You can do that, and you are free to choose. Note that, in a film in which materials such as Ge and GaAs are stacked, band discontinuity occurs at a junction, and therefore, it is necessary to consider a combination of materials. S
In the case of the combination of i and GaAs, band discontinuity does not occur for electrons, which is a preferable combination.

【0031】図4は本発明の第2の実施の形態の単位画
素部を示す断面図である。図に於て、図1と同記号は同
じ機能を有するものであり、36はボロンを高濃度に含
む酸化シリコン膜(BSG膜)、37は酸化シリコンな
どの絶縁膜、72はP型拡散層、91はITOなどの透
明電極である。本実施の形態では、N型単結晶半導体層
71の側壁部で絶縁膜(36)と接する部分がP型に形
成されており、これにより結晶と絶縁膜との界面で発生
する電流(暗電流)を約1桁低減できる。またN型単結
晶半導体層71の上部には絶縁膜37を介して透明電極
91が設けられており、P型領域21に対して透明電極
に負電圧を加えN型単結晶半導体層71の表面に正孔が
発生する状態に設定することで、N型単結晶半導体層7
1と絶縁膜37との界面より発生する電流を低減でき
る。
FIG. 4 is a sectional view showing a unit pixel portion according to a second embodiment of the present invention. In the figure, the same symbols as those in FIG. 1 have the same functions, 36 is a silicon oxide film (BSG film) containing boron at a high concentration, 37 is an insulating film such as silicon oxide, and 72 is a P-type diffusion layer. , 91 are transparent electrodes such as ITO. In the present embodiment, the portion in contact with the insulating film (36) at the side wall portion of the N-type single crystal semiconductor layer 71 is formed as a P-type, so that the current (dark current) generated at the interface between the crystal and the insulating film is formed. ) Can be reduced by about one digit. A transparent electrode 91 is provided above the N-type single-crystal semiconductor layer 71 with an insulating film 37 interposed therebetween. Is set to a state where holes are generated in the N-type single crystal semiconductor layer 7.
The current generated from the interface between the semiconductor device 1 and the insulating film 37 can be reduced.

【0032】N型単結晶半導体層71の側壁部をP型化
する方法としては、例えば図3(b)に示すように、ス
ペーサ34aを形成した後BSG膜を全面に設け、続い
てこれを異方性ドライエッチングを行うことで開口部側
壁にBSG膜36を残せばよい。この後に、開孔部の高
濃度P型不純物層24が除去され、図3(c)と類似の
構造が形成される。次に、N型単結晶半導体層71がエ
ピタキシャル成長され、この後に熱処理を行なうことで
BSG膜に含まれるボロンがN型単結晶半導体層71に
固相拡散し、P型拡散層72が形成される。
As a method for converting the side wall of the N-type single crystal semiconductor layer 71 to P-type, for example, as shown in FIG. 3B, after forming a spacer 34a, a BSG film is provided on the entire surface, and then this is formed. The BSG film 36 may be left on the side wall of the opening by performing anisotropic dry etching. Thereafter, the high-concentration P-type impurity layer 24 in the opening is removed, and a structure similar to that of FIG. 3C is formed. Next, an N-type single-crystal semiconductor layer 71 is epitaxially grown, and by performing a heat treatment thereafter, boron contained in the BSG film is solid-phase diffused into the N-type single-crystal semiconductor layer 71 to form a P-type diffusion layer 72. .

【0033】図5は本発明の第3の実施の形態の単位画
素部の断面構造を示す。図に於て、図1と同記号は同じ
機能を有するものを示す。本実施の形態に於ては、N型
単結晶半導体層71の側壁部に加えて上部にもP型拡散
層73が形成される。従って、N型単結晶半導体層の絶
縁膜と接する部分は側壁・上部ともすべてP型となって
おり、結晶と絶縁膜との界面より発生する電流を低減で
きる。かかる構造は、図4における絶縁膜37としてB
SG膜38を用いることで形成できる。本構造では、第
2の実施の形態で用いた透明電極91と負電圧の印加が
不要となる利点がある。
FIG. 5 shows a sectional structure of a unit pixel portion according to a third embodiment of the present invention. In the drawing, the same symbols as those in FIG. 1 have the same functions. In the present embodiment, P-type diffusion layer 73 is formed not only on the side wall of N-type single-crystal semiconductor layer 71 but also on the upper part. Therefore, the portion of the N-type single-crystal semiconductor layer in contact with the insulating film is P-type on both the side wall and the upper portion, and the current generated from the interface between the crystal and the insulating film can be reduced. Such a structure is similar to that shown in FIG.
It can be formed by using the SG film 38. This structure has an advantage that the transparent electrode 91 used in the second embodiment and the application of a negative voltage are not required.

【0034】図6は本発明の第4の実施の形態の単位画
素部の断面構造を示す。図に於て、図1と同記号は同じ
機能を有するものを示し、41bはWやMoやTiなど
の金属とシリコンとの化合物(シリサイド)よりなる電
極である。
FIG. 6 shows a sectional structure of a unit pixel portion according to a fourth embodiment of the present invention. In the figure, the same symbols as those in FIG. 1 indicate the same functions, and reference numeral 41b denotes an electrode made of a compound (silicide) of a metal such as W, Mo or Ti and silicon.

【0035】本実施の形態では、転送電極(図1の4
1,42)がポリシリコン膜41aとシリサイド膜41
bの積層膜より構成され、シリサイド電極は図1におけ
る遮光膜51の機能を兼ねることで装置の構造を単純化
できる利点を持つ。この場合、図1の場合のように転送
電極41が42と部分的にオーバラップする構造をとる
必要はなく、同一層次の積層膜パターンを0.2μm程
度の間隔で分離して配置するようにしてもよい。これは
微細加工技術で可能である。その場合、積層膜ではなく
てタングステン膜のみで転送電極を形成することもでき
る。また、分離用の高濃度P型領域23は、前述の間隔
部以外の部分でタングステン膜に完全に覆われるような
パターンに設計すればよい。
In this embodiment, the transfer electrodes (4 in FIG. 1)
1, 42) are a polysilicon film 41a and a silicide film 41.
The silicide electrode has the advantage that the structure of the device can be simplified by also having the function of the light shielding film 51 in FIG. In this case, it is not necessary to adopt a structure in which the transfer electrode 41 partially overlaps with the transfer electrode 42 as in the case of FIG. 1, and the stacked film patterns of the same layer are separated and arranged at intervals of about 0.2 μm. You may. This is possible with microfabrication technology. In that case, the transfer electrode can be formed only of the tungsten film instead of the stacked film. In addition, the high-concentration P-type region 23 for isolation may be designed in a pattern such that the tungsten film is completely covered in a portion other than the above-mentioned interval portion.

【0036】[0036]

【発明の効果】以上説明したように本発明の固体撮像装
置は、単結晶半導体基板の表面部に可視域における光吸
収係数が単結晶半導体基板よりも大きい第2導電型単結
晶半導体層を選択成長してフォトダイオードを構成する
ことにより、可視光の特に赤色や緑色光に対する感度が
向上できる。さらに、光電変換部の上層の第2導電型単
結晶半導体層で光が十分に吸収されるため、下層にある
第1導電型領域に入射する光の強度が低下するため、ス
ミアも抑圧されるという効果もある。また絶縁膜に接す
る単結晶半導体層の表面を第1導電型拡散層を設けるこ
とで、暗時の発生電流を図8に示した従来構造装置と同
等に少なくでき、高いS/N値を得ることができる。
As described above, in the solid-state imaging device according to the present invention, the second conductivity type single crystal semiconductor layer having a larger light absorption coefficient in the visible region than the single crystal semiconductor substrate is selected on the surface of the single crystal semiconductor substrate. By forming the photodiode by growing it, the sensitivity to visible light, particularly red and green light, can be improved. Further, since the light is sufficiently absorbed by the second conductive type single crystal semiconductor layer in the upper layer of the photoelectric conversion portion, the intensity of light incident on the first conductive type region in the lower layer is reduced, so that smear is also suppressed. There is also an effect. Further, by providing the first conductivity type diffusion layer on the surface of the single crystal semiconductor layer in contact with the insulating film, the generated current in the dark can be reduced as much as the conventional structure device shown in FIG. 8 and a high S / N value is obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の画素部を示す平面
図(図1(a))及び図1(a)のX−X線断面図であ
る。
FIG. 1 is a plan view (FIG. 1A) showing a pixel portion according to a first embodiment of the present invention, and a cross-sectional view taken along line XX of FIG. 1A.

【図2】第1の実施の形態の製造方法について説明する
ための(a)〜(d)に分図して示す工程順断面図であ
る。
FIGS. 2A to 2D are cross-sectional views illustrating the manufacturing method according to the first embodiment in the order of steps shown in FIGS.

【図3】図2に続いて(a)〜(d)に分図して示す工
程順断面図である。
FIG. 3 is a cross-sectional view in the order of steps, which is separated from (a) to (d) following FIG. 2;

【図4】本発明の第2の実施の形態の画素部を示す断面
図である。
FIG. 4 is a cross-sectional view illustrating a pixel unit according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態の画素部を示す断面
図である。
FIG. 5 is a cross-sectional view illustrating a pixel unit according to a third embodiment of the present invention.

【図6】本発明の第4の実施の形態の画素部を示す断面
図である。
FIG. 6 is a cross-sectional view illustrating a pixel unit according to a fourth embodiment of the present invention.

【図7】固体撮像装置の全体構造を説明するための平面
図である。
FIG. 7 is a plan view for explaining the overall structure of the solid-state imaging device.

【図8】第1の従来例の画素部を示す平面図(図8
(a))及び図8(a)のX−X線断面図(図8
(b))である。
8 is a plan view showing a pixel portion of a first conventional example (FIG.
(A)) and a sectional view taken along line XX of FIG.
(B)).

【図9】第2の従来例の画画素部を示す断面図である。FIG. 9 is a cross-sectional view showing an image pixel section of a second conventional example.

【符号の説明】[Explanation of symbols]

11 N型半導体基板 21,22,23,24,25 P型領域 31,32,33,34,35,36,37,38
絶縁膜 34a スペーサ 41,42 転送電極 41a ポリシリコン膜 41b シリサイド膜 51 遮光膜 52 遮光膜の開口部 61,62 光路 71 N型単結晶半導体層 72,73 P型拡散層 80 凹部 101 フォトダイオード 102 垂直CCDレジスタ 103 水平CCDレジスタ 104 電荷検出部 105 増幅器 211 P+ 型シリコン基板 212 Pウェル 213 N+ 型領域 214 N+ 型領域 215 P+ 型領域 216a,216b 転送電極 217 N+ 型多結晶シリコン電極 218 絶縁膜 219 Cr電極 220 N+ 型多結晶シリコン電極 221 i型アモルファスSiC:H膜 222 高抵抗アモルファスSi:H膜 223 透明電極
11 N-type semiconductor substrate 21, 22, 23, 24, 25 P-type region 31, 32, 33, 34, 35, 36, 37, 38
Insulating film 34a Spacer 41, 42 Transfer electrode 41a Polysilicon film 41b Silicide film 51 Light shielding film 52 Opening of light shielding film 61, 62 Optical path 71 N type single crystal semiconductor layer 72, 73 P type diffusion layer 80 Depression 101 Photo diode 102 Vertical CCD register 103 Horizontal CCD register 104 Charge detector 105 Amplifier 211 P + type silicon substrate 212 P well 213 N + type region 214 N + type region 215 P + type region 216 a, 216 b Transfer electrode 217 N + type polycrystalline silicon electrode 218 Insulating film 219 Cr electrode 220 N + -type polycrystalline silicon electrode 221 i-type amorphous SiC: H film 222 High-resistance amorphous Si: H film 223 Transparent electrode

フロントページの続き (56)参考文献 特開 昭58−12481(JP,A) 特開 平2−140976(JP,A) 特開 平3−25975(JP,A) 特開 平4−113674(JP,A) 特開 平5−347399(JP,A) 特開 平9−172155(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/14 - 27/148 H01L 29/762 - 29/768 H04N 5/335 Continuation of front page (56) References JP-A-58-12481 (JP, A) JP-A-2-14076 (JP, A) JP-A-3-25975 (JP, A) JP-A-4-113674 (JP) JP-A-5-347399 (JP, A) JP-A-9-172155 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 27/14-27/148 H01L 29/762-29/768 H04N 5/335

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のフォトダイオードを列状に配置し
た光電変換素子列及び前記各フォトダイオードと結合す
る垂直レジスタを含む固体撮像装置において、前記フォ
トダイオードが、第1の材料でなる単結晶半導体基板の
表面部の第1導電型領域の表面部に形成された第2導電
型領域と前記第2導電型領域より可視域における光吸
収係数が大きい第2の材料からなり前記第2導電型領域
に積層された第2導電型単結晶半導体層とを有している
ことを特徴とする固体撮像装置。
1. A solid-state imaging device including a photoelectric conversion element row in which a plurality of photodiodes are arranged in a row and a vertical register coupled to each of the photodiodes, wherein the photodiode is a single crystal semiconductor made of a first material. a second conductivity type region formed in a surface portion of the first conductivity type region of the surface portion of the substrate, made of a second material the optical absorption coefficient is large in the visible region than the second conductivity type region and the second conductivity type And a second conductivity type single crystal semiconductor layer stacked in the region.
【請求項2】 第2導電型単結晶半導体層が単結晶半導
体基板の表面に対して凸状に設けられている請求項1記
載の固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein the second conductivity type single crystal semiconductor layer is provided in a convex shape with respect to a surface of the single crystal semiconductor substrate.
【請求項3】 第2導電型単結晶半導体層の凸部側面に
第1導電型拡散層が設けられている請求項1又は2記載
の固体撮像装置。
3. The solid-state imaging device according to claim 1, wherein a first conductivity type diffusion layer is provided on a side surface of the convex portion of the second conductivity type single crystal semiconductor layer.
【請求項4】 第2導電型単結晶半導体層の凸部表面に
第1導電型拡散層が形成される請求項3記載の固体撮像
装置。
4. The method according to claim 1, wherein the second conductive type single crystal semiconductor layer has
The solid-state imaging device according to claim 3, wherein a first conductivity type diffusion layer is formed.
【請求項5】 第1の材料がSi、第2の材料がGe、
SiX Ge1-X(0<x<1)、GaAs、GaP、I
nP、BP又はIn1-y Gay AsZ1-Z(0≦y<
1,0≦z<1)のいずれかである請求項1乃至4記載
の固体撮像装置。
5. The first material is Si, the second material is Ge,
Si x Ge 1-x (0 <x <1), GaAs, GaP, I
nP, BP or In 1-y Ga y As Z P 1-Z (0 ≦ y <
The solid-state imaging device according to claim 1, wherein any one of 1, 0 ≦ z <1) is satisfied.
【請求項6】 単結晶半導体層が相異なる第2の材料で
なる多層膜である請求項1乃至5記載の固体撮像装置。
6. The solid-state imaging device according to claim 1, wherein the single crystal semiconductor layer is a multilayer film made of different second materials.
JP8014069A 1996-01-30 1996-01-30 Solid-state imaging device Expired - Fee Related JP2959460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014069A JP2959460B2 (en) 1996-01-30 1996-01-30 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014069A JP2959460B2 (en) 1996-01-30 1996-01-30 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH09213923A JPH09213923A (en) 1997-08-15
JP2959460B2 true JP2959460B2 (en) 1999-10-06

Family

ID=11850823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014069A Expired - Fee Related JP2959460B2 (en) 1996-01-30 1996-01-30 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2959460B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790208B1 (en) * 2001-06-28 2008-01-02 매그나칩 반도체 유한회사 Fabricating method of Image sensor
KR100694470B1 (en) * 2005-07-11 2007-03-12 매그나칩 반도체 유한회사 Method for fabricating image sensor
KR100657143B1 (en) * 2005-07-11 2006-12-13 매그나칩 반도체 유한회사 Image sensor, and method for fabricating the same
JP5400280B2 (en) 2007-06-07 2014-01-29 パナソニック株式会社 Solid-state imaging device
JP5428479B2 (en) * 2009-04-13 2014-02-26 ソニー株式会社 Solid-state imaging device manufacturing method, solid-state imaging device, and electronic apparatus
JP5509962B2 (en) * 2010-03-19 2014-06-04 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US9761628B2 (en) 2013-12-13 2017-09-12 Sony Corporation Imaging element and imaging device
DE112017006908T5 (en) * 2017-01-24 2019-10-02 Sony Semiconductor Solutions Corporation LIGHT RECEPTACTION ELEMENT, METHOD FOR PRODUCING A LIGHT RECEPTACLE ELEMENT, IMAGING ELEMENT AND ELECTRONIC DEVICE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812481A (en) * 1981-07-15 1983-01-24 Toshiba Corp Solidstate image pickup element

Also Published As

Publication number Publication date
JPH09213923A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US6649951B2 (en) Light-receiving element and photoelectric conversion device
US8466499B2 (en) Solid-state image pickup device
JP4742057B2 (en) Back-illuminated solid-state image sensor
JP2004193547A (en) Solid-state image sensing device and camera system using the same
JPH07115184A (en) Layer-built solid-state image pickup device and its manufacture
US11205668B2 (en) Light receiving device, method of manufacturing light receiving device, imaging device, and electronic apparatus
US4665422A (en) Solid state image sensing device
US8665363B2 (en) Solid-state image device, method for producing the same, and image pickup apparatus
JP5962155B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2959460B2 (en) Solid-state imaging device
JPH05267695A (en) Infrared image sensing device
JPH11274461A (en) Solid image pickup device and its manufacture
JPH0513748A (en) Solid-state image pickup element
JPH06151808A (en) Charge transfer device and solid-state image sensing element
KR101002122B1 (en) Image Sensor and Method for Manufacturing thereof
TWI416716B (en) Solid-state image device, method for producing the same, and image pickup apparatus
JP3695748B2 (en) Solid-state imaging device, manufacturing method and driving method thereof
JPH0828493B2 (en) Light detector
JPH0430192B2 (en)
JP4247235B2 (en) Solid-state imaging device and driving method thereof
CN114078889A (en) Global shutter CMOS image sensor and method of manufacturing the same
KR100326267B1 (en) Image sensor and method for fabricating the same
JP2795241B2 (en) Solid-state imaging device and method of manufacturing the same
JPS61187267A (en) Solid-state image pickup device
Chikamura et al. A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990629

LAPS Cancellation because of no payment of annual fees