JPH0430192B2 - - Google Patents

Info

Publication number
JPH0430192B2
JPH0430192B2 JP58052730A JP5273083A JPH0430192B2 JP H0430192 B2 JPH0430192 B2 JP H0430192B2 JP 58052730 A JP58052730 A JP 58052730A JP 5273083 A JP5273083 A JP 5273083A JP H0430192 B2 JPH0430192 B2 JP H0430192B2
Authority
JP
Japan
Prior art keywords
solid
storage diode
electrode
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58052730A
Other languages
Japanese (ja)
Other versions
JPS59178769A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58052730A priority Critical patent/JPS59178769A/en
Publication of JPS59178769A publication Critical patent/JPS59178769A/en
Publication of JPH0430192B2 publication Critical patent/JPH0430192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は光導電体と電荷転送素子あるいは光
導電体と固体のスイツチング走査素子を組み合わ
せた固体撮像素子に係り、特に残像特性を改善し
た固体撮像素子に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a solid-state imaging device that combines a photoconductor and a charge transfer device or a photoconductor and a solid-state switching scanning device, and particularly relates to a solid-state imaging device that has improved afterimage characteristics. Regarding an image sensor.

〔従来技術とその問題点〕[Prior art and its problems]

固体撮像素子の進展は目覚ましくSi基板に光電
変換部と走査部を形成するモノリシツク型固体撮
像素子の他に、前記両部の機能を分けてSi基板に
CCDやMOSなどの走査部を形成し、その上部に
光導電層などの光電変換部を重畳するいわゆる
“2階建て固体撮像素子”が出現するようになつ
た。
The development of solid-state image sensors has been remarkable, and in addition to monolithic solid-state image sensors that form a photoelectric conversion section and a scanning section on a Si substrate, there are also monolithic solid-state image sensors that form a photoelectric conversion section and a scanning section on a Si substrate.
So-called "two-story solid-state image sensors" have begun to appear, which have a scanning section such as a CCD or MOS, and overlay a photoelectric conversion section such as a photoconductive layer on top of the scanning section.

第1図は光導電体と電荷転送素子を組み合わせ
た固体撮像素子の一画素の断面図である。P形Si
基板1にn+の埋め込みチヤネルCCDからなる垂
直CCD2と、同じくn+の蓄積ダイオード3が形
成される。垂直CCD2の上には転送用ゲート電
極となるポリSi電極4がある。蓄積ダイオード3
の部分では熱酸化膜を含む第一酸化膜5にエツチ
ングを行ない、蓄積ダイオードのn+部が露出す
るように形成した後、例えばAlなどの第一電極
6を所定の形状に形成する。この後に第二酸化膜
7を形成し、さらにこの膜にエツチングを行な
い、第一電極は一部を露出させ、これにAlなど
の第二電極8を所定の形状に形成する。この上部
にa−Siなどの光導電体層9をスパツタリングや
グロー放電で形成し、さらに透明導電膜10を形
成して、走査部と光電交換部を有する固体撮像素
子を得る。
FIG. 1 is a cross-sectional view of one pixel of a solid-state imaging device that combines a photoconductor and a charge transfer device. P type Si
A vertical CCD 2 consisting of an n + buried channel CCD and a storage diode 3 which is also n + are formed on the substrate 1 . Above the vertical CCD 2 is a poly-Si electrode 4 that serves as a transfer gate electrode. Storage diode 3
After etching the first oxide film 5 including the thermal oxide film to expose the n + part of the storage diode, a first electrode 6 made of, for example, Al is formed in a predetermined shape. Thereafter, a second oxide film 7 is formed, and this film is further etched to expose a portion of the first electrode, and a second electrode 8 made of Al or the like is formed thereon in a predetermined shape. A photoconductor layer 9 such as a-Si is formed on top of this by sputtering or glow discharge, and a transparent conductive film 10 is further formed to obtain a solid-state image sensor having a scanning section and a photoelectric exchange section.

なお、電極の材料が第一層はポリSi、第二層は
モリブデンの例でほぼ同様の構成が特開昭57−
32183号公報に記載されている。
In addition, almost the same structure was disclosed in Japanese Patent Application Laid-Open No. 1983-1983, in which the electrode material is poly-Si for the first layer and molybdenum for the second layer.
It is described in Publication No. 32183.

このような固体撮像素子において、a−Siなど
の光導電体層9にて光生成されたキヤリアのう
ち、正孔は透明導電膜10側へ電子は蓄積ダイオ
ード3に信号電荷として蓄積される。これらの蓄
積された信号電荷は1/60秒又は1/30秒後にポリSi
電極4の一部に印加されたパルスにより蓄積ダイ
オード3から垂直CCD2に転送される。この後
垂直CCDを転送された信号電荷は水平CCDレジ
スタ(図示せず)に入り水平転送後、信号出力と
して読み出される。
In such a solid-state imaging device, among carriers photo-generated in the photoconductor layer 9 such as a-Si, holes are stored on the transparent conductive film 10 side, and electrons are stored on the storage diode 3 as signal charges. These accumulated signal charges are transferred to polySi after 1/60 seconds or 1/30 seconds.
A pulse applied to a part of the electrode 4 causes the signal to be transferred from the storage diode 3 to the vertical CCD 2 . Thereafter, the signal charge transferred to the vertical CCD enters a horizontal CCD register (not shown) and is read out as a signal output after horizontal transfer.

このような固体撮像素子は従来のSiモノリシツ
クの素子に比べて、感光面積が大きくなる利点や
スミアやブルーミング特性が良好という利点があ
る反面、残像特性が問題となる場合がある。残像
の原因はa−Siなどの光電変換膜の光応答遅れに
起因するものもあるが、蓄積ダイオードから垂直
CCDへの信号電荷の転送の際に全部の電荷が転
送されずに残るためである。転送が不完全なため
に起こる残像は第1図の固体撮像素子のみなら
ず、走査部に相当する従来のインターライン転送
形固体撮像素子でも問題となる事が知られてお
り、“インターライン転送方式CCDイメージセン
サーの残像現象”(寺西信一ほか、テレビジヨン
学会技術報告Vol.4.No.41pp25〜30)や“No
ImageLag Photodiodes Strveture in the
Interline CCD Image Sensor”(Nobukaqu
Teranishi etal IEDM82 12.6)に示されている。
Although such solid-state imaging devices have the advantage of having a larger photosensitive area and better smear and blooming characteristics than conventional Si monolithic devices, they may have problems with image retention characteristics. Some of the causes of afterimages are due to delayed photoresponse of photoelectric conversion films such as a-Si, but the
This is because when signal charges are transferred to the CCD, not all charges are transferred and remain. It is known that image retention caused by incomplete transfer is a problem not only in the solid-state image sensor shown in Figure 1, but also in conventional interline transfer type solid-state image sensors corresponding to the scanning section. "Afterimage phenomenon of CCD image sensors" (Shinichi Teranishi et al., Technical Report of the Television Society Vol.4.No.41pp25-30) and "No.
ImageLag Photodiodes Strveture in the
Interline CCD Image Sensor” (Nobukaqu
Teranishi etal IEDM82 12.6).

すなわち第2図に示すような第1図の蓄積ダイ
オードの構成と同様のN+P接合のホト・ダイオ
ード11を持つインターライン転送形CCDでは
不完全転送モードとなり残像が出やすいのに対し
て、第3図に示すP+NP-構造のホト・ダイオー
ド12では完全空乏の状態を実現して完全転送モ
ードとなり、残像が除去できる。
In other words, an interline transfer type CCD having an N + P junction photodiode 11 similar to the storage diode configuration shown in FIG. 1 as shown in FIG. 2 is in an incomplete transfer mode and tends to cause afterimages. The P + NP - structure photodiode 12 shown in FIG. 3 achieves a completely depleted state and enters a complete transfer mode, making it possible to eliminate afterimages.

第1図の構成の固体撮像素子ではN+P接合の
蓄積ダイオードが構成されているため、不完全転
送モードになるが、さらにN+P接合の静電容量
のみならず、a−Si光導電膜の静電容量が加わ
り、残像を遅くする原因にもなる。したがつて、
光導電体層と組み合わせた場合の蓄積ダイオード
でも完全転送となるような構成が望ましく前述の
残像を除去できるP+NP-構造の蓄積ダイオード
の採用が望ましい。しかし、第1図に見えるよう
にN+Pの蓄積ダイオードには電子が電極6を通
して流れ込むようになつており、P+NP-構成で
は電極6と接触するのはP+領域のため光励起さ
れた電子がP+領域を乗り越えてN領域に入る事
が出来ず、動作しない事になる。
In the solid-state image sensor with the configuration shown in Figure 1, an N + P junction storage diode is configured, resulting in an incomplete transfer mode . The electrostatic capacitance of the film is added, which also causes a delay in afterimage formation. Therefore,
It is desirable that the storage diode in combination with the photoconductor layer has a configuration that allows perfect transfer, and it is desirable to use a storage diode with a P + NP - structure that can eliminate the above-mentioned afterimage. However, as shown in Figure 1, electrons flow into the N + P storage diode through the electrode 6, and in the P + NP - configuration, the P + region that contacts the electrode 6 is photoexcited. Electrons cannot cross the P + region and enter the N region, resulting in no operation.

〔発明の目的〕 この発明は残像の少ない光導電体と固体のスイ
ツチング素子とを組み合わせた固体撮像装置を提
供する事を目的とする。
[Object of the Invention] An object of the present invention is to provide a solid-state imaging device that combines a photoconductor and a solid-state switching element with less afterimage.

〔発明の概要〕[Summary of the invention]

この発明は光導電体などの光電変換部からのキ
ヤリアの流入口を固体のスイツチング素子の蓄積
ダイオード部に設けると共に蓄積ダイオードの大
部分が完全転送の状態になるように固体走査部を
構成した固体撮像装置である。
This invention provides a solid-state scanning section in which an inlet for carriers from a photoelectric conversion section such as a photoconductor is provided in a storage diode section of a solid-state switching element, and a solid-state scanning section is configured such that most of the storage diode is in a complete transfer state. It is an imaging device.

〔発明の効果〕〔Effect of the invention〕

この発明により、残像の少ない固体撮像素子が
得られ、低照度の被写体の撮像が可能となる。ま
た光電変換層がSiの固体走査部の上部にあつて、
入射光がSi基板に到達せず、光電変換層内で吸収
されるので、従来Si基板内で発生したキヤリヤに
よるスミアやクロストークの為信号が無い良質の
画像を再生する固体撮像装置が得られる。
According to the present invention, a solid-state image sensor with less afterimage can be obtained, and it is possible to image a subject under low illumination. In addition, the photoelectric conversion layer is located on the top of the Si solid-state scanning section,
Since the incident light does not reach the Si substrate and is absorbed within the photoelectric conversion layer, it is possible to obtain a solid-state imaging device that reproduces high-quality images without signals due to smear and crosstalk caused by carriers that conventionally occur within the Si substrate. .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第4図は本発明の一実施例を示す。蓄積ダイオ
ード部を除いて、第1図とほゞ同じ構成となつて
いる。蓄積ダイオード部15の構成を図に示すよ
うにP-Si基板1に対してn領域13を形成し、
さらにP+領域14を薄く表面に形成する。この
P+領域は全面に形成せず、一部を残して形成し
ておく。さらに、Alなどの第一電極6がn領域
に接触するように所定の形状に形成する。その後
の形成方法は第1図と同じような手順で行なう。
FIG. 4 shows an embodiment of the present invention. The structure is almost the same as that in FIG. 1 except for the storage diode section. As shown in the figure, the structure of the storage diode section 15 is as follows: an n region 13 is formed on the P - Si substrate 1;
Furthermore, a thin P + region 14 is formed on the surface. this
The P + region is not formed over the entire surface, but is formed with a portion left. Furthermore, a first electrode 6 made of Al or the like is formed into a predetermined shape so as to be in contact with the n region. The subsequent formation method is similar to that shown in FIG.

蓄積ダイオード部を実施例に示したような構成
とすると、a−Siなどの光導電膜9にて発生した
キヤリアのうち電子が、電界により第二電極8に
捕えられ、第一電極9を通つて、蓄積ダイオード
15へ運ばれるが、P+領域14の一部が切れて、
n領域13への流入口となつているため、信号電
荷が容易に蓄積ダイオード15に蓄積できる。さ
らに、従来のN+PやN+P-の構成において心配さ
れる垂直CCD部への不完全転送が減少し、
P+NP-蓄積ダイオード部、不完全転送の条件を
満足して残像現象が改善される。
When the storage diode section is configured as shown in the embodiment, electrons among carriers generated in the photoconductive film 9 such as a-Si are captured by the second electrode 8 due to the electric field and passed through the first electrode 9. Then, it is transferred to the storage diode 15, but a part of the P + region 14 is cut off,
Since it serves as an inlet to the n-region 13, signal charges can be easily accumulated in the storage diode 15. Furthermore, incomplete transfer to the vertical CCD section, which is a concern in conventional N + P and N + P- configurations, is reduced.
P + NP - storage diode part, satisfies the condition of incomplete transfer and improves the afterimage phenomenon.

蓄積ダイオードの大部分の面積において、完全
転送モードとなるようにダイオードの空乏化した
時の電位がポリSi電極4で決まる転送ゲートの電
位より少くとも300mV程度高くなれば良く、P+
領域がこの役目を果す。信号電荷である電子の流
入はn領域から行なわれるが、この領域は電極と
の接触が、可能であれば出来るだけ小さい事が望
ましい。なお、P+NP-の構成では本来の意味の
ダイオードからはずれるが、機能としてNP-
ダイオードが主として働らくのでP+NP-も蓄積
ダイオードと呼ぶことにする。
In most areas of the storage diode, the potential when the diode is depleted should be at least about 300 mV higher than the potential of the transfer gate determined by the poly-Si electrode 4, so that the complete transfer mode is achieved.
The realm fulfills this role. Electrons, which are signal charges, flow in from the n region, and it is desirable that the contact with the electrode in this region be as small as possible. Although the P + NP - configuration deviates from the original meaning of a diode, since the NP - diode primarily functions, P + NP - will also be called a storage diode.

〔他の実施例〕[Other Examples]

第5図に本発明の他の実施例を示す。前述の実
施例と同じく蓄積ダイオード17の構成が従来例
と異なる。
FIG. 5 shows another embodiment of the invention. As in the previous embodiment, the configuration of the storage diode 17 is different from the conventional example.

蓄積ダイオードの大部分が完全転送の状態とな
るようにP-NP+構成をする点は第4図の実施例
と同じであるが、信号電荷である電子が流入する
場所をn+領域16として蓄積ダイオード17を
構成した例である。電子の流入はAlの第一電極
6からn領域13へなされるがn+領域16の存
在により電極との電気的接触が良好となり、電子
がより簡単に流入出来るようになる。図示の実施
例の構成ではp+領域を蓄積ダイオードの全面に
形成しておいた後にn+領域を形成する。図では
n+領域とp+領域の深さを同じにしてあるが、こ
れに限る事は無い。
It is the same as the embodiment shown in Fig. 4 in that the P - NP + configuration is adopted so that most of the storage diode is in a complete transfer state, but the place where electrons, which are signal charges, flow is set as the n + region 16. This is an example in which a storage diode 17 is configured. Electrons flow from the Al first electrode 6 to the n region 13, and the presence of the n + region 16 provides good electrical contact with the electrode, allowing electrons to flow more easily. In the configuration of the illustrated embodiment, the n + region is formed after the p + region is formed over the entire surface of the storage diode. In the diagram
Although the depth of the n + region and the p + region are the same, the depth is not limited to this.

上記実施例では、信号電荷の流入する電極が第
一の電極と第二の電極に分かれている例について
説明したが、これに限らず単一の電極でも良い事
は勿論である。また電極の接触部分はnまたは
n+領域より小さいかあるいは等しい例を図示し
たがこれに限らず電極の接触部分がp+領域に延
びていても良い。nやn+領域とさえ接触してい
ればその部分を通して信号電荷が流入出来るの
で、流入が難かしいp+領域に接触しいても構わ
ない。
In the above embodiment, an example has been described in which the electrode into which signal charges flow is divided into a first electrode and a second electrode, but the present invention is not limited to this, and it goes without saying that a single electrode may be used. Also, the contact part of the electrode is n or
Although an example is shown in which the area is smaller than or equal to the n + area, the contact portion of the electrode may extend to the p + area. As long as it is in contact with the n or n + region, signal charges can flow through that part, so it does not matter if it contacts the p + region, which is difficult to inflow.

また実施例では信号電荷として転送するキヤリ
アを電子として説明したが、キヤリアが正孔の場
合にはp型とn型をすべて逆にすれば良い事は明
らかである。
Further, in the embodiment, the carriers transferred as signal charges are explained as electrons, but it is clear that if the carriers are holes, all p-type and n-type should be reversed.

また、光電変換部は光導電形のみならず、光起
電力形でも良い事は勿論である。
Furthermore, it goes without saying that the photoelectric conversion section may be of not only a photoconductive type but also a photovoltaic type.

いずれにしろ光電変換部からの信号電荷を垂直
CCDへ転送するまでの間に存在する蓄積部分の
ダイオード構成が単なるPN形式で無く、転送が
完全転送モードとなるように薄いP+層を配した
P+NP-形式で大部分が構成され、完全転送モー
ドを実現するP+層の一部に信号電荷が流入出来
る部分つまり、信号電荷と同じ導電形(電子の場
合はn形、正孔の場合はp形)部分が存在してい
れば良い。
In any case, the signal charge from the photoelectric conversion section is
The diode structure of the storage part that exists before being transferred to the CCD is not just a PN format, but a thin P + layer is placed so that the transfer is in complete transfer mode.
Most of the part is composed of the P + NP - type, and the part where the signal charge can flow into a part of the P + layer that realizes the perfect transfer mode, that is, the part where the signal charge can flow into the same conductivity type as the signal charge (n type for electrons, n type for holes). In this case, it is sufficient if there is a p-type) part.

また、上記実施例ではSi基板がpやp-型につい
て述べたが、例えばn基板にp形を拡散した構造
に蓄積ダイオードやCCDを形成しても良い。
Further, in the above embodiments, the Si substrate is of p type or p - type, but the storage diode or CCD may be formed in a structure in which p type is diffused into an n substrate, for example.

さらに基板としてSiに限らず、半導体にて固体
走査部を製作する時には、本発明が適用できる。
Furthermore, the present invention can be applied when manufacturing a solid-state scanning section using a semiconductor other than Si as a substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電変換部と固体走査部からな
る固体撮像素子の断面図、第2図は従来の固体撮
像素子の断面図、第3図は残像を改善した固体撮
像素子の断面図、第4図は本発明の光電変換部と
固体走査部からなる固体撮像素子の断面図、及び
第5図は本発明の固体撮像素子の他の実施例であ
る。 1……p形Si基板、2……垂直CCD、3……
蓄積ダイオード、4……ポリSi電極、5……第一
酸化膜、6……第一電極、7……第二酸化膜、8
……第二電極、9……光導電体層、10……透明
導電膜、11……平滑化酸化膜、12……光導電
膜、13……n領域、14……p+領域、15…
…蓄積ダイオード、16……n+領域、17……
蓄積ダイオード。
Fig. 1 is a cross-sectional view of a conventional solid-state image sensor consisting of a photoelectric conversion section and a solid-state scanning section, Fig. 2 is a cross-sectional view of a conventional solid-state image sensor, and Fig. 3 is a cross-sectional view of a solid-state image sensor with improved afterimage. FIG. 4 is a cross-sectional view of a solid-state imaging device comprising a photoelectric conversion section and a solid-state scanning section of the invention, and FIG. 5 is another embodiment of the solid-state imaging device of the invention. 1...p-type Si substrate, 2...vertical CCD, 3...
Storage diode, 4... Poly-Si electrode, 5... First oxide film, 6... First electrode, 7... Second oxide film, 8
... second electrode, 9 ... photoconductor layer, 10 ... transparent conductive film, 11 ... smoothing oxide film, 12 ... photoconductive film, 13 ... n region, 14 ... p + region, 15 …
...storage diode, 16...n + region, 17...
storage diode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に設けられた光電変換部と、半
導体基板に形成された固体走査部を有する固体撮
像素子において、該光電変換部からの信号電荷を
蓄積する半導体基板に設けられた蓄積ダイオード
の表面の一部分が、信号電荷と同じ導電形の層で
形成され、他の大部分の表面は信号電荷と反対の
導電形の層で形成され、光電変換部からの電気的
接触が少なくとも前記信号電荷と同じ導電形の層
になされて信号電荷の蓄積ダイオードへの流入を
容易にすると共に、前記信号電荷と反対の導電形
の層で表面を形成された蓄積ダイオード部分が、
同じく半導体基板に設けられた読み出し部への電
荷転送において完全転送を可能とする如く構成さ
れていることを特徴とする固体撮像装置。
1. In a solid-state imaging device having a photoelectric conversion section provided on a semiconductor substrate and a solid-state scanning section formed on the semiconductor substrate, the surface of a storage diode provided on the semiconductor substrate that accumulates signal charges from the photoelectric conversion section A part of the surface is formed of a layer of the same conductivity type as the signal charge, and most of the other surface is formed of a layer of the opposite conductivity type to the signal charge, and the electrical contact from the photoelectric conversion part is at least connected to the signal charge. a storage diode portion formed of a layer of the same conductivity type to facilitate the flow of signal charge into the storage diode, and whose surface is formed of a layer of conductivity type opposite to that of the signal charge;
A solid-state imaging device characterized in that it is configured to enable complete charge transfer to a readout section provided on a semiconductor substrate.
JP58052730A 1983-03-30 1983-03-30 Solid-state image pickup device Granted JPS59178769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052730A JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052730A JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS59178769A JPS59178769A (en) 1984-10-11
JPH0430192B2 true JPH0430192B2 (en) 1992-05-21

Family

ID=12923039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052730A Granted JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS59178769A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572130B2 (en) * 2005-03-09 2010-10-27 富士フイルム株式会社 Solid-state image sensor
KR100997299B1 (en) * 2007-09-07 2010-11-29 주식회사 동부하이텍 Image Sensor and Method for Manufacturing Thereof
DE102008046035A1 (en) * 2007-09-07 2009-04-16 Dongbu Hitek Co., Ltd. Image sensor and method for its production
JP4990859B2 (en) * 2007-09-07 2012-08-01 ドンブ ハイテック カンパニー リミテッド Image sensor and manufacturing method thereof
KR100882990B1 (en) * 2007-12-27 2009-02-12 주식회사 동부하이텍 Image sensor and method for manufacturing thereof
KR101002121B1 (en) * 2007-12-27 2010-12-16 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
KR100922924B1 (en) 2007-12-28 2009-10-22 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
JP5501262B2 (en) * 2011-02-04 2014-05-21 富士フイルム株式会社 Solid-state imaging device manufacturing method, solid-state imaging device, and imaging apparatus

Also Published As

Publication number Publication date
JPS59178769A (en) 1984-10-11

Similar Documents

Publication Publication Date Title
US4672455A (en) Solid-state image-sensor having reverse-biased substrate and transfer registers
JPH07176781A (en) Photoelectric transducer
JP3009730B2 (en) Anti-blooming structure for solid-state image sensor
JPH1070263A (en) Solid state image sensor
CN102044548B (en) CMOS (Complementary Metal-Oxide-Semiconductor Transistor) image sensor
US4688098A (en) Solid state image sensor with means for removing excess photocharges
JPS58138187A (en) Solid-state image sensor
JPH09266296A (en) Solid-state image sensing device
JPH02100363A (en) Solid-state image sensing element
JP2858179B2 (en) CCD image element
JPH0430192B2 (en)
EP0055114B1 (en) Solid-state imaging device
JP2917361B2 (en) Solid-state imaging device
JP2959460B2 (en) Solid-state imaging device
JP3590158B2 (en) MOS amplification type imaging device
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
JPS6160592B2 (en)
JPH0425714B2 (en)
JPH0789581B2 (en) Solid-state imaging device and manufacturing method thereof
JP3047965B2 (en) Solid-state imaging device
JPH0135546B2 (en)
JPH0794699A (en) Solid state image sensor
JP2922688B2 (en) Infrared solid-state image sensor
KR950002194B1 (en) Frame transfer style ccd image sensor
Chikamura et al. A 1/2-in. CCD image sensor overlaid with a hydrogenated amorphous silicon