JPH0789581B2 - Solid-state imaging device and manufacturing method thereof - Google Patents
Solid-state imaging device and manufacturing method thereofInfo
- Publication number
- JPH0789581B2 JPH0789581B2 JP60161835A JP16183585A JPH0789581B2 JP H0789581 B2 JPH0789581 B2 JP H0789581B2 JP 60161835 A JP60161835 A JP 60161835A JP 16183585 A JP16183585 A JP 16183585A JP H0789581 B2 JPH0789581 B2 JP H0789581B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- optical signal
- transfer element
- photoelectric conversion
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003384 imaging method Methods 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000010884 ion-beam technique Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 8
- 238000006243 chemical reaction Methods 0.000 claims 6
- 230000000694 effects Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- -1 boron ions Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Element Separation (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は固体撮像装置に係り、特に所望の領域を電気的
に分離,シールドするのに好適な装置構造およびその製
造方法に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a device structure suitable for electrically isolating and shielding a desired region and a manufacturing method thereof.
本発明は所望の領域を分離,シールドする装置構造に関
するものであり、半導体メモリや撮像装置に効果的に適
用できるため、ここでは撮像素子に関連して説明する。
従来の固体撮像装置の構成は特公昭59−17585号公報に
示されているように、第1図,第2図のようになつてい
る。The present invention relates to a device structure that separates and shields a desired region, and can be effectively applied to a semiconductor memory and an image pickup device, and therefore will be described here in connection with an image pickup element.
The configuration of a conventional solid-state image pickup device is as shown in FIGS. 1 and 2 as shown in Japanese Patent Publication No. 59-17585.
第1図は固体撮像装置の構成例である。1はホトダイオ
ード101と垂直スイツチングMOSトランジスタ102とから
なる受光部の1絵素である。2,3はそれぞれ垂直,水平
シフトレジスタであり、103は水平スイツチングMOSトラ
ンジスタ、104はビデオ電圧源、4は垂直ゲート線、5
は垂直信号線、6は信号出力線である。FIG. 1 is an example of the configuration of a solid-state imaging device. Reference numeral 1 is one picture element of the light receiving portion consisting of the photodiode 101 and the vertical switching MOS transistor 102. Reference numerals 2 and 3 are vertical and horizontal shift registers, 103 is a horizontal switching MOS transistor, 104 is a video voltage source, 4 is a vertical gate line, and 5 is a vertical gate line.
Is a vertical signal line, and 6 is a signal output line.
第2図は1絵素の断面構造である。7,8は第1図の4,5に
対応している。9はたとえばP型Si基板(通常、不純物
濃度1015mm-3程度)、10はゲート電極用多結晶Si、11は
フィールド酸化膜、12はゲート絶縁膜、121,122はN+拡
散層(不純物濃度1020cm-3程度イオン打込、熱拡散等に
より形成)、13はP+層(通常、不純物濃度2×1015cm-3
〜1017cm-3程度、イオン打込、熱拡散等により形成)で
ある。なお、30は入射光を示している。この従来例のP+
層13を設ける利点を次に列記する。FIG. 2 is a sectional structure of one picture element. 7,8 correspond to 4,5 in Fig. 1. 9 is, for example, a P-type Si substrate (usually an impurity concentration of about 10 15 mm −3 ), 10 is polycrystalline Si for gate electrode, 11 is a field oxide film, 12 is a gate insulating film, 121 and 122 are N + diffusion layers (impurity concentration). About 10 20 cm -3 is formed by ion implantation, thermal diffusion, etc., 13 is P + layer (usually impurity concentration 2 × 10 15 cm -3
~ 10 17 cm -3 , formed by ion implantation, thermal diffusion, etc.). In addition, 30 has shown the incident light. This conventional P +
The advantages of providing layer 13 are listed below.
N+拡散層121とP型Si基板9よりなるホトダイオー
ドに蓄積された電荷のみを10のゲートを介して、122に
とりこみ、他の領域で光生成された電荷(ブルーミン
グ,スメア現象による)が122に入り込むのを、13のP+
層の障壁を用いて防ぐ事ができる。Only the charge accumulated in the photodiode composed of the N + diffusion layer 121 and the P-type Si substrate 9 is taken into 122 through the gate 10 and the photogenerated charge (due to the blooming or smear phenomenon) in another region is 122. 13 P + to get in
It can be prevented by using a layer barrier.
P+層13のため、基板内深い所で、光により発生した
電荷および、121からあふれでた電荷が垂直信号線8に
ドレイン領域122を介して入り込む事を防ぐ事が可能で
ある。つまり、スメア電荷をP+層13により抑制する事が
できる。Due to the P + layer 13, it is possible to prevent charges generated by light and charges overflowing from 121 from entering the vertical signal line 8 via the drain region 122 at a deep portion in the substrate. That is, the smear charge can be suppressed by the P + layer 13.
しかし、この従来例においては次の点について配慮され
ていなかつた。即ち、ドレイン122とP+層13との接合容
量が増加し、垂直信号線8の寄生容量が増加するため、
この垂直信号線をスイツチングする事に伴なうランダム
雑音が増加し、装置のS/N(信号対雑音比)が劣化して
いた。さらに実効的な障壁としてはP+層13の表面濃度で
はなく、それよりも低い、接合付近の濃度で決まるた
め、多量のイオン打ち込み量となつていた(例えばP+深
さを3μm,ドレイン深さを1μmとすると、接合付近の
濃度は表面の約1/2に低下する)。However, the following points have not been taken into consideration in this conventional example. That is, since the junction capacitance between the drain 122 and the P + layer 13 increases and the parasitic capacitance of the vertical signal line 8 increases,
Random noise caused by switching the vertical signal line was increased, and the S / N (signal-to-noise ratio) of the device was deteriorated. Furthermore, since the effective barrier is determined not by the surface concentration of the P + layer 13 but by the lower concentration near the junction, a large amount of ion implantation was achieved (for example, P + depth 3 μm, drain depth If the thickness is 1 μm, the concentration near the junction will drop to about 1/2 of the surface).
本発明の目的は所定の領域をシールドし、かつ寄生容量
の増加等の性能劣化を抑圧した固体撮像装置を提供する
ことにある。An object of the present invention is to provide a solid-state imaging device that shields a predetermined area and suppresses performance deterioration such as increase in parasitic capacitance.
本発明はドレイン底面(接合面)に隣接する領域内に選
択的に高濃度層を形成し、接合付近の容量増加を抑圧す
るとともに、効率よく高濃度層を形成したものである。The present invention selectively forms a high-concentration layer in a region adjacent to the drain bottom surface (junction surface), suppresses an increase in capacitance near the junction, and efficiently forms a high-concentration layer.
以下、本発明を実施例を用いて説明する。 Hereinafter, the present invention will be described using examples.
第3図は従来のMOS方式の撮像装置の画素構造(第2
図)に対応させたものである。ドレイン122の周辺にの
み本発明の高濃度層113を設けた構造となつている。こ
の図の断面A−A′における不純物濃度分布は第4図に
示すようになつており、本発明の高濃度P+層113は深さx
Pの所にピークを有しており、接合付近(xJ)では、基
板不純物濃度と同程度となつている。この時P+層113はN
+層122に接していても、はなれていてもよく、自由に制
御できるものである。なお、この側面領域は必ずしも設
ける必要はない。この側面領域の有無は他の素子特性制
御の目的に応じて決められるもので、この側面領域が無
くても本発明の効果は変わらない。そのため、接合容量
を大幅に増加させる事なく、濃度差(Δn)による電位
障壁により、ブルーミング,スメア等による疑似信号の
信号線8への混入を防止できる。FIG. 3 shows a pixel structure of a conventional MOS type image pickup device (second
It corresponds to the figure). The high concentration layer 113 of the present invention is provided only around the drain 122. The impurity concentration distribution in the cross section AA ′ in this figure is as shown in FIG. 4, and the high concentration P + layer 113 of the present invention has a depth x
It has a peak at P , and is close to the substrate impurity concentration near the junction (x J ). At this time, P + layer 113 is N
+ It may be in contact with or out of the layer 122, and it can be freely controlled. Note that this side surface region does not necessarily have to be provided. The presence or absence of this side surface region is determined according to the purpose of other element characteristic control, and the effect of the present invention does not change even without this side surface region. Therefore, it is possible to prevent the pseudo signal from being mixed into the signal line 8 due to blooming, smearing, or the like due to the potential barrier due to the concentration difference (Δn) without significantly increasing the junction capacitance.
次に第3図の装置を実現するための製造方法の一例を第
5図で説明する。例えばP形Si基板9上に形成した厚い
酸化膜130を選択的に除去し、再酸化する事により薄い
酸化膜131を形成する(a)。次に集束イオン線技術
(高エネルギーイオン打ち込み技術)により高電圧(
100keV)で加速したボロンイオンを1μm程度に集束さ
せて、走査し(132)、ボロンイオン133を基板上に打ち
込み、本発明の高濃度層134を形成する(b図まで)。
この時、酸化膜130の打ち込み部周辺135に傾斜をもたせ
る事により、高濃度層134の周辺部135を自己整合的に形
成できる(酸化膜の厚い部分ではボロンが基板9まで到
達しないようにする必要がある)。ここで、酸化膜130
の打ち込み部周辺の傾斜角を変えることにより、高濃度
層134の側面領域の幅を自由に制御できる。例えば、傾
斜角を急峻にすれば、高濃度層134の側面領域を実質的
に無くすことがでる。又、別の方法として、高濃度層周
辺部135ではボロンイオンの加速電圧を制御する事によ
り、高濃度層の周辺部135を形成できる。Next, an example of a manufacturing method for realizing the device of FIG. 3 will be described with reference to FIG. For example, the thick oxide film 130 formed on the P-type Si substrate 9 is selectively removed and re-oxidized to form a thin oxide film 131 (a). Next, we focused on high voltage (high energy ion implantation technology)
The boron ions accelerated by 100 keV) are focused to about 1 μm and scanned (132), and the boron ions 133 are implanted on the substrate to form the high concentration layer 134 of the present invention (up to the figure b).
At this time, the peripheral portion 135 of the high-concentration layer 134 can be formed in a self-aligned manner by making the peripheral portion 135 of the oxide film 130 inclined (in order to prevent boron from reaching the substrate 9 in a thick oxide film portion). There is a need). Where the oxide film 130
The width of the side surface region of the high-concentration layer 134 can be freely controlled by changing the inclination angle around the driving portion. For example, if the inclination angle is made steep, the side surface region of the high concentration layer 134 can be substantially eliminated. As another method, the peripheral portion 135 of the high concentration layer can be formed by controlling the acceleration voltage of boron ions in the peripheral portion 135 of the high concentration layer.
次に選択的に酸化膜を除去した後、再酸化し、ゲート酸
化膜136を形成する(c図まで)。以下は通常のMOSトラ
ンジスタの形成法と同様に、ゲート電極となる多結晶Si
138を選択的に形成し、自己整合的にASイオン打ち込み
により、ソース,ドレインとなるN+層137を形成する
(d図まで)。Next, after selectively removing the oxide film, the film is re-oxidized to form a gate oxide film 136 (up to FIG. C). The following is similar to the normal MOS transistor formation method.
138 is selectively formed, and N + layer 137 serving as a source and a drain is formed by A S ion implantation in a self-aligned manner (up to the figure d).
以下の実施例においても同様に、集束イオン線技術(高
エネルギーイオン打ち込み技術)を用いて製造できるた
め、断面図で本発明を説明する。Similarly, in the following embodiments, the focused ion beam technique (high energy ion implantation technique) can be used for manufacturing, and therefore the present invention will be described with reference to cross-sectional views.
第6図はN形基板139上のP形ウエル層140内の素子に第
3図の発明を実施したものである。FIG. 6 shows the device in the P-type well layer 140 on the N-type substrate 139 in which the invention of FIG. 3 is implemented.
ここで高濃度P+層13の底面は基板139に接していても離
れていてもよい。なお、高濃度P+層13の側面領域の有無
は他の素子特性制御の目的に応じて決められるが、この
側面領域の有無によって本発明の効果が左右されること
はない。Here, the bottom surface of the high concentration P + layer 13 may be in contact with or away from the substrate 139. The presence or absence of the side surface region of the high-concentration P + layer 13 is determined according to the purpose of controlling other element characteristics, but the presence or absence of this side surface region does not affect the effect of the present invention.
第7図はN形基板の実施例であるが、所定の領域(122
と142)をシールドするため、底面は通常のPN接合を逆
バイアスして行ない、周辺は本発明の高濃度層141を設
けている。141は122に接していてもはなれていてもよ
い。又141の底面は基板139に接していても離れていても
よい。FIG. 7 shows an example of an N-type substrate, but a predetermined area (122
And 142) are shielded, the bottom surface is formed by reverse biasing a normal PN junction, and the periphery is provided with the high concentration layer 141 of the present invention. 141 may be in contact with or out of 122. The bottom surface of 141 may be in contact with the substrate 139 or may be separated therefrom.
第8図はP形基板9のドレイン周辺のみに高濃度層143
を設けたものであり、側面のシールド効果がある。143
は122に接していても離れていてもよい。FIG. 8 shows the high-concentration layer 143 only around the drain of the P-type substrate 9.
It has a shield effect on the side. 143
May be in contact with 122 or may be remote.
以上の実施例においてはMOS型撮像素子について説明し
たが、ドレイン部分を電荷移送素子のチヤネルとしたCC
D型撮像素子にも本発明は同様に適用できるものであ
る。又、導電形をまつたく逆にしても本発明の効果に変
わりはない。Although the MOS type image pickup device has been described in the above embodiments, the CC part in which the drain portion is the channel of the charge transfer device is used.
The present invention can be similarly applied to the D-type image pickup device. Also, the effect of the present invention does not change even if the conductivity type is reversed.
以下の実施例は所定の領域をCMOS素子のウエル層に実施
したものである。In the following embodiment, a predetermined region is formed in a well layer of a CMOS device.
第9図の150はN形Si基板、151はP形ウエル層であり、
シールドしたい所定のウエル層153内にNチヤネルMOSト
ランジスタ152を集積した半導体装置である。153の周辺
に本発明の高濃度P+層154を形成している。このP+層154
により、他のウエル領域151からの電荷の拡散を防止す
るとともに、実質的なウエル層153の抵抗を下げる事が
でき、ウエル層の電位変動によるMOSトランジスタの誤
動作を防止している。In FIG. 9, 150 is an N-type Si substrate, 151 is a P-type well layer,
This is a semiconductor device in which an N-channel MOS transistor 152 is integrated in a predetermined well layer 153 to be shielded. A high concentration P + layer 154 of the present invention is formed around 153. This P + layer 154
As a result, the diffusion of charges from the other well region 151 can be prevented, and the resistance of the well layer 153 can be substantially reduced, so that the malfunction of the MOS transistor due to the potential fluctuation of the well layer can be prevented.
第10図は153の内部をさらに分離シールドしたものであ
り、MOSトランジスタ間のクロツク等の飛び込みを防止
している。In FIG. 10, the inside of 153 is further separated and shielded to prevent jumping of clocks or the like between MOS transistors.
第11図,第12図は第9図,第10図のウエル層153の底面
を基板との接合により分離シールドしたものである。11 and 12 show the bottom of the well layer 153 shown in FIGS. 9 and 10 which is separated and shielded by joining with the substrate.
さらに第9図〜第12図において、N形基板150の代わり
にP形基板を用い、表面にウエル層151を形成し、本発
明を実施しても効果は同じである。さらにP形基板でウ
エル層を設けないで、本発明を実施しても効果は発揮で
きる。9 to 12, a P-type substrate is used instead of the N-type substrate 150, and the well layer 151 is formed on the surface, and the present invention has the same effect. Further, the effect can be exhibited even if the present invention is carried out without providing the well layer on the P-type substrate.
以上の実施例で導電型を全く逆にしても本発明の効果は
変わらない。Even if the conductivity type is completely reversed in the above embodiment, the effect of the present invention does not change.
本発明によれば所定の領域に高濃度層を形成することに
より、不要の拡散電荷等による素子特性の劣化,素子の
誤動作を防止できる効果がある。固体撮像素子の画素部
の出力拡散層(N+層あるいは電荷移送素子のチヤネル)
周辺に実施すると、スメア,ブルーミング等による疑似
信号の混入を防ぐとともに、寄生容量等の増加を抑える
効果がある。According to the present invention, by forming a high-concentration layer in a predetermined region, it is possible to prevent deterioration of device characteristics due to unnecessary diffused charges and the like, and prevent malfunction of the device. Output diffusion layer (N + layer or charge transfer device channel) in the pixel section of a solid-state image sensor
If it is implemented in the periphery, it is effective in preventing the mixing of pseudo signals due to smear, blooming, etc., and suppressing the increase in parasitic capacitance and the like.
第1図は撮像素子の回路構成図、第4図は不純物分布を
示す図、第5図は半導体装置の製造方法を示す図、第2
図,第3図,第6〜12図は半導体装置の断面図を示す図
である。 122……ドレイン、113……高濃度層、134,13,141,143,1
54……高濃度層。FIG. 1 is a circuit configuration diagram of an image sensor, FIG. 4 is a diagram showing impurity distribution, FIG. 5 is a diagram showing a method for manufacturing a semiconductor device, and FIG.
FIGS. 3, 3 and 6 to 12 are sectional views of the semiconductor device. 122 …… Drain, 113 …… High concentration layer, 134,13,141,143,1
54 …… High concentration layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 徹 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 久米 均 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 実開 昭55−45245(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Nakamura 1-280 Higashi Koigakubo, Kokubunji City, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Hitoshi Kume 1-280 Higashi Koigakubo, Kokubunji, Tokyo Hitachi Ltd. Inside the Central Research Laboratory (56) References: Actual development Sho 55-45245 (JP, U)
Claims (2)
のソースとして働く光電変換素子と、該光電変換素子に
蓄積した光信号電荷を上記複数のMOSトランジスタのゲ
ートを介して読み出すための上記複数のMOSトランジス
タのドレインとして働く垂直信号転送素子と、該垂直信
号転送素子を駆動して上記光信号電荷を垂直方向に転送
後に上記光信号電荷を水平方向に転送する水平信号転送
素子とを設けてなる固体撮像装置であって、上記垂直信
号転送素子は、上記半導体基板上に設けられた第1の半
導体層と、該第1の半導体層の表面に設けられた上記光
信号電荷を転送するための上記第1の半導体層とは逆導
電型の第2の半導体層と、上記第1の半導体層の上記第
2の半導体層の底面に接する領域内に設けられた上記第
1の半導体層と同導電型でかつそれよりも不純物濃度の
高い第3の半導体層とから構成されてなり、該第3の半
導体層内の不純物濃度は上記第2の半導体層の底面から
離れた位置にピーク値を有していることを特徴とする固
体撮像装置。1. A photoelectric conversion element serving as a source of a plurality of MOS transistors on a semiconductor substrate, and a plurality of photoelectric conversion elements for reading out optical signal charges accumulated in the photoelectric conversion element via gates of the plurality of MOS transistors. A vertical signal transfer element that functions as a drain of a MOS transistor, and a horizontal signal transfer element that drives the vertical signal transfer element to transfer the optical signal charge in the vertical direction and then transfers the optical signal charge in the horizontal direction are provided. In the solid-state imaging device, the vertical signal transfer element is provided for transferring a first semiconductor layer provided on the semiconductor substrate and the optical signal charge provided on a surface of the first semiconductor layer. A second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer, and the first semiconductor layer provided in a region of the first semiconductor layer in contact with the bottom surface of the second semiconductor layer. Conductivity type And a third semiconductor layer having an impurity concentration higher than that, and the impurity concentration in the third semiconductor layer has a peak value at a position away from the bottom surface of the second semiconductor layer. A solid-state imaging device characterized in that
のソースとして働く光電変換素子と、該光電変換素子に
蓄積した光信号電荷を上記複数のMOSトランジスタのゲ
ートを介して読み出すための上記複数のMOSトランジス
タのドレインとして働く垂直信号転送素子と、該垂直信
号転送素子を駆動して上記光信号電荷を垂直方向に転送
後に上記光信号電荷を水平方向に転送する水平信号転送
素子とを設けてなる固体撮像装置の製造方法であって、
上記垂直信号転送素子を、上記半導体基板上に設けられ
た第1の半導体層と、該第1の半導体層の表面に設けら
れた上記光信号電荷を転送するための上記第1の半導体
層とは逆導電型の第2の半導体層と、上記第1の半導体
層の上記第2の半導体層の底面に接する領域内に設けら
れた上記第1の半導体層と同導電型でかつそれよりも不
純物濃度の高い第3の半導体層とから構成し、該第3の
半導体層内の不純物濃度が上記第2の半導体層の底面か
ら離れた位置にピーク値を有するようにするために、上
記第3の半導体層を集束イオン線を用いたイオン打ち込
み技術により形成することを特徴とする固体撮像装置の
製造方法。2. A photoelectric conversion element serving as a source of a plurality of MOS transistors on a semiconductor substrate, and a plurality of the photoelectric conversion elements for reading out optical signal charges accumulated in the photoelectric conversion elements via gates of the plurality of MOS transistors. A vertical signal transfer element that functions as a drain of a MOS transistor, and a horizontal signal transfer element that drives the vertical signal transfer element to transfer the optical signal charge in the vertical direction and then transfers the optical signal charge in the horizontal direction are provided. A method of manufacturing a solid-state imaging device, comprising:
The vertical signal transfer element includes a first semiconductor layer provided on the semiconductor substrate, and the first semiconductor layer provided on the surface of the first semiconductor layer for transferring the optical signal charges. Is a second semiconductor layer having an opposite conductivity type and a second semiconductor layer having the same conductivity type as the first semiconductor layer provided in a region of the first semiconductor layer in contact with the bottom surface of the second semiconductor layer, and more than that. A third semiconductor layer having a high impurity concentration, and the impurity concentration in the third semiconductor layer has a peak value at a position away from the bottom surface of the second semiconductor layer. 3. The method for manufacturing a solid-state imaging device, wherein the semiconductor layer 3 is formed by an ion implantation technique using a focused ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161835A JPH0789581B2 (en) | 1985-07-24 | 1985-07-24 | Solid-state imaging device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161835A JPH0789581B2 (en) | 1985-07-24 | 1985-07-24 | Solid-state imaging device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6223156A JPS6223156A (en) | 1987-01-31 |
JPH0789581B2 true JPH0789581B2 (en) | 1995-09-27 |
Family
ID=15742832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60161835A Expired - Lifetime JPH0789581B2 (en) | 1985-07-24 | 1985-07-24 | Solid-state imaging device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0789581B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960042942A (en) * | 1995-05-04 | 1996-12-21 | 빈센트 비.인그라시아 | Semiconductor Device Forming Method |
JP3457551B2 (en) | 1998-11-09 | 2003-10-20 | 株式会社東芝 | Solid-state imaging device |
JP4894102B2 (en) * | 2001-07-23 | 2012-03-14 | タカタ株式会社 | Attachment structure of cloth sheet to vehicle body |
JP5125010B2 (en) | 2006-07-20 | 2013-01-23 | ソニー株式会社 | Solid-state imaging device and control system |
TW202218105A (en) * | 2020-10-22 | 2022-05-01 | 日商索尼半導體解決方案公司 | Sensor device and sensing module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4142973A (en) * | 1977-02-17 | 1979-03-06 | Facet Enterprises, Inc. | Valve with indicator circuit |
-
1985
- 1985-07-24 JP JP60161835A patent/JPH0789581B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6223156A (en) | 1987-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7517714B2 (en) | Image sensors for reducing dark current and methods of fabricating the same | |
US7423305B2 (en) | Solid-state image sensing device having high sensitivity and camera system using the same | |
KR0168902B1 (en) | Solid state image pick-up device | |
KR100262774B1 (en) | Top bus virtual phase frame interline transfer ccd image sensor | |
JP3125303B2 (en) | Solid-state imaging device | |
KR100761824B1 (en) | Image sensor and method for manufacturing the same | |
JPH07202158A (en) | Ccd type solid-state image pickup element | |
JP3062010B2 (en) | Solid-state imaging device | |
JPS6217878B2 (en) | ||
JPH0789581B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JPH0430192B2 (en) | ||
JPH01135184A (en) | Solid-state image pickup element | |
JPH03240379A (en) | Solid-state image pickup element | |
US20080182354A1 (en) | Methods of fabricating cmos image sensors | |
JP3247163B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP3481654B2 (en) | Solid-state imaging device | |
JPH0575089A (en) | Solid state image pickup device | |
JP2594923B2 (en) | Solid-state imaging device | |
JPH10116975A (en) | Solid-state image pickup device and overflow barrier forming method for it | |
JP3087718B2 (en) | Solid-state imaging device | |
JPS5917585B2 (en) | solid-state imaging device | |
JPH0480541B2 (en) | ||
JPS6079773A (en) | Solid-state image pickup device | |
JPH02119266A (en) | Solid-state image sensing device of vertical type overflow drain structure | |
JPH0391263A (en) | Solid state image element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |