JP2594923B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2594923B2
JP2594923B2 JP61267653A JP26765386A JP2594923B2 JP 2594923 B2 JP2594923 B2 JP 2594923B2 JP 61267653 A JP61267653 A JP 61267653A JP 26765386 A JP26765386 A JP 26765386A JP 2594923 B2 JP2594923 B2 JP 2594923B2
Authority
JP
Japan
Prior art keywords
gate
transfer means
imaging device
photoelectric conversion
accumulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61267653A
Other languages
Japanese (ja)
Other versions
JPS63122266A (en
Inventor
正章 中井
元 衣笠
治久 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61267653A priority Critical patent/JP2594923B2/en
Priority to KR1019870007209A priority patent/KR900007234B1/en
Priority to US07/070,552 priority patent/US4908684A/en
Publication of JPS63122266A publication Critical patent/JPS63122266A/en
Application granted granted Critical
Publication of JP2594923B2 publication Critical patent/JP2594923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像素子に係り、特に暗電流の低減に好
適な駆動条件を有する固体撮像素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly, to a solid-state imaging device having driving conditions suitable for reducing dark current.

〔従来の技術〕[Conventional technology]

従来の固体撮像素子は特願昭59−146822号に記載のよ
うに、光電変換素子(ホトダイオード)間及びホトダイ
オード−電荷転送手段間の素子分離領域は通常のLOCOS
法による厚い酸化膜で覆われている。この領域では、電
荷転送手段の転送電極の電圧に依存せず、厚い酸化膜下
には信号電荷と逆導電形の電荷が蓄積されていた(いわ
ゆるアキユムレーシヨン状態となつていた)。しかしな
がら以下の理由等により、素子分離領域にゲート絶縁膜
(薄い酸化膜)及びゲート電極を設け、活性(Active)
なMOSトランジスタで素子分離を行なうフイールド プ
レート(Field Plate)方式が見直されてきた。
As described in Japanese Patent Application No. 59-146822, a conventional solid-state imaging device has a conventional LOCOS between photoelectric conversion elements (photodiodes) and between a photodiode and charge transfer means.
It is covered with a thick oxide film by the method. In this region, the charge of the opposite conductivity type to that of the signal charge was accumulated under the thick oxide film without depending on the voltage of the transfer electrode of the charge transfer means (it was in a so-called accumulation state). However, for the following reasons, a gate insulating film (thin oxide film) and a gate electrode are provided in the
The field plate method, which separates elements with simple MOS transistors, has been reviewed.

厚い酸化膜の横方向の広がり(バードビークと呼ば
れている)によつて、分離領域の微細化が困難である。
Due to the lateral spread of the thick oxide film (called bird beak), it is difficult to miniaturize the isolation region.

厚い酸化膜下に設けられている高濃度不純物層の横
方向拡散によつて、実効的なMOSトランジスタのチヤネ
ル幅が狭くなる(狭チヤネル効果)。
Due to the lateral diffusion of the high-concentration impurity layer provided under the thick oxide film, the effective channel width of the MOS transistor is narrowed (narrow channel effect).

このフイールド プレート(Field Plate)方式の素
子の一例としてアイ・イー・デイー・エム85の444頁か
ら447頁(IEDM85pp444〜pp447)に掲載のものがある。
この素子の問題点の1つに次のようなものがある。すな
わち、ゲート電圧の印加により分離領域のゲート酸化膜
下の基板表面に空乏層が発生し、これによつて暗電流に
よる電荷が発生する。そのため、この電荷が信号に混入
し、雑音となる。
As an example of this field plate type element, there is an element described on pages 444 to 447 of IEDM85 (IEDM85pp444 to pp447).
One of the problems of this element is as follows. That is, a depletion layer is generated on the substrate surface under the gate oxide film in the isolation region by the application of the gate voltage, thereby generating charges due to dark current. For this reason, this charge is mixed into the signal and becomes noise.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来のフイールド プレート(Field Plate)方式に
よる固体撮像素子は第2図のようになつている。
FIG. 2 shows a conventional solid-state imaging device using a field plate method.

第2図はアイ・イー・デイー・エム'86(LEDM'86)の
pp444〜pp447に示されている論文のFig4に相当するもの
であり、フイールドプレート方式の固体撮像素子の画素
断面を示したものである。31はホトダイオードからなる
光電変換素子部、32は垂直用の電荷転送手段(CCD)、3
3は読み出し用のゲート、34は素子分離領域である。35
は素子分離用の高濃度層P+(P−ウエルと同導電型)、
36はゲート酸化膜、37はゲート電極(読み出しゲート、
垂直CCD転送ゲートと共用)である。このように素子分
離領域34が転送ゲート電極37で制御されている。このよ
うな素子において、転送ゲート電極に高レベル電圧が印
加されると高濃度層35の表面も空乏化してしまう。この
表面空乏化によつて高濃度層35の表面(ゲート酸化膜界
面)で暗電流による不要の雑音電荷が発生する。この点
について、上記従来素子では配慮されておらず、暗電流
によるランダム雑音の増加、暗電流のばらつきによる白
点ムラ、固定パターン雑音等が生ずるという問題があつ
た。
Fig. 2 shows an illustration of IEM '86 (LEDM'86).
It corresponds to Fig. 4 of the paper shown in pp444 to pp447, and shows a pixel cross section of a field plate type solid-state imaging device. Numeral 31 denotes a photoelectric conversion element portion comprising a photodiode, 32 denotes a vertical charge transfer means (CCD), 3
3 is a gate for reading, and 34 is an element isolation region. 35
Is a high-concentration layer P + for element isolation (same conductivity type as P-well),
36 is a gate oxide film, 37 is a gate electrode (read gate,
Shared with the vertical CCD transfer gate). Thus, the element isolation region 34 is controlled by the transfer gate electrode 37. In such an element, when a high level voltage is applied to the transfer gate electrode, the surface of the high concentration layer 35 is also depleted. Due to this surface depletion, unnecessary noise charges due to dark current are generated on the surface (gate oxide film interface) of the high concentration layer 35. This point is not taken into consideration in the above-mentioned conventional device, and there is a problem that random noise increases due to dark current, white spot unevenness due to uneven dark current, fixed pattern noise, and the like.

本発明の目的はこの素子分離領域での暗電流の発生を
抑圧する事にある。
An object of the present invention is to suppress generation of dark current in the element isolation region.

〔問題点を解決するための手段〕[Means for solving the problem]

分離領域上のゲート電極は垂直CCDの転送用電極と兼
用しており、水平ブランキング期間に高低レベルの電位
が印加され、水平走査期間は垂直CCD内に電荷を蓄積し
ているのみである。一方、暗電流は主に時間の長い水平
走査期間内に発生するものと考えられる。そこで、上記
目的は、水平走査期間中、分離領域上のゲート電極を低
レベル電位とし、ゲート下をアキユムレーシヨン(Accu
mlation)状態に保持する事によつて達成される。
The gate electrode on the isolation region is also used as a vertical CCD transfer electrode. A high or low level potential is applied during the horizontal blanking period, and only charges are accumulated in the vertical CCD during the horizontal scanning period. On the other hand, it is considered that the dark current mainly occurs during a long horizontal scanning period. In view of the above, it is an object of the present invention to set the gate electrode on the isolation region to a low-level potential during the horizontal scanning period and to accumulate the voltage under the gate (accumulation).
mlation) is achieved by maintaining it in a state.

〔作用〕[Action]

垂直CCDは通常、第1,第2の転送電極で構成されてお
り、ホトダイオード間の分離領土上をこの2電極が配線
として形成される。このため、分離領域は半導体基板上
に近い第1の転送電極の配線の電位によつて制御され、
第1の転送電極配線上に設けた第2の転送電極配線の電
位では制御されない。一方、垂直CCD内に電荷を蓄積す
るためには、第1,第2の転送電極の何れかの電位を高く
してやればよい。その結果、水平走査期間中第1の転送
電極を低レベル電位とし、第2の転送電極を高レベル電
位とする事により、素子分離領域をアキユムレーシヨン
状態とし、暗電流を低減し、かつ垂直CCD内に信号を蓄
積できる事になる。
The vertical CCD is usually composed of first and second transfer electrodes, and these two electrodes are formed as wiring on a separation territory between the photodiodes. For this reason, the isolation region is controlled by the potential of the wiring of the first transfer electrode close to the semiconductor substrate,
It is not controlled by the potential of the second transfer electrode wiring provided on the first transfer electrode wiring. On the other hand, in order to accumulate charges in the vertical CCD, the potential of any of the first and second transfer electrodes may be increased. As a result, by setting the first transfer electrode to a low-level potential and the second transfer electrode to a high-level potential during the horizontal scanning period, the element isolation region is set in an accumulation state, and dark current is reduced. The signal can be stored in the vertical CCD.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第
1図(a)(b)は第3図(a)のB−B′の断面図と
ポテンシヤル図である。第3図(a)は電荷移送形固体
撮像素子の受光部の平面図であり、1は光電変換素子、
2は4相駆動による垂直CCDシフトレジスタ、3は活性
領域(素子分離領域以外の領域を示し、4,5,6,7は垂直C
CDシフトレジスタの第1,第2,第3及び第4の転送電極で
あり、8は信号読み出し用のゲート領域である。第3図
(b)はクロツクタイミングであり、9は水平ブランキ
ング期間、10は水平走査期間を表わす。φV1V2V3
及びφV4は各々転送電極4,5,6,7に印加されるクロツク
パルスである。第3図(c)は第3図(a)のA−A′
の断面図であり、例えば11はN形基板、12,13はホトダ
イオードとなる。p形ウエル層とN形層である。14はゲ
ート酸化膜であり、15は素子分離用のp層である。第3
図は(d)はt=t1のポテンシヤル図でありVPDはホト
ダイオードのリセツト電位、VWはp形ウエル層12の電位
であり、信号電荷Qsがホトダイオードに蓄積されている
様子を示している。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIGS. 1 (a) and 1 (b) are a sectional view and a potential view taken along line BB 'of FIG. 3 (a). FIG. 3A is a plan view of a light receiving portion of the charge transfer type solid-state imaging device, where 1 is a photoelectric conversion device,
Reference numeral 2 denotes a vertical CCD shift register driven by four phases, 3 denotes an active area (areas other than element isolation areas, and 4, 5, 6, and 7 denote vertical CCD shift registers).
The first, second, third, and fourth transfer electrodes of the CD shift register are shown, and 8 is a gate region for reading signals. FIG. 3 (b) shows the clock timing, where 9 indicates a horizontal blanking period, and 10 indicates a horizontal scanning period. φ V1 , φ V2 , φ V3
And φ V4 are clock pulses applied to the transfer electrodes 4, 5, 6, and 7, respectively. FIG. 3 (c) is AA 'of FIG. 3 (a).
For example, 11 is an N-type substrate, and 12, 13 are photodiodes. a p-type well layer and an n-type layer. 14 is a gate oxide film, and 15 is a p-layer for element isolation. Third
Figure (d) shows is V PD a Potenshiyaru view of t = t 1 reset potential, V W of the photodiode is a potential of the p-type well layer 12, shows how the signal charge Q s is accumulated in the photodiode ing.

第1図は、第3図(a)のB−B′の断面図であり、
16は垂直CCD用のp形ウエル層であり、17はチヤネルと
なるN形層、18,19はゲート酸化膜である。第1図
(b)のVH(VL)はクロツクφV1が高(低)レベル時の
転送ゲート下の電位であり、転送電荷QA(QA′+QA")
が1段分転送されている。
FIG. 1 is a sectional view taken along the line BB ′ of FIG.
Reference numeral 16 denotes a p-type well layer for a vertical CCD, reference numeral 17 denotes an N-type layer serving as a channel, and reference numerals 18 and 19 denote gate oxide films. VH (V L ) in FIG. 1B is the potential under the transfer gate when the clock φ V1 is at a high (low) level, and the transfer charge Q A (Q A ′ + Q A )
Are transferred for one stage.

以下に本発明の動作を説明する。本発明では第3図
(b)図の水平走査期間10にはφV1V3が低レベルの
ため、ホトダイオード間の分離領域は第3図(d)のよ
うに、分離領域の基板表面には信号電極QSと逆導形の電
荷が蓄積されるため、電位はp形ウエル層12と同電位と
なつている。そのため、この分離領域に空乏層ができ
ず、暗電流の発生を抑える事ができる。一方、垂直CCD
において、水平走査期間中(t=t1)、信号電荷QAは5,
7の電極下に蓄積されている。水平ブランキング期間に
入り、t=t2時には転送ゲート6のゲート(φV3)が高
レベルとなり、5,6,7の転送電極で信号電荷QAを蓄積す
る。以後t=t3〜t10の期間は通常の4相駆動CCDと同様
の転送を行なう。その後t=t11時に、転送ゲート6の
電位を低レベルとし信号電荷QAを次段の転送ゲート
5′,7′下に蓄積した後、走査期間に移る。このように
垂直CCDの転送動作を可能にし、かつ、素子分離領域で
の暗電流の発生を抑える事ができる。
The operation of the present invention will be described below. In the present invention, since φ V1 and φ V3 are at a low level during the horizontal scanning period 10 in FIG. 3B, the separation region between the photodiodes is formed on the substrate surface of the separation region as shown in FIG. 3D. since the electric charge of the signal electrodes Q S and opposite type is accumulated, the potential is summer the same potential as the p-type well layer 12. Therefore, no depletion layer is formed in the isolation region, and generation of dark current can be suppressed. Meanwhile, vertical CCD
In, during a horizontal scanning period (t = t 1), the signal charge Q A is 5,
It is accumulated under the electrode of 7. Enters the horizontal blanking period, t = t 2 and sometimes the transfer gates 6 gate (phi V3) goes high, stores signal charges Q A at the transfer electrodes 5, 6, 7. Thereafter, during the period from t = t 3 to t 10 , the same transfer as in a normal four-phase drive CCD is performed. Then at t = t 11, the next stage of the transfer gate 5 was the signal charge Q A and the low level potential of the transfer gate 6 ', 7' after storing under moves to the scanning period. Thus, the vertical CCD transfer operation can be performed, and the generation of dark current in the element isolation region can be suppressed.

第4図は他の実施例であり、本発明をホトダイオード
と垂直CCD間の分離領域にも適用したものであり20,21は
第1層目のゲート電極、4,5は各々第2,第3層目のゲー
ト電極である。21は分離用ゲート電極であり、電圧を低
レベルとし、ゲート電極21下の基板表面を常にアキユム
レーシヨン(Accumulation)状態にする事により、ゲー
ト電極21下からの暗電流発生を抑圧している。又読み出
し用ゲート電極20のゲート領域8以外の分離領域の暗電
流も、20の電位がほとんどの期間低レベルであるため、
抑圧できる。ホトダイオード間の分離領域からの暗電流
も第1図の実施例と同様に抑圧できる。
FIG. 4 shows another embodiment, in which the present invention is also applied to an isolation region between a photodiode and a vertical CCD. Reference numerals 20 and 21 denote first-layer gate electrodes, and reference numerals 4 and 5 denote second and second gate electrodes, respectively. This is the third-layer gate electrode. Reference numeral 21 denotes a separation gate electrode, which suppresses dark current generation from under the gate electrode 21 by setting the voltage to a low level and keeping the substrate surface under the gate electrode 21 in an accumulation state. I have. Also, the dark current of the isolation region other than the gate region 8 of the readout gate electrode 20 is low for most of the time because the potential of 20 is low level.
Can be suppressed. Dark current from the separation region between the photodiodes can be suppressed as in the embodiment of FIG.

第5図はさらに他の実施例である。第4図のゲート電
極20,21を共用のゲート電極23としたものであり、ホト
ダイオード間にもゲート電極23を設けている。
FIG. 5 shows still another embodiment. The gate electrodes 20 and 21 in FIG. 4 are used as a common gate electrode 23, and the gate electrode 23 is also provided between the photodiodes.

以上の実施例においては垂直CCDは4相駆動のもので
説明したが、本発明は垂直CCDの方式によらず適用でき
る事は明らかである。又、ホトダイオードをp−n−p
ウエル構造、MOSダイオード構造としても本発明は同様
に実施でき、効果を発揮できる事は明らかである。
In the above embodiment, the vertical CCD is described as being driven by four phases, but it is apparent that the present invention can be applied regardless of the vertical CCD system. Also, the photodiode is pnp
It is clear that the present invention can be implemented similarly with a well structure and a MOS diode structure, and the effect can be exhibited.

〔発明の効果〕〔The invention's effect〕

本発明によれば、光電変換素子間、及び光電変換素子
一垂直CCDシフトレジスタ間の素子分離をゲート酸化膜
を介したゲート電極を行なう、Field Plate方式の電荷
移送形固体撮像素子において、少なくとも水平走査期間
において、ゲート酸化膜下に信号電荷とは逆導電形の電
荷を蓄積できるので、素子分離領域での暗電流の発生を
抑圧できる効果がある。
According to the present invention, between the photoelectric conversion element, and between the photoelectric conversion element and the vertical CCD shift register to perform a gate electrode through a gate oxide film, at least in a field plate type charge transfer solid-state imaging device, During the scanning period, charges of the opposite conductivity type to the signal charges can be stored under the gate oxide film, so that there is an effect that generation of dark current in the element isolation region can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理を説明するための図、第2図は従
来技術を示す図、第3図は本発明の一実施例を示す図、
第4図及び第5図は本発明の他の実施例を示す図であ
る。
FIG. 1 is a diagram for explaining the principle of the present invention, FIG. 2 is a diagram showing a prior art, FIG. 3 is a diagram showing an embodiment of the present invention,
4 and 5 show another embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 治久 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (56)参考文献 特開 昭60−214172(JP,A) 特開 昭61−114663(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Haruhisa Ando 1-280 Higashi Koigakubo, Kokubunji-shi Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-60-214172 (JP, A) JP-A-61-114663 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一半導体基板上に複数の光電変換素子
と、この光電変換素子群に蓄積した信号電荷を転送する
垂直電荷転送手段を集積化した固体撮像素子において、
上記光電変換素子相互間の素子分離用領域の上記半導体
基板上にゲート絶縁膜を介して上記垂直電荷転送手段の
一転送電極と兼用する第1のゲート電極を設け、上記光
電変換素子と上記電荷転送手段との間の素子分離用領域
の上記半導体基板上に上記ゲート絶縁膜を介して上記垂
直電荷転送手段の別の転送電極と兼用する第2のゲート
電極を設け、水平走査期間中に、上記ゲート絶縁膜と上
記半導体基板との界面に上記信号電荷と逆の導電性を持
つ電荷が蓄積し、かつ上記垂直電荷転送手段内に上記信
号電荷が蓄積するように、上記第1および第2のゲート
電極に所定の電圧を印加することを特徴とする固体撮像
素子。
1. A solid-state imaging device in which a plurality of photoelectric conversion elements and vertical charge transfer means for transferring signal charges accumulated in the photoelectric conversion element group are integrated on the same semiconductor substrate.
A first gate electrode serving also as one transfer electrode of the vertical charge transfer means is provided on the semiconductor substrate in an element isolation region between the photoelectric conversion elements via a gate insulating film, and the first photoelectric conversion element and the charge A second gate electrode serving also as another transfer electrode of the vertical charge transfer means is provided on the semiconductor substrate in the element isolation region between the transfer means and the vertical charge transfer means via the gate insulating film, and during a horizontal scanning period, The first and second electric charges are accumulated at the interface between the gate insulating film and the semiconductor substrate so that the electric charge having the opposite conductivity to the signal electric charge is accumulated and the signal electric charge is accumulated in the vertical charge transfer means. A predetermined voltage is applied to the gate electrode of the solid-state imaging device.
JP61267653A 1986-07-07 1986-11-12 Solid-state imaging device Expired - Lifetime JP2594923B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61267653A JP2594923B2 (en) 1986-11-12 1986-11-12 Solid-state imaging device
KR1019870007209A KR900007234B1 (en) 1986-07-07 1987-07-07 Charge transfer type solid state imaging device
US07/070,552 US4908684A (en) 1986-07-07 1987-07-07 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267653A JP2594923B2 (en) 1986-11-12 1986-11-12 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS63122266A JPS63122266A (en) 1988-05-26
JP2594923B2 true JP2594923B2 (en) 1997-03-26

Family

ID=17447670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267653A Expired - Lifetime JP2594923B2 (en) 1986-07-07 1986-11-12 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2594923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04373274A (en) * 1991-06-21 1992-12-25 Sony Corp Ccd solid-state image pickup element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214172A (en) * 1984-04-09 1985-10-26 Toshiba Corp Solid-state image pickup device
JPS61114663A (en) * 1984-11-09 1986-06-02 Sharp Corp Solid-state image pickup device

Also Published As

Publication number Publication date
JPS63122266A (en) 1988-05-26

Similar Documents

Publication Publication Date Title
US4851890A (en) Solid-state image sensor
US5942774A (en) Photoelectric conversion element and photoelectric conversion apparatus
US4672455A (en) Solid-state image-sensor having reverse-biased substrate and transfer registers
JP2878137B2 (en) Amplification type photoelectric conversion element, amplification type solid-state imaging device using the same, and method of manufacturing amplification type photoelectric conversion element
US6072206A (en) Solid state image sensor
EP0559207B1 (en) Photoelectric converting device
US4462047A (en) Solid state imager with blooming suppression
JP3892112B2 (en) Active pixel sensor with punch-through reset and crosstalk suppression
JPS58138187A (en) Solid-state image sensor
CA1266913A (en) Picture pick-up device including a solid-state image sensor and an electronic shutter
EP0576022B1 (en) Photoelectric conversion device and method of driving the same
JP3442283B2 (en) Linear image sensor
JPH0714042B2 (en) Solid-state image sensor
JPH01243462A (en) Solid-state image sensor
EP0513683B1 (en) CCD image sensing device
JP2594923B2 (en) Solid-state imaging device
US5397730A (en) Method of making a high efficiency horizontal transfer section of a solid state imager
JPH0789581B2 (en) Solid-state imaging device and manufacturing method thereof
JP3148459B2 (en) Driving method of solid-state imaging device
JP2500438B2 (en) Solid-state image sensor and driving method thereof
JPS6148308B2 (en)
JP2003324191A (en) Photoelectric conversion device and image pickup unit
JPH08130300A (en) Solid state image sensor
JPH0424871B2 (en)
JP2906961B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term