JPS59178769A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS59178769A
JPS59178769A JP58052730A JP5273083A JPS59178769A JP S59178769 A JPS59178769 A JP S59178769A JP 58052730 A JP58052730 A JP 58052730A JP 5273083 A JP5273083 A JP 5273083A JP S59178769 A JPS59178769 A JP S59178769A
Authority
JP
Japan
Prior art keywords
solid
electrode
diode
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58052730A
Other languages
Japanese (ja)
Other versions
JPH0430192B2 (en
Inventor
Okio Yoshida
吉田 興夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58052730A priority Critical patent/JPS59178769A/en
Publication of JPS59178769A publication Critical patent/JPS59178769A/en
Publication of JPH0430192B2 publication Critical patent/JPH0430192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To reduce after-images and enable the image pickup of a subject of a low illuminance by a method wherein the inlet for carriers from a photoconversion part such as a photoconductor is provided at the accumlation diode part of a solid-state switching element, and a solid-state scanning part is so provided in such a manner that the most part of said diode turns into the state of complete transfer. CONSTITUTION:Two n type regions are diffusion-formed in the surface layer part of a p<-> type Si substrate 1, and one of them is used for a vertical CCD region 2 serving as the scanning part, and the other region 13 as the accumulation diode 15. Next, p<+> type regions 14 are diffusion formed in the surface layer part of the diode 15, the first oxide film 5 is adhered in abuttment against the exposed surface therebetween, and two polycrystalline Si electrodes 4 are buried above the region 2 in parallel. Thereafter, the first Al electode 6 is adhered on the film 5 and covered with the second oxide film 7, and the second Al electrode 8 abutting against the electrode 6 at the position above the electrode 4 by providing an aperture. Then, an aperture is bored in the electrode 8 by being positioned above the diode 15, an amorphous Si layer 9 joining to the film 7 is deposited over the entire surface, and the entire surface is covered with a clear electrode film 10.

Description

【発明の詳細な説明】 〔発明の11Aする技術分野〕 せた固体撮像素子に係ジ、特に残像特性全改善した固体
撮像素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 11A] The present invention relates to a solid-state image sensor, and particularly to a solid-state image sensor with completely improved afterimage characteristics.

〔従来技術とその問題点〕[Prior art and its problems]

固体撮像素子の進展は目覚ましくSt基板に光電変換部
と走互部を形成するモノリシック型固体撮像素子の他に
、前記両部の機能を分けてsi基板にCCDやMOSな
どの走査部を形成し、その上部に光導電層などの光電変
換部を重畳するいわゆる′2階建て固体撮像素子“が出
現するようになった。
The progress of solid-state imaging devices has been remarkable, and in addition to monolithic solid-state imaging devices in which a photoelectric conversion section and a scanning section are formed on an ST substrate, there are also monolithic solid-state imaging devices that form a scanning section such as a CCD or MOS on an Si substrate by separating the functions of the two sections. , so-called ``two-story solid-state image sensors'' have appeared on which a photoelectric conversion section such as a photoconductive layer is superimposed.

第1図は光導電体と電荷転送菓子を組み合わせた固体撮
像素子の一画素の断面図である。P形s1基板(1)に
n部の埋め込みチャネルCCDからなる垂直COD (
21と、同じくn部の蓄積ダイオード(3)が形成され
る。垂直CCD (21の上には転送用ゲート成極とな
るポリ3i電極(4)がある。蓄積ダイオード(3)の
部分では熱酸化膜を含む第一酸化膜(5)にエツチング
を行ない、蓄積ダイオードのn部が露出するように形成
した後、例えばAノなどの第−電へ(6)を所定の形状
に形成する。この後に第二酸化力莫(7)全形成し、さ
らにこの膜にエツチングを行ない。
FIG. 1 is a cross-sectional view of one pixel of a solid-state image sensor that combines a photoconductor and a charge transfer confectionery. Vertical COD (
21, and a storage diode (3) of the n section is also formed. Above the vertical CCD (21) there is a poly 3i electrode (4) which serves as the gate polarization for transfer. In the storage diode (3) part, the first oxide film (5) including the thermal oxide film is etched and the storage After forming the diode so that the n part is exposed, a third electrode (6), such as A, is formed in a predetermined shape.After this, a second oxidizing force (7) is completely formed, and further this film is coated. Perform etching.

第一電極は一部全露出させ、これにAlなどの第二電%
 (81k所定の形状に形成する。この上部にa−81
などの光導電体層(9)全スパッタリングやグロー放電
で形成し、さらに透明導電膜(10) k形成して、走
査部と光電交換部を有する固体撮像素子全得る。
A part of the first electrode is completely exposed, and a second electrode such as Al is added to this.
(81k is formed into a predetermined shape.A-81
A photoconductor layer (9) is entirely formed by sputtering or glow discharge, and a transparent conductive film (10) is further formed to obtain a solid-state imaging device having a scanning section and a photoelectric exchange section.

なお、電極の材料が第一層はボIJ S r 、第二層
はモリブデンの例でほぼ同様の構成が特開昭57−32
183号公報に記載されている。
In addition, an almost similar structure is disclosed in Japanese Patent Laid-Open No. 57-32, in which the electrode material is made of boron IJ Sr for the first layer and molybdenum for the second layer.
It is described in Publication No. 183.

このような固体撮像素子において、a−8iなどの光導
電体1層(9)にて光生成されたギヤリヤのうち、止孔
は透明導電j摸(10)側へW電子は蓄積ダイオード(
3)に信号電荷として蓄積される。これらの蓄積された
信号′iシ荷は1/60秒又は1/30秒後にポリS 
I 電極(4)の一部に印加されたパルスによ−ク蓄積
ダイオード(3)から垂直COD (21に転送される
。この後手ra、 c CDを転送された信号電荷は水
平CODレジスタ(図示せず)に入浸水平転送後、信号
出力として読み出される。
In such a solid-state image sensing device, in a gear gear in which light is generated in one layer of photoconductor (9) such as a-8i, the stop hole is transferred to the transparent conductive layer (10), and the W electrons are transferred to the storage diode (10).
3) is accumulated as a signal charge. These accumulated signals 'i' load will be released after 1/60 seconds or 1/30 seconds.
A pulse applied to a part of the I electrode (4) causes the signal charge to be transferred from the storage diode (3) to the vertical COD (21).The signal charge transferred to the horizontal COD register (Fig. After horizontal transfer (not shown), it is read out as a signal output.

このような固体撮像素子は従来のsiモノリシックの素
子に比べて、感光面積が大きくなる利点やスミアやブル
ーミング特性が良好という利点がある反面、残像特性が
問題となる場合がある。残像の原因はa−8iなどの光
電変換膜の元応答遅れに起因するものもあるが、蓄積ダ
イオードから垂直CODへの信号電荷の転送の際に全部
の電荷が転送されずに残るためである。転送が不完全な
ために起こる残像は第1図の固体撮像素子のみならず。
Although such a solid-state image sensor has the advantage of having a larger photosensitive area and better smear and blooming characteristics than conventional Si monolithic devices, it may have problems with image retention characteristics. The cause of the afterimage is partly due to the original response delay of the photoelectric conversion film such as A-8I, but it is also because when the signal charge is transferred from the storage diode to the vertical COD, not all the charge is transferred and remains. . Afterimages caused by incomplete transfer occur not only in the solid-state image sensor shown in FIG.

走査部に相当する従来のインターライン転送形固体撮像
素子でも問題とな不事が知られており、ゝイアターライ
ン転送方弐C”CDイメージセンサ−の残像現象“(寺
西信−ほか、・テレビジョン学会技術報告Vo1.4.
No41pp25〜30)や’No ImageLag
 Photodiodes 5trveture in
 the InterlrneCCD Image 5
ensor“(Nobuka7u Teranishi
 etal IEDM82 12.6)に示されている
Problems are known to occur even with the conventional interline transfer type solid-state image sensor, which corresponds to the scanning section. Academic conference technical report Vol. 1.4.
No41pp25-30) and 'No ImageLag
Photodiodes 5trveture in
the InterlrneCCD Image 5
sensor “(Nobuka7u Teranishi
etal IEDM82 12.6).

すなわち第2図に示すような第1図の蓄積ダイオードの
構成と同様のNP接合のホト、タイオード(ii)を持
つインターライン転送形CODでは不完全転送モードと
なり残像が出やすいのに対して。
In other words, an interline transfer type COD having an NP junction photo diode (ii) similar to the storage diode configuration of FIG. 1 as shown in FIG. 2 is in an incomplete transfer mode and tends to cause afterimages.

第3図に示すPNP構造のホト、ダイオード(12)で
は完全空乏の状態を実現して完全転送モードとなり、残
像が除去できる。
The PNP structure photodiode (12) shown in FIG. 3 achieves a completely depleted state and enters a complete transfer mode, making it possible to eliminate afterimages.

第1図の構成の固体撮像素子ではNP接合の蓄積ダイオ
ードが構成されているため、不完全転送モードになるが
、さらにNP接合の静電容量のみならず、a−8i光導
電膜の静電容量が加わυ、残像を遅くする原因にもなる
。したがって、光導電体層と組み合わせた場合の蓄積ダ
イオードでも完全転送となるような構成が望ましく前述
の残像を除去できるPNP構造の蓄積ダイオードの採用
が望ましい。しかし、第1図に見るようにN Pの蓄積
ダイオードには電子が電極(6)ヲ通して流れ込む+ 
   − ようになってお!;l、PNP構成では電極(6)と接
触するのはP−域のため光励起された電子が、P領域を
乗り越えてN領域に入る事が出来ず、動作しない事にな
る。
The solid-state image sensor with the configuration shown in Fig. 1 has an NP junction storage diode, which results in an incomplete transfer mode. The additional capacitance υ also causes a delay in afterimage formation. Therefore, it is desirable that the storage diode, when combined with a photoconductor layer, has a configuration that allows perfect transfer, and it is desirable to employ a storage diode with a PNP structure that can eliminate the above-mentioned afterimage. However, as shown in Figure 1, electrons flow into the NP storage diode through the electrode (6).
- Be like that! ;l. In the PNP configuration, since the electrode (6) contacts the P- region, photoexcited electrons cannot cross over the P region and enter the N region, resulting in no operation.

〔発明の目的〕[Purpose of the invention]

この発明は残像の少ない光導電体と固体のスイッチング
素子と金組み合わせた固体撮像装置全提供する裏金目的
とする。
The object of the present invention is to provide a solid-state imaging device that combines a photoconductor with little afterimage, a solid-state switching element, and gold.

〔発明の概要〕[Summary of the invention]

この発明は光導電体などの光電変換部からのキャリヤの
流入口を固体のスイッチング素子の蓄積ダイオード部に
設けると共に蓄積ダイオードの大部分が完全転送の状態
になるように固体走査部全構成した固体撮像装置である
In this invention, an inlet for carriers from a photoelectric conversion section such as a photoconductor is provided in a storage diode section of a solid-state switching element, and a solid-state scanning section is constructed entirely so that most of the storage diode is in a state of complete transfer. It is an imaging device.

〔発明の効果〕〔Effect of the invention〕

この発明により、残像の少ない固体撮像素子が得られ、
低照度の被写体の撮像が可能となる。また光電変換層が
Siの固体走査部の上部にあって。
According to this invention, a solid-state image sensor with less afterimage can be obtained,
It becomes possible to image a subject in low illumination. Further, a photoelectric conversion layer is provided above the Si solid-state scanning section.

入射光が81基板に到達せず、光電変換層内で吸収され
るので、従来Si基板内で発生したキャリヤによるスミ
アやクロストークの偽信号が無い良質の画像を再生する
固体撮像装置が得られる。
Since the incident light does not reach the 81 substrate and is absorbed within the photoelectric conversion layer, it is possible to obtain a solid-state imaging device that reproduces high-quality images without the smear caused by carriers or crosstalk false signals that conventionally occur in the Si substrate. .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例全図面を用いて説明する。 Embodiments of the present invention will be explained using all the drawings.

第4図は本発明の一実施例を示す、蓄積ダイオ−ド部を
除いて、第1図とはy同じ構成となっている。蓄積ダイ
オード部(15)の構成を図に示すようにPSl基板(
1)に対してn領域(13)を形成し、さらにP領域(
14)k薄く表面に形成する。このP+領域は全面に形
成せず、一部を残して形成しておく。さらに、AIなど
の第一電極(6)がn領域に接触するように所定の形状
に形成する。その後の形成方法は第1図と同じような手
順で行なう。
FIG. 4 shows an embodiment of the present invention, which has the same configuration as FIG. 1 except for the storage diode section. The configuration of the storage diode section (15) is shown in the figure using a PSL substrate (
For 1), an n region (13) is formed, and a p region (13) is formed.
14) Form a thin layer on the surface. This P+ region is not formed over the entire surface, but is formed with a portion left. Furthermore, a first electrode (6) made of AI or the like is formed into a predetermined shape so as to be in contact with the n region. The subsequent formation method is similar to that shown in FIG.

蓄積ダイオード部全実施例に示したような構成とすると
、a−8tなどの光導電膜(9)にて発生したキャリヤ
のうち電子が、成界により第二電極(8)に補えられ、
第一電極(9)全通って、蓄積ダイオード(15)へ運
ばれるが、P・領域(14)の一部が切れて、n領域(
13)への流入口となっているため%信号電荷が容易に
蓄、漬ダイオード(15)VC#積できる。さらに、従
来のNPやNPの構成において心配される垂直CCD部
への不完全転送が減少し、−PNP蓄積蓄積ダイオード
光全転送の条件を満足して残像現象が改善される。
If the structure of the storage diode section is as shown in all the examples, electrons among the carriers generated in the photoconductive film (9) such as a-8T are supplemented to the second electrode (8) by field formation.
It passes through the entire first electrode (9) and is carried to the storage diode (15), but a part of the P region (14) is cut off and the n region (
13), the signal charge can be easily accumulated and multiplied by the diode diode (15) VC#. Furthermore, incomplete transfer to the vertical CCD section, which is a concern in conventional NP and NP configurations, is reduced, and the afterimage phenomenon is improved by satisfying the condition of -PNP storage diode light transfer.

蓄積ダイオードの大部分の面積において、完全転送モー
ドとなるようにダイオードの空乏化した時の電位がポリ
Si電極(4)で決する転送ゲートの魂1立より少くと
も300mV程度高(なれば良く、+ P領域がこの役目全果す。信号電荷である電子の流入は
n領域から行なわれるが、この領域は電極との接触が、
可能であれば出来るだけ小さい事が望ずしい。なお、P
NPの構成では本来の意味のダイオードからはずれるが
、機能としてNPのダイオードが主として働らくのでP
NPも蓄積ダイオードと呼ぶことにする。
In most areas of the storage diode, the potential when the diode is depleted is at least 300 mV higher than the voltage of the transfer gate determined by the poly-Si electrode (4), so that it is in complete transfer mode. + The P region fulfills this role.Electrons, which are signal charges, flow in from the n region, but the contact with the electrode in this region is
It is desirable that it be as small as possible. In addition, P
The NP configuration deviates from the original meaning of a diode, but since the NP diode primarily functions as a function, it is
NP will also be called a storage diode.

〔他の実施例〕[Other Examples]

第5図に本発明の他の実施例を示す。前述の実6m例と
同じく蓄積ダイオード(17)の構成が従来例と異なる
FIG. 5 shows another embodiment of the invention. As with the actual 6m example described above, the configuration of the storage diode (17) is different from the conventional example.

蓄積ダイオードの大部分が完全転送の状態となるように
PNP構成全成金点は第4図の実姉例と同じであるが、
信号電荷である電子が流入する場所in領域(16)と
して蓄積ダイオード(17)t−構成した例である。電
子の流入はAIの第一電極(6)かうn ’を域(13
)へなされるがr傾城(16)の存在によ!llt悌と
の1気的接触が良好となり、遊子がより簡単に流入出来
るようになる。図示の実施例の構成ではn領域に、I!
:績ダイオードの全面に形成しておいた後にn−領域全
形成する。図ではn領域とP+領域の深さ全回じにしで
あるが、これに限る事は無い。
All the metal forming points of the PNP configuration are the same as the actual sister example in Fig. 4 so that most of the storage diodes are in a perfect transfer state.
This is an example in which a storage diode (17) is configured as an in region (16) where electrons, which are signal charges, flow. The inflow of electrons is caused by the first electrode (6) of AI or the area n' (13
) due to the existence of r Kangjyo (16)! 1st air contact with llt 悌 will be better, and Yuko will be able to flow in more easily. In the configuration of the illustrated embodiment, in the n region, I!
: After forming on the entire surface of the diode, the entire n-region is formed. In the figure, the depths of the n area and the P+ area are all the way, but the invention is not limited to this.

上記実施例では、信号電荷の流入する電極が第一の上極
と第二の電極に分かれている例について説明したが、こ
れに限らず単一の′酸他でも良い事+ は勿論である。また成極の接触部分はnまたはn領域よ
り小さいかあるいは等しい例を図示したが。
In the above embodiment, an example was explained in which the electrode into which the signal charge flows is divided into the first upper electrode and the second electrode, but the invention is not limited to this, and it is of course possible to use a single acid or the like. . In addition, an example is shown in which the contact portion for polarization is smaller than or equal to n or n area.

これVこ限らず電極の接触部分がn領域に延びていても
良い。nやL1領域とさえ接触していればその部分k 
ithして信号電荷が流入出来るので、流入が紐かしい
n領域に接触していても構わない。
This is not limited to V, and the contact portion of the electrode may extend to the n region. As long as it is in contact with the n and L1 regions, that part k
Since the signal charges can flow in, it does not matter if the signal charges are in contact with the n region where the inflow is difficult.

また実施例では信号電荷として転送するキャリヤwN子
として説明したが、キャリヤが正一孔の場合にはp型と
p型をすべて逆にすれば良(/1事(ま明らかである。
Further, in the embodiment, the explanation has been made using carriers wN to be transferred as signal charges, but if the carrier is a positive hole, it is sufficient to reverse the p-type and p-type (/1).

また、光′闇変換部は光導電形のみならず、光起電力形
でも良い事は勿論である。
Furthermore, it goes without saying that the light/dark converter may be of a photoconductive type as well as a photovoltaic type.

いずれにしろ光′心変換部からの信号電荷を垂直COD
へ転送するまでの間に存在する蓄積部分のダイオード構
成が単なるPN形式で無く、転送が完全転送モードとな
るように薄いP+層を配しfCP+NP−形式で大部分
が構成され、完全1倭モードを実現する2層の一部に侶
号電1uJが流入出来る部分つまり、信号電荷と同じ4
電形(電子の場合はn形、正孔の擲合はp形)部分が存
在していれば良い。
In any case, the signal charge from the optical center converter is converted into a vertical COD.
The diode configuration of the storage part that exists until the transfer is not just a PN type, but a thin P+ layer is arranged so that the transfer is in a complete transfer mode, and most of it is configured in an fCP+NP- type, making it a complete 1-Wa mode. In other words, the part where the signal charge 1uJ can flow into the part of the second layer that realizes the signal charge is 4
It is sufficient that an electric type (n-type for electrons, p-type for holes) exists.

また、上記9ご流物てはSi基板がpやp−型について
述べたが1例えばn基板にp形を拡散した構造に蓄積ダ
イオードやCCDを形成しても良い。
Further, in the above 9 items, the Si substrate is of p type or p- type, but for example, a storage diode or a CCD may be formed in a structure in which p type is diffused into an n substrate.

さらVこ基板としてSiに限らず、半導体にて固体走食
部を製作する時には、本発明が適用できる。
Furthermore, the present invention can be applied to fabricating a solid-state etching section using a semiconductor other than Si as a V-substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換部と固体走査部からなる固体撮
像素子の断面図、第2図は従来の固体撮像素子の断面図
、〆3図は残像を改善した固体撮像素子の断面図、第4
図は本発明の光電変換部と固体疋青部からなる固体撮像
集子の断面図、及び第5図は本発明の固体撮は素子の他
の実施例である。 1・・・p形SI糸板、2・・・垂直CCD、3・・・
蓄積ダイオード、4・・・ボ1JSi電倹、5・・・第
一酸化膜、6・・・第一電極、7・・・第二酸化膜、8
・・・第二電極、9 ・元導電体層、10・・・透明導
電膜、11・・・平滑化酸化1a、  12・・・光導
′電膜、13・・・n領域、14・・・p+狽域、15
・・・蓄積ダイオード、16・・・n領域、17・・・
蓄積グ・fオード。 代理人弁理士 則 近′憲 佑(ほか1名)第1図 第  2 図
Fig. 1 is a sectional view of a conventional solid-state image sensor consisting of a photoelectric conversion section and a solid-state scanning section, Fig. 2 is a sectional view of a conventional solid-state image sensor, and Fig. 3 is a sectional view of a solid-state image sensor with improved afterimage. Fourth
The figure is a cross-sectional view of a solid-state imaging element comprising a photoelectric conversion part and a solid-state bituminous part according to the invention, and FIG. 5 shows another embodiment of the solid-state imaging element according to the invention. 1... p-type SI thread plate, 2... vertical CCD, 3...
Storage diode, 4... Bo1JSi electricity, 5... First oxide film, 6... First electrode, 7... Second oxide film, 8
...Second electrode, 9. Original conductor layer, 10.. Transparent conductive film, 11.. Smoothing oxidation 1a, 12.. Photoconductive film, 13.. N region, 14..・p+lock area, 15
...Storage diode, 16...n region, 17...
Accumulation group f-ode. Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に設けられた光電変換部と、半導体基板に
形成された固体走査部を有する固体撮像素子において、
該光電変換部からの信号電荷を蓄積する半導体基板に設
けられた蓄積ダイオードの表面の一部分が、信号電荷と
同じ導電形の層で形成され、他の大部分の表面は信号電
荷と反対の導電形の層で形成され、光電変換部からの電
気的接触が少な(とも前記信号宵、荷と同じ導電形の層
になされて信号′を電荷の蓄積ダイオードへの流入を容
易にすると共に、前記信号電荷と反対の導電形の層で表
面全形成された蓄積ダイオード部分が、同じく半導体基
板に設けられた読み出し部への電荷
In a solid-state image sensor having a photoelectric conversion section provided on a semiconductor substrate and a solid-state scanning section formed on the semiconductor substrate,
A part of the surface of the storage diode provided on the semiconductor substrate that stores signal charges from the photoelectric conversion section is formed of a layer of the same conductivity type as the signal charges, and most of the other surface is formed of a layer of the same conductivity type as the signal charges. It is formed of a layer of the same conductivity type as the signal, and there is little electrical contact from the photoelectric conversion part (both the signal and the charge are formed in a layer of the same conductivity type as the signal, which facilitates the flow of the signal into the charge storage diode, and The storage diode part, whose entire surface is made of a layer of conductivity type opposite to that of the signal charge, stores the charge to the readout section also provided on the semiconductor substrate.
JP58052730A 1983-03-30 1983-03-30 Solid-state image pickup device Granted JPS59178769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052730A JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052730A JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS59178769A true JPS59178769A (en) 1984-10-11
JPH0430192B2 JPH0430192B2 (en) 1992-05-21

Family

ID=12923039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052730A Granted JPS59178769A (en) 1983-03-30 1983-03-30 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS59178769A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253321A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Solid state image sensor
JP2009065166A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009065163A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009117802A (en) * 2007-09-07 2009-05-28 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009158930A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Image sensor and method of manufacturing the same
JP2009158929A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
JP2009188380A (en) * 2007-12-28 2009-08-20 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
WO2012105106A1 (en) * 2011-02-04 2012-08-09 富士フイルム株式会社 Method for manufacturing solid-state imaging element, solid-state imaging element, and imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253321A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Solid state image sensor
JP4572130B2 (en) * 2005-03-09 2010-10-27 富士フイルム株式会社 Solid-state image sensor
JP2009065166A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009065163A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009117802A (en) * 2007-09-07 2009-05-28 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009158930A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Image sensor and method of manufacturing the same
JP2009158929A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
JP2009188380A (en) * 2007-12-28 2009-08-20 Dongbu Hitek Co Ltd Image sensor and method for manufacturing the same
US8178912B2 (en) 2007-12-28 2012-05-15 Dongbu Hitek Co., Ltd. Image sensor for minimizing a dark current and method for manufacturing the same
WO2012105106A1 (en) * 2011-02-04 2012-08-09 富士フイルム株式会社 Method for manufacturing solid-state imaging element, solid-state imaging element, and imaging device
JP2012164780A (en) * 2011-02-04 2012-08-30 Fujifilm Corp Solid state imaging element manufacturing method, solid state imaging element, and imaging device

Also Published As

Publication number Publication date
JPH0430192B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
US7760254B2 (en) Single plate-type color solid-state image sensing device
US20070114584A1 (en) Active photosensitive structure with buried depletion layer
JPH07176781A (en) Photoelectric transducer
JPS6157181A (en) Solid-state image pickup device
EP0908956B1 (en) Photoelectric conversion apparatus and image sensor
JPH09266296A (en) Solid-state image sensing device
US4148051A (en) Solid-state imaging device
JPH02100363A (en) Solid-state image sensing element
JPS59178769A (en) Solid-state image pickup device
JPH05267695A (en) Infrared image sensing device
JP2866328B2 (en) Solid-state imaging device
JPH06181302A (en) Ccd imaging device
EP0055114B1 (en) Solid-state imaging device
JP2917361B2 (en) Solid-state imaging device
JP3655760B2 (en) Infrared solid-state image sensor
JPH0416948B2 (en)
GB2100511A (en) Detector for responding to light at a predetermined wavelength, and method of making the detector
JPS59119980A (en) Solid state image pickup device
JPS6160592B2 (en)
JP3047965B2 (en) Solid-state imaging device
JPH05190828A (en) Solid-state image-sensing element
JPS59126666A (en) Solid-image sensor
JPH0794699A (en) Solid state image sensor
JPS6320385B2 (en)
JP2848435B2 (en) Solid-state imaging device